
Digital Network Interface
Programmer’s Guide

for Windows NT

Copyright © 1997 Dialogic Corporation

COPYRIGHT NOTICE

© Dialogic Corporation, 1997

This document is copyrighted and all rights are reserved by Dialogic. This document may not, in
whole or in part, be reduced, reproduced, stored in a retrieval system, translated, or transmitted in any
form or by any means, electronic or mechanical, without the express written consent of Dialogic. The
contents of this document are subject to change without notice. Every effort has been made to ensure
the accuracy of this document. However, due to ongoing Product improvements and revisions,
Dialogic cannot guarantee the accuracy of printed material after the date of publication nor can it
accept responsibility for errors or omissions. Dialogic will publish updates and revisions to this
document as needed.

The software referred to in this document is provided under a Software License Agreement. Refer to
the Software License Agreement for complete details governing the use of the software.

DIALOGIC and SpringBoard are registered trademarks of Dialogic Corporation. The following are
also trademarks of Dialogic Corporation:

Board Locator Technology, D/120, D/121, D/121A, D/121B, D/12x, D/81A, D/160SC-LS, D/240SC,
D/240SC-T1, D/300SC-E1, D/320SC, DIALOG/, DIALOG/2x, DIALOG/4x, DIALOG/HD, DTI/,
DTI/101, DTI/211, DTI/212, DTI/2xx, DTI/xxx, PEB, SCbus, SCxbus, SCSA, and Signal Computing
System Architecture, SpringWare.

IBM is a registered trademark, and IBM PC is a trademark of International Business Machines
Corporation. Windows NT is a registered trademark of Microsoft Corporation.

Publication Date: April, 1997

Dialogic Corporation
1515 Route Ten
Parsippany, N.J. 07054

iii-CD

Table of Contents

1. Digital Network Interface General Description .. 1
Digital Network Interface Overview... 1
1.1. Digital Network InterfaceTypical Applications.. 1
1.2. Digital Network Interface Compatibility .. 2
1.3. Digital Network Interface SCbus Overview ... 4
Digital Network Interface Products Covered by this Guide 4

Digital Network Interface Product Terminology ... 5
How to Use This Digital Network Interface Guide.. 7
Organization of This Digital Network Interface Guide.................................. 8

2. Digital Network Interface Telephony .. 11
Overview .. 11
2.1. T-1 Digital Network Interface Telephony .. 11

2.1.1. T-1 Frame Format ... 12
2.1.2. T-1 Synchronization.. 13
2.1.3. T-1 Signaling .. 14

2.2. E-1 Digital Network Interface Telephony .. 14
2.2.1. E-1 Frame Format ... 15
2.2.2. E-1 Synchronization.. 17
2.2.3. E-1 Signaling .. 18
2.2.4. E-1 National and International Bits... 20

2.3. Digital Network Interface Hardware Implementation................................... 20
2.3.1. Intelligent Network Interfaces... 21
2.3.2. Clear Channel TS16 .. 21
2.3.3. Modifying Network Parameters .. 21
2.3.4. Signaling Features... 21
2.3.5. PEB Device Channels and Routing Functions 23
2.3.6. SCbus Routing .. 23
2.3.7. Loss of Synchronization Alarm Handling... 23
2.3.8. Digital Network Interface Hardware Alarm Indicators 26

3. Digital Network Interface ... 29
Function Overview ... 29
3.1. Digital Network Interface Library Function Categories 29

3.1.1. Alarm Functions.. 30
3.1.2. Compatibility Functions.. 30
3.1.3. Diagnostic Functions... 30

Digital Network Interface Programmer’s Guide for Windows NT

iv-CD

3.1.4. Extended Attribute Functions ... 31
3.1.5. Parameter Request Functions .. 32
3.1.6. Parameter Setting Functions ... 32
3.1.7. Resource Management Functions ... 33
3.1.8. SCbus Routing Functions.. 34
3.1.9. Time Slot Audio Functions ... 34
3.1.10. Time Slot Signaling Functions .. 34

