

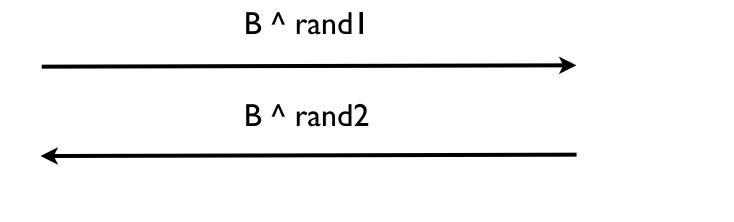
Security

- E. Rescoria, SSL and TLS: Designing and Building Secure Systems. Addison-Wesley, 2001.
- Bruce Schneier, Applied Cryptography. Wiley, 1996.

Crypto

- Quantum Cryptography!
- Based on computationally infeasible problems
 - factoring products of large primes
 - discrete logarithms
- If P = NP most of this would break!

Symmetric Crypto


```
ciphertext = encrypt(plaintext, key)
plaintext = decrypt(ciphertext, key)
```

- Same (shared) secret key used for both encryption and decryption
- (same algorithm => bijection)
- DES (and variants like 3-DES) etc.

Diffie-Hellman Key Exchange

 $k2 = (B ^ rand I) ^ rand 2$

- kI = k2 computable by either participant
- Eavesdropper cannot compute k

 $kI = (B ^ rand2) ^ randI$

- (assuming discrete logarithm is difficult)
- Secure channel that is not authenticated!

Public Key Crypto


```
ciphertext = encrypt(plaintext, keya)
plaintext = decrypt(ciphertext, keyb)
```

- Public/private keys: keya, keyb
- Different keys used for encryption and decryption
- keya public => encryption mode
- keyb public => authentication mode
- RSA, ...
- Key Distribution -- PKI

Hash Function


```
digest = hash(message)
```

- Computationally feasible to compute hash of message
- Computationally infeasible to
 - given h, find m such that h = hash(m)
 - find m1, m2 where hash(m1) = hash(m2)
- Computationally cheaper than encryption
- SHA, (MD5)

Digital Signature


```
signature = encrypt(hash(message), privatekey)
```

send (message, (signer_id, signature))

OK = (decrypt(signature, publickey) = hash(message)

- Message is not secret
- Integrity checked
- Non-repudiation

Key Distribution

- Why do I believe it is your public key?
 - It's in the New York Times ...
 - But maybe the bad buys have altered my copy of the Times
 - i.e. compromised the key server!
- Certificates!

X.509 Certificate

Header Boilerplate
Issuing CA identifier
GUID

Subject identifier

Subject public key

Valid Period

Optional stuff

CA Signature

- Certifying Authority (CA) creates certificate and digitally signs it
- CA public key is well known

Certificate Revocation

Header Boilerplate
Issuing CA identifier
GUID
Revoction Data
GUID

Revocation date

• • •

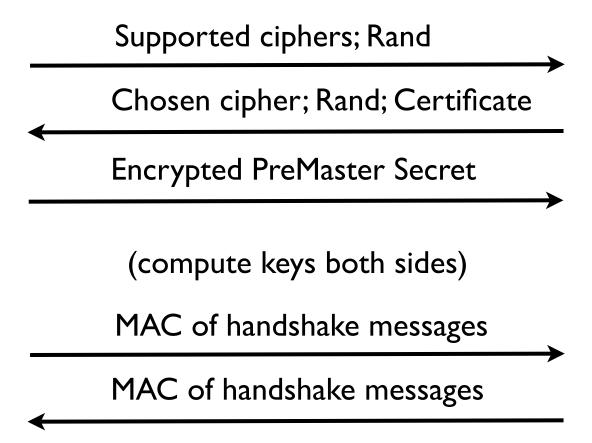
CA Signature

- Certifying Authority (CA) creates revocation list and digitally signs it
- CRLs must be made widely available