3.2. Digital Network Interface Error Handling .. 36
3.3. Include Files ... 39

4. Digital Network Interface Function Reference ... 41
Digital Network Interface Function Overview.. 41
ATDT_BDMODE() - returns the current mode of every time slot...................... 42
ATDT_BDSGBIT() - returns the current state of the transmit and receive 45
ATDT_DNLDVER() - returns the firmware version... 48
ATDT_IDLEST() - returns the current idle state .. 53
ATDT_ROMVER() - returns the version of the EPROM 56
ATDT_STATUS() - returns the current status .. 61
ATDT_TSMODE() - returns the current signaling mode.................................... 64
ATDT_TSSGBIT() - retrieves the current state of the transmit and receive
signaling bits... 67
dt_close() - closes Digital Network Interface devices ... 70
dt_dial() - allows the application to pulse dial ... 72
dt_getctinfo() - returns information about the Digital network interface............. 77
dt_GetDllVersion() - returns the Network DLL Version Number....................... 81
dt_getevt() - blocks and returns control to the program....................................... 83
dt_getevtmsk() - retrieves the current event bitmask(s)....................................... 87
dt_getparm() - gets the current value ... 92
dt_getxmitslot() - returns the SCbus time slot ... 100
dt_libinit () - initializes the Network Library DLL.. 103
dt_listen() - connects the receive ... 105
dt_mtfcn() - initiates or stops the multitasking (asynchronous) function........... 109
dt_open() - opens a Digital Network Interface device 116
dt_rundiag() - runs diagnostics .. 119
dt_setalrm() - sets the Digital Network Interface device 123
dt_setevtmsk() - enables and disables notification for events............................ 126
dt_setidle() - enables or disables transmission of silence 132
dt_setparm() - changes the value of a device parameter 136
dt_setsigmod() - sets the type of signaling... 139
dt_settssig() - sets or clears the transmit .. 143

Table of Contents

v-CD

dt_settssigsim() - setting or clearing of the transmit signaling bits.................... 146
dt_tstcom() - tests the ability of a Digital Network Interface device 149
dt_tstdat() - performs a test.. 153
dt_unlisten() - disconnects the receive... 157
dt_xmitalrm() - starts and stops transmission of an alarm 160
dt_xmittone() - enables or disables transmission of a test tone.......................... 163
dt_xmitwink() - transmits wink signaling.. 166

5. Digital Network Interface Application Guidelines 173
Digital Network Application Overview.. 173
5.1. Writing a Simple Digital Network Interface Application 173

5.1.1. General Guidelines.. 173
5.1.2. Initialization .. 176
5.1.3. Processing ... 180
5.1.4. Terminating... 186
5.1.5. Compiling and Linking ... 188

Digital Network Interface Entries and Returns... 189

Appendix A - Dialogic Standard Runtime Library 189
Event Management Functions... 190
Standard Attribute Functions.. 193
PT Structure.. 194

Appendix B - Related Publications ... 197
Dialogic Digital Network Interface References.. 197
Other Dialogic Publications.. 197
T-1/E-1 Technology ... 198

Glossary... 199

Index .. 209

Digital Network Interface Programmer’s Guide for Windows NT

vi-CD

vii-CD

List of Tables

Table 1. E-1 and DTI/212 Time Slot Numbering .. 16
Table 2. Error Types Defined in dtilib.h ... 37
Table 3. ATDT_DNLDVER() Return Values.. 50
Table 4. ATDT_ROMVER() Return Values.. 58
Table 5. dt_getevtmsk() Return Values .. 88
Table 6. dt_getparm() Parameters .. 93
Table 7. Recommended dt_setalrm() Settings .. 177
Table 8. Guide to Appendix A... 190
Table 9. Digital Network Interface Inputs for Event Management Functions ... 191
Table 10. Digital Network Interface Returns Event Management Functions 192
Table 11. Standard Attribute Functions ... 193
Table 12. DV_TPT Structure .. 195

Digital Network Interface Programmer’s Guide for Windows NT

viii-CD

ix-CD

List of Figures

Figure 1. D4 Frame Format ... 12
Figure 2. D4 Superframe Format... 13
Figure 3. E-1 Frame Format .. 15
Figure 4. E-1 Multiframe Format .. 16
Figure 5. Individual Frame Synchronization ... 17
Figure 6. Multiframe Synchronization... 18
Figure 7. Channel Associated Signaling (CAS) Protocol 19
Figure 8. E-1 National and International Bits .. 20
Figure 9. T-1 Alarm Conditions .. 24
Figure 10. E-1 Loss of Synchronization Alarm Requirements 26

Digital Network Interface Programmer’s Guide for Windows NT

x-CD

1-CD

1. Digital Network Interface General
Description

Digital Network Interface Overview

The Network library of C functions allows a programmer to design application
programs that run on a host PC and work with one or more Dialogic Digital
Network Interface boards. The functions provided control the Digital Network
Interface device on the PCM Expansion Bus (PEB) or SCbus and the Network
external interface to network circuits that meet either the T-1 or E-1 telephony
standard.

NOTE: The DTI/211 and DTI/212 boards operate on the PCM Expansion Bus
(PEB). The DTI/2xx boards are not SCbus compatible. The Network
library of C functions also supports DTI/101 boards. See Section 1.2. for
details about the backward compatibility provided by this development
package.

The System Release Development Package includes Standard Runtime Library
(SRL) functions used in Network Windows NT applications to perform such tasks
as event management. SRL functions for Network applications are documented in
Appendix A of this guide. For a complete explanation of the SRL, see the
Standard Runtime Library Programmer’s Guide for Windows NT, included in the
Voice Software Reference for Windows NT.

1.1. Digital Network InterfaceTypical Applications

The type of applications supported by your software is dependent on the physical
configuration of the host PC system. For instance, a program that will run with a
DTI/2xx and other Dialogic devices arranged in terminate configuration allows
your system to act as a standalone voice processing node. Applications for this
configuration include:

• Central-office-based voice mail
• Cellular messaging
• Audiotex

Digital Network Interface Programmer’s Guide for Windows NT

2-CD

• Service bureaus

A program designed to run with multiple DTI/2xx devices arranged in drop-and-
insert configuration allows individual channels to terminate at a voice processing
device, pass transparently to the network, or both. Applications for this
configuration include all the terminate applications plus:

• Operator services such as billing automation, directory assistance, and
intercept treatments

• Telemarketing
• Agent automation
• Direct dial-in (DDI) service

Refer to the SCbus Configuration Planning Guide for typical applications using
the D/240SC-T1 or D/300SC-E1 device. To install and configure your hardware,
refer to the appropriate hardware installation card (see Appendix B).

1.2. Digital Network Interface Compatibility

This section describes compatibility of the Network software for Windows NT
with Dialogic hardware and with existing applications based on the Dialogic
Network driver.

NOTE: The DTI/2xx boards are not SCbus-compatible. The SCbus routing
functions introduced in this guide do not support the DTI/2xx boards.

The System Release Development Package for UNIX supports all Digital
Network Interface hardware. Some functions in the Network function library of C
functions may operate differently or not at all on a given Digital Network
Interface board type due to differences in the board’s usage. This section explains
these differences in functionality.

• dt_dial() is not supported by the DTI/211 board or the DTI/212 board.
It is supported by the D/240SC-T1 board and the D/300SC-E1 board.

NOTE: To perform dialing you can instead use a Windows NT Voice
library function supported by your D/xxx voice boards. The
function name is dx_dial(). If you have a different version, see
your Voice Software Reference for UNIX.

1. Digital Network Interface General Description

3-CD

• dt_open() opens time slots from 1 to 24 in T-1 applications (DTI/211
and D/240SC-T1 boards) or 1 to 30 in E-1 applications (DTI/212 and
D/300SC-E1 boards).

• dt_route() is not supported by DTI/2xx hardware.

NOTE: To reroute time slots on the PEB, you can instead use a
Windows NT Voice library function supported by your D/xxx
voice boards. The function name is dx_route().

• The following functions are new to the network library (libdti.lib and
libdtint.lib) and provide support for routing time slots on the SCbus:

• dt_getctinfo() is used to return device information for an on-board
digital network interface device time slot.

• dt_getxmitslot() returns the SCbus time slot number connected to
the transmit of a digital network time slot.

• dt_listen() is used to connect the receive of a digital network time
slot to an SCbus time slot.

• dt_unlisten() is used to disconnect the receive of a digital network
interface device time slot from the SCbus.

• dt_setalrm() DTA_DROP parameter is not supported by DTI/212 or
D/300SC-E1 devices. For these devices, use only DTA_NONE or
DTA_TERM.

• dt_setevtmsk() and dt_getevtmsk() functions include the
DTG_PDIGEVT parameter, which is not supported by DTI/2xx
hardware. These functions also include additional parameters and masks
for E-1 alarm handling (DTI/212 and D/300SC-E1 only) and for T-1
alarm handling (DTI/211 and D240/SC-T1 only). See the function
descriptions in Chapter 3. Digital Network Interface for more
information.

• dt_setsigmod() transparent signaling mode is not supported by DTI/212
boards or in SCbus configurations.

• dt_xmitalrm() function uses additional parameters for E-1 alarm
transmission (DTI/212 and D/300SC-E1 only).

Digital Network Interface Programmer’s Guide for Windows NT

4-CD

• dt_xmittone() one-milliwatt tone generation is not supported by
DTI/212 or D/300SC-E1 hardware.

The Network device driver also supports the PEB-based MSI and DMX boards.
Refer to the MSI and DMX references listed in Appendix B of this guide for more
information about functions supported on these boards. The MSI and DMX
boards are not SCbus-compatible.

1.3. Digital Network Interface SCbus Overview

 SCbus is the TDM (Time Division Multiplexed) bus connecting SCSA (Signal
Computing System Architecture) voice, telephone network interface and other
technology resource boards together.