Advanced Features

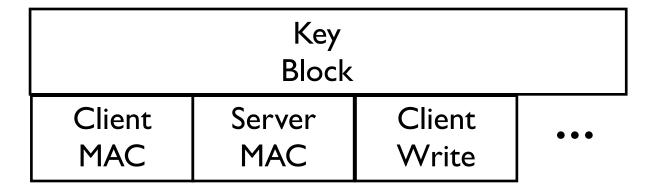
• Chaining of certificates

SSL Overview



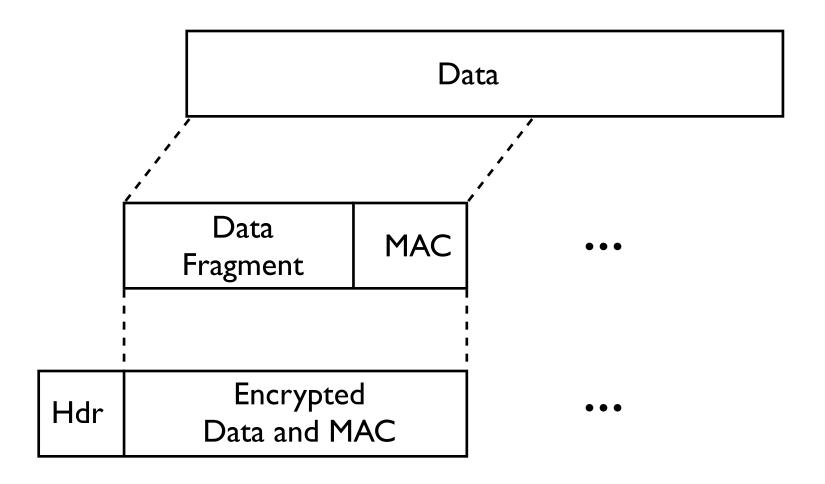
- Provide authenticated secure channel
 - any TCP application
- Phases:
 - Handshake
 - authenticate
 - establish session key
 - Data Transfer

Handshake (Overview)

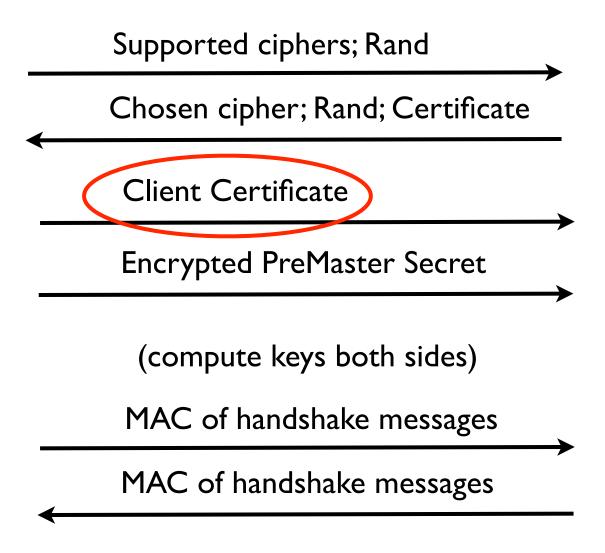

Key Derivation

Client Rand PreMaster Secret

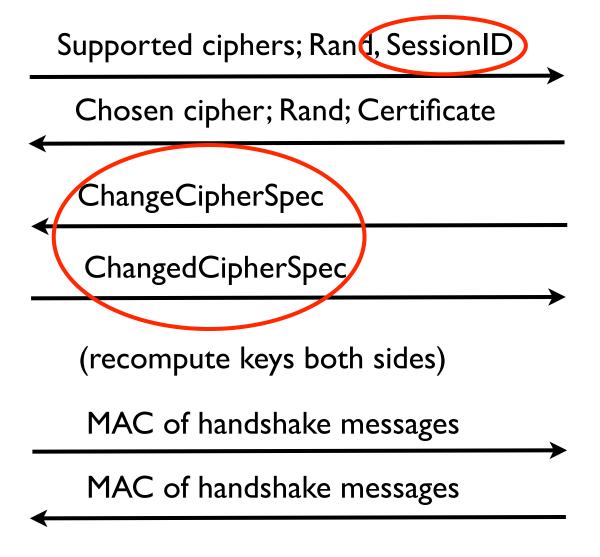
Server Rand


Master Secret

Record Protocol



Client Authentication



Session Resumption

MAC computation requires knowledge of original session master secret!

Choosing SSL

- Port selection
 - http://... uses standard port, unencrypted service
 - https://... SSL capable server on different port
- Negotiation

- Problems:
 - external disclosure
 - guessing
 - eavesdropping
 - replay
 - host compromise

- Problems:
 - external disclosure
 - Stealing it
 - Buying it for chocolate bars
 - guessing
 - eavesdropping
 - replay
 - host compromise

- Problems:
 - external disclosure
 - guessing
 - a very common problem who can remember all those passwords?
 - (obnoxious) site can require long nonword patterns
 - eavesdropping
 - replay
 - host compromise

- Problems:
 - external disclosure
 - guessing
 - eavesdropping
 - replay
 - SSL is supposed to take care of these
 - host compromise

- Problems:
 - external disclosure
 - guessing
 - eavesdropping
 - replay
 - host compromise
 - do what you can ...

Host Compromise

- User has same password at multiple sites
- DO NOT store passwords anywhere
 - not even encrypted!
- Use a one-way hash function
- Keep (encrypted) hashes in the database
- forgotten password requires reset

Host Compromise

- What about credit card numbers?
- Have to be stored somewhere
- Limit scope of damage?
 - e.g. encrypt with key derived from user password per session
 - (user changes password => credit card number must be re-entered)
- Verisign / PayPal style service
 - At what scale is this sensible?