SCbus boards are treated as board devices with on-board voice and/or telephone
network interface devices which are identified by a board and channel (time slot
for digital network channels) designation, such as a voice channel, analog channel
or digital channel.

For more information on the SCbus, refer to the SCbus Configuration and
Planning Guide and the Voice Software Reference for Windows NT.

Digital Network Interface Products Covered by this Guide

This guide covers the software for the products listed in the table below.
Product Name: Description

DTI/211 The Dialogic digital telephony interface board for
T-1 telephony standards that connects T-1
networks to compatible voice processing boards.

DTI/212 The Dialogic digital telephony interface board for
E-1 telephony standards that connects E-1
networks to compatible voice processing boards.

D/240SC-T1 The Dialogic single-slot, high-density voice
processing board with a T-1 network interface
module.

D/300SC-E1 The Dialogic single-slot, high-density voice

1. Digital Network Interface General Description

5-CD

Product Name: Description
processing board with an E-1 network interface
module. .Cyclic Redundancy Checking (CRC)
generation does not work, even when the
appropriate download parameter (000[cjs2]Ff) is
turned on

In the context of this guide, "Digital Network Interface" is used to refer to
the DTI/211 board, the DTI/212 board, the D/240SC-T1, and the
D/300SC-E1 board unless otherwise noted.

The DTI/211 and DTI/212 boards operate on the PCM Expansion Bus
(PEB). The DTI/2xx boards are not SCbus compatible.

For information on the DTI/240SC and DTI/300SC boards, see the
Primary Rate Software Reference for Windows NT.

E-1 is used to refer to the 2.048 Mbps Digital Service with Channel
Associated Signaling (CAS) see section 2.2.3. E-1 Signaling . This service
is available in Europe and some parts of Asia.

Digital Network Interface Product Terminology

The following product naming conventions are used throughout this guide:

D/12x refers to any model of the Dialogic series of 12-channel voice-
store-and-forward expansion boards. D/120, D/121, D/121A, and D/121B are
specific models of this board.

D/81A refers to the Dialogic 8-channel voice-store-and-forward expansion board.

D/160SC-LS refers to the Dialogic 16-channel voice board with onboard analog
loop start interface.

D/240SC refers to the Dialogic 24-channel voice board for use with a network
interface board.

D/240SC-T1 refers to the Dialogic 24-channel voice board with onboard T-1
digital interface.

Digital Network Interface Programmer’s Guide for Windows NT

6-CD

D/300SC-E1 refers to the Dialogic 30-channel voice board with onboard E-1
digital interface.

D/320SC refers to the Dialogic 32-channel voice board for use with a network
interface board.

D/xxx refers to D/2x, D/4x, D/81A and D/12x expansion boards.

D/xxxSC refers to voice and telephone network interface resource boards that
communicate via the SCbus. These boards include D/41ESC, D/160SC-LS,
D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC.

DIALOG/HD or Spancard refers to voice and telephone network interface
resource boards that communicate via the SCbus. These boards include
D/160SC-LS, D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC.

DMX refers to all Dialogic Digital Matrix Switch boards. These boards provide
cross-PEB time slot switching capability for up to four PEB systems.

DTI/xxx refers to any of Dialogic’s digital telephony interface expansion boards
for the AT-bus architecture. These boards include: DTI/101, DTI/211, and
DTI/212 boards.

MSI refers to all Dialogic Modular Station Interface boards. These boards
connect PEB (PCM Expansion Bus) time slots to analog station devices.

PEB is the PCM expansion bus connecting the D/81A or D/12x voice boards to
the network interface boards.

SCbus is the TDM (Time Division Multiplexed) bus connecting SCSA (Signal
Computing System Architecture) voice, telephone network interface and other
technology resource boards together.

Spancard same as DIALOG/HD.

SpringBoard refers to the hardware platform used with the D/21D, D/41D,
D/21E, D/41E, D/81A, D/121, D/121A, and D/121B board.

1. Digital Network Interface General Description

7-CD

SpringWare refers to the software algorithms built into the downloadable
firmware that provides the voice processing features available on all Dialogic
voice boards.

Voice board and software refers to D/2x, D/4x, D/81A, D/12x, and D/xxxSC
expansion boards and associated software.

For additional information on these products, refer to the Dialogic publications
listed in Appendix B.

How to Use This Digital Network Interface Guide

This guide is written for users who have purchased a Dialogic DTI/211, DTI/212,
D/240SC-T1 or D/300SC-E1 board and the System Release Development
Package for installation on a Windows NT PC.

The following steps explain the order in which a Digital Network Interface board
and related Dialogic software products for Windows NT should be installed,
checked, and programmed.

1. Prepare the Digital Network Interface board for installation using the
appropriate hardware installation card (see Appendix B).

2. Install the System Release Development Package for Windows NT by
following the procedure described in the System Release Software
Installation Reference for Windows NT.

3. Install the Digital Network Interface board(s) in your PC following the
procedures in the appropriate hardware installation card (see Appendix
B).

4. Refer to this Digital Network Interface Programmer’s Guide for
Windows NT and the Standard Runtime Library Programmer’s Guide for
Windows NT (included in the Voice Software Reference for Windows NT)
to develop application programs.

To use software for other Dialogic devices, refer to the appropriate software
reference for specific instructions (see Appendix B).

Digital Network Interface Programmer’s Guide for Windows NT

8-CD

Organization of This Digital Network Interface Guide

This Digital Network Interface Programmer’s Guide for Windows NT contains an
overview of the Dialogic digital telephony interface and a Network Windows NT
library C function reference. It is organized as follows:

Chapter 1. Digital Network Interface General Description provides a brief
description of the Network library of C functions, typical applications using the
Digital Network Interface products, and an overview of the SCbus.

Chapter 2. Digital Network Interface Telephony presents an overview of
Dialogic digital telephony interface (DTI) hardware implementation in relation to
basic T-1 and E-1 telephony practices.

Chapter 3. Digital Network Interface provides descriptions of the Network
Windows NT library functions that control the Digital Network Interface
hardware.

Chapter 4. Digital Network Interface Function Reference provides guidelines for
the design of Dialogic Digital Network Interface applications as well as a detailed
alphabetical reference to the Dialogic Network Windows NT library functions,
including programming examples for each function.

Chapter 5. Digital Network Interface Application Guidelinesprovides advice and
suggestions to guide programmers in designing and coding a Dialogic Digital
Network Interface application for Windows NT.

Appendix A lists returns and defines associated with the Dialogic Standard
Runtime Library (SRL) that are unique to Digital Network Interface devices.

Appendix B lists related publications. This includes a list of Dialogic guides,
Dialogic application notes, and non-Dialogic references.

9-CD

2. Digital Network Interface
Telephony

Overview

This chapter provides a brief overview of T-1 and E-1 concepts and a description
of how Dialogic hardware works in T-1 and E-1 environments.

It is beyond the scope of this guide to explain all the details of T-1 and E-1 digital
telephony. For more detailed information, refer to the related publications listed
in Appendix B.

2.1. T-1 Digital Network Interface Telephony

A T-1 circuit is used to transfer digital information in a two-way, full duplex
connection at a speed of 1.544 megabits per second (Mbps). In a T-1
environment, this rate is known as digital signal level 1 or DS-1. A T-1 circuit
contains 24 voice channels, each operating at a rate of 64,000 bits per second
(bps), a rate known as digital signal level 0 or DS-0. The formula used to
calculate the DS-1 rate of 1.544 Mbps includes an extra 8,000 bits that are not
part of the voice data but used to synchronize the data received and transmitted on
the T-1 circuit.

 64,000 bps (Voice Channel Rate, DS-0)
 x 24 (Number of Voice Channels)

 1,536,000 bps
 + 8,000 (Controlling Bits)

 1,544,000 (T-1 Circuit Rate, DS-1)

The T-1 compatible DTI/211 board and the D/240SC-T1 board demultiplex the
24 voice channels on a T-1 circuit and pass them on to associated hardware (such
as a voice board or other resource sharing module).

Digital Network Interface Programmer’s Guide for Windows NT

10-CD

2.1.1. T-1 Frame Format

Digital data on a T-1 line is organized into D4 frames. A D4 frame consists of a
single 8-bit sample from each of the 24 voice channels and one framing bit, for a
total of 193 bits. Each 8-bit sample occupies what is known as a time slot within
the frame. Figure 1 shows one D4 frame.

Bits Bits
1 2 3 4 5 6 7 8

193 Bits
Framing

Bit

ON

OFF

Time Slot 1 Time Slot 24

Figure 1. D4 Frame Format

The term time slot is derived from the method that is used to multiplex the 24
voice channels in a D4 frame. The channels are byte-interleaved in a frame. That
is, each byte is a sample from a different voice channel and occurs in a fixed
pattern within the frame (voice channel one in time slot one, voice channel two in
time slot two, etc.). All D4 frames have the same pattern. This technique of
interleaving is called time division multiplexing.

2. Digital Network Interface Telephony

11-CD

Twelve D4 frames make up what is known as a D4 superframe. Figure 2 shows a
single D4 superframe, indicating the framing bit values of the individual D4
frames. The framing bits are used for frame synchronization, which is described
in more detail in Section 2.1.2. T-1 Synchronization

D4 SUPERFRAME (12 D4 Frames)

Framing Bit

1 1 1 1 1 10 0 0 0 0 0

D4 FRAME (24 Time Slots)

Figure 2. D4 Superframe Format

2.1.2. T-1 Synchronization

To identify DS-0 voice channels for the receiver, the data being transferred must
be synchronized. This capability is built into the D4 frame and superframe
formats for T-1 systems. Each D4 frame in a superframe begins with a framing
bit. The 12 framing bits in a D4 superframe are arranged in a predefined pattern:
100011011100. By searching for this pattern, the T-1 compatible DTI/211 or
D240SC-T1 hardware can determine the beginning and end of every D4
superframe, D4 frame, and time slot. When this pattern cannot be found, the
resulting error is known as Receive Loss of Synchronization (RLOS). See Section
2.3.7. Loss of Synchronization Alarm Handling for information on T-1 alarm
handling.

Digital Network Interface Programmer’s Guide for Windows NT

12-CD

2.1.3. T-1 Signaling

T-1 signaling information (on-hook and off-hook states) must be carried on a T-1
line. Signaling is accomplished using two bits called the A-bit and the B-bit.
Each time slot in the sixth frame of the D4 superframe has the least significant bit
replaced with signaling information. These are the A-bits. Similarly, each time
slot in the twelfth frame of the D4 superframe has the least significant bit replaced
with signaling information. These are the B-bits. This strategy of replacing the
least significant bit with signaling information is called robbed-bit signaling.

For example, in E&M protocol the signaling bits indicate whether the sending
party’s line is on-hook or off-hook. When the signaling bits are 0s, the line is on-
hook, and when the signaling bits are 1s, the line is off-hook.

NOTE: Some T-1 services reverse these values or use them in different patterns
or protocols. Check with your T-1 supplier to verify the A-bit and B-bit
values for your T-1 service.

2.2. E-1 Digital Network Interface Telephony

An E-1 circuit is a digital two-way connection operating at a speed of 2.048
Mbps. This rate is achieved by combining 32 time slots operating at a rate of 64
Kbps.

 64,000 bps (Individual Voice Channel Rate)
 x 32 (Number of Channels or Time Slots)

 2,048,000 (E-1 Circuit Rate)

These 32 time slots include 30 time slots available for up to 30 voice channels,
one time slot dedicated to carrying frame synchronization information (time slot
0), and one time slot dedicated to carrying signaling information (time slot 16).
An E-1 compatible DTI/212 board or D/300SC-E1 board demultiplexes the 30
voice channels and passes them on to E-1 compatible resource modules.

NOTE: E-1 is used to refer to the 2.048 Mbps Digital Service with Channel
Associated Signaling (CAS). This service is available in Europe and
some parts of Asia.

2. Digital Network Interface Telephony

13-CD

2.2.1. E-1 Frame Format

On an E-1 circuit, data is organized into frames on a byte-interleaved basis. Data
is taken from each voice channel a byte at a time. The resulting E-1 frame
contains 32 time slots: one to carry frame synchronization information, one to
carry signaling information, and 30 to carry voice channel data. Each time slot
contains 8 bits, for a total of 256 bits per frame.Figure 3 illustrates the structure of
an E-1 frame.

Bits Bits

256 Bits

Time Slot 0 Time Slot 31

Figure 3. E-1 Frame Format

E-1 frame format numbers time slots from 0 to 31. Dialogic DTI/212, MSI, and
DMX products number voice channels from 1 to 30. Table 1 shows how these
channel numbers map to E-1 time slot numbers for a DTI/212 device.

Digital Network Interface Programmer’s Guide for Windows NT

14-CD

Table 1. E-1 and DTI/212 Time Slot Numbering

E-1
time
slot

DTI/212
voice

channel
E-1 time

slot
DTI/212

voice channel

E-1
time
slot

DTI/212
voice

channel

00 N/A 11 11 22 21

01 01 12 12 23 22

02 02 13 13 24 23

03 03 14 14 25 24

04 04 15 15 26 25

05 05 16 N/A 27 26

06 06 17 16 28 27

07 07 18 17 29 28

08 08 19 18 30 29

09 09 20 19 31 30

10 10 21 20

NOTE: Voice channels are not mapped to E-1 time slots 0 and 16. Time
slot 0 contains the frame’s synchronization information. See 2.2.2.
E-1 Synchronization for more information on E-1 synchronization.
Time slot 16 contains the frame’s signaling information. See
Section 2.2.3. E-1 Signaling for more information on E-1
signaling.

E-1 frames 0 through 15 are combined into one multiframe. Figure 4 illustrates
the structure of an E-1 multiframe.

FRAME 0 FRAME 1 FRAME 14 FRAME 15

4096 BITS

Figure 4. E-1 Multiframe Format

2. Digital Network Interface Telephony

15-CD

2.2.2. E-1 Synchronization

Time slot 0 of each frame (frames 0 through 15 of a multiframe) carries the
information needed to identify voice channels for the receiver on E-1 systems.
The pattern carried by time slot 0 alternates between two patterns: the first is a
7-bit pattern (0011011) in bit positions 6 through 0 and the second is a pattern of
national and international bits with a single 1-bit in bit position 6. Figure 5 shows
the alternating bit patterns in odd and even frames.

TIME SLOT 0 OF EACH FRAME

MSB LSB

BIT POSITION

ODD FRAME

EVEN FRAME

I - INTERNATIONAL BIT
N - NATIONAL BIT

MSB - MOST SIGNIFICANT BIT
LSB - LEAST SIGNIFICANT BIT

I 0 0 1 1 0 1 1

I 1 N NN N N

7 6 5 3 2 1 04

Figure 5. Individual Frame Synchronization

See2.2.4. E-1 National and International Bits for an explanation of the E-1
national and international bits pictured in Figure 5.

Frame 0 (the first frame within an E-1 multiframe) contains additional
synchronization information to identify the beginning of a multiframe. The
beginning is identified by a pattern of four zeros in bit positions 7 through 4 of
time slot 16, frame 0. illustrates the bit pattern found in time slot 16 of frame 0.

Digital Network Interface Programmer’s Guide for Windows NT

16-CD

TIME SLOT 16 OF FRAME 0

BIT POSITION
MSB LSB

7 6 5 4 3 2 1 0

0 0 0 0 X Y X X

X - EXTRA BITS, USED FOR MULTIFRAME SYNCHRONIZATION
Y - DISTANT MUTLTIFRAME ALARM BIT

Figure 6. Multiframe Synchronization

If these frame or multiframe bit patterns cannot be found, the resulting error is
known as a Frame Sync Error (FSERR) or Multiframe Sync Error (MFSERR). If
either an FSERR or MFSERR error is detected, a remote alarm or a distant multi-
frame alarm is sent to the remote end. The condition exists until synchronization
is recovered. See E-1 Alarm Handling for information on E-1 alarm handling.

2.2.3. E-1 Signaling

The Conference of European Postal and Telecommunications administrations
(CEPT) defines how bits of a PCM carrier system in E-1 areas will be used and in
what sequence. E-1 circuits use the Channel Associated Signaling (CAS)
protocol. Frames using CAS share time slot 16, which carries signaling
information for two time slots or voice channels at a time.

Time slot 16 contains two groups of four bits, known as nibbles, that are
designated the upper nibble and the lower nibble. Two channels send their
signaling bits in each frame - one using the upper nibble, the other using the lower
nibble. As explained in Section 2.2.1. E-1 Frame Format on E-1 frame format, it
takes 15 frames to carry signaling information for each of the 30 voice channels.

Time slot 16 of frame 0 carries a special pattern. The upper nibble carries a
pattern of four 0s, which identifies the frame as frame 0 of an E-1 multiframe.

2. Digital Network Interface Telephony

17-CD

The lower nibble of time slot 16 in frame 0 carries a pattern of extra bits and an
alarm bit. The X bits pictured in Figure 7 are the extra bits used for multiframe
synchronization (see 2.2.2. E-1 Synchronization . The Y bit pictured in Figure 7
is the distant multiframe alarm bit (see E-1 Alarm Handling.

Time slot 16 of frame 1 in an E-1 multiframe carries signaling information for the
first and sixteenth channels. Time slot 16 of frame 2 in an E-1 multiframe carries
signaling information for the second and the seventeenth channels. This continues
until frame 15 which carries signaling information for the fifteenth and thirtieth
channels.

LSB

FRAME 1:

FRAME 2:

FRAME N:

FRAME 15:

VOICE CHANNEL N VOICE CHANNEL N+15

VOICE CHANNEL 1 VOICE CHANNEL 16

VOICE CHANNEL 2 VOICE CHANNEL 17

VOICE CHANNEL 15 VOICE CHANNEL 30

0 0 0 0 X Y X X

7 6 5 4 3 2 1 0

TIME SLOT 16

MSB

FRAME 0:

(UPPER NIBBLE) (LOWER NIBBLE)
D C B A D C B A

Figure 7. Channel Associated Signaling (CAS) Protocol

Digital Network Interface Programmer’s Guide for Windows NT

18-CD

Caution
Do not set signaling bits ABCD to 0000. As explained in Section 2.2.2.

E-1 Synchronization on E-1 synchronization, this setting is used to
identify frame 0 of an E-1 multiframe.

2.2.4. E-1 National and International Bits

National and international bits are set in time slot 0. The most significant bit (bit
position 7) in time slot 0 of each frame contains the international bit. The national
bits occupy bit positions 0 through 4 of time slot 0 of every second frame. Figure
8 shows national and international bit settings.

TIME SLOT 0

BIT POSITION

ODD FRAME

EVEN FRAME

I - INTERNATIONAL BIT N - NATIONAL BIT

7 6 5 4 3 2 1 0

I 0 0 1 1 0 1 1

I 1 N N N N N

Figure 8. E-1 National and International Bits

2.3. Digital Network Interface Hardware Implementation

The following sections describe features of the Dialogic Digital Network Interface
hardware implementation that are important to note for purposes of application
development.

2.3.1. Intelligent Network Interfaces

The Intelligent Network Interfaces products support the following features:

2. Digital Network Interface Telephony

19-CD

• Clear channel TS16
• Call progress features
• Tone features
• Signaling features

2.3.2. Clear Channel TS16

Added a download parameter that allows the use of time slot 16 for data on E-1
interface boards.

2.3.3. Modifying Network Parameters

When modifying the default network parameters, ensure that you perform the
following:

• If you have Country-Specific Parameter software installed, modify your
parameter file which is located in the <install drive>:\<install
directory>\dialogic\data. The file name is in the form of xx_240.prm or
xx_300.prm, where xx is the country code. For example, the parameter file
for Australia is au_240.prm or au_300.prm.

• If you do not have Country-Specific Parameter software installed, edit the
SPANDTI.PRM file which is located in the <install drive>:\<install
directory>\dialogic\data directory.

2.3.4. Signaling Features

The Intelligent Network Interface boards in this release support a combination of
the signaling features listed below:

• Channel Associated Signaling (CAS)
• Robbed Bit or Loop Signaling
• Pulse Dialing
• Wink or Flash

For more information on voice, call progress, and tone features, refer to the Voice
Software Reference for Windows NT. For signaling features, refer to the Digital
Network Interface Software Reference for Windows NT.

Digital Network Interface Programmer’s Guide for Windows NT

20-CD

The features for each intelligent network interface product are listed in the
following features matrix:

Product
Call Progress

Features
Tone

Features
Signaling
Features

DTI/240SC ä

DTI/241SC ä ä ä

DTI/300SC ä

DTI/301SC ä ä ä

LSI/81SC ä ä ä

LSI/161SC ä ä ä

NOTES: 1. Network signaling event detection is not passed through the
SCbus. In SCbus applications, network signaling events cannot
be detected by voice resource devices connected via the SCbus.
For example, a voice channel on a board without an attached
analog network interface cannot automatically terminate a play
as a result of a drop in loop current. The analog network
interface board can generate an event indicating that a loop
current drop occurred; the application must then explicitly
terminate the play.

2. The DTI/301SC boards are available in a 75 Ohm or 120 Ohm
version.

2.3.5. PEB Device Channels and Routing Functions

A time slot can be routed to another network device or be dropped to a directly
connected PEB-compatible resource board. In turn, information originating at the
resource board can be inserted into the transmit bitstream. All routing is done by
the Voice board or other resource module. The DTI/2xx board has no control
over the routing of time slots.

2. Digital Network Interface Telephony

21-CD

2.3.6. SCbus Routing

Data is transmitted over the SCbus in 1024 time slots. At system initiation and
download, the number of devices (analog interface, voice, digital network
interface, facsimile, etc.) on each board and the number of SCbus time slots
required to service these devices are determined. Only one digital network
interface device time slot can transmit on a specific SCbus time slot at a time. To
assure this, the transmit of all devices are assigned to a specific and unique SCbus
time slot at system initialization. This transmit assignment cannot be changed by
the application.

When both voice devices and telephone network digital interface devices (T-1/E-
1) are on a single SCbus board, these resources may be treated as separate and
independent devices.

2.3.7. Loss of Synchronization Alarm Handling

The most critical error condition that can occur on a T-1 or E-1 line is Receive
Loss of Synchronization (RLOS). This section describes the alarm conditions and
signals associated with Digital Network Interface alarm handling and how they are
indicated on a Dialogic Digital Network Interface board.

T-1 Alarm Handling

For T-1 applications, the DTI/211 and D/240SC-T1 boards generate three alarm
conditions to indicate RLOS:

• Red alarm

• Yellow alarm

• Blue alarm

A red alarm condition occurs when RLOS has existed for 2.5 seconds (default)
on incoming data. This condition will exist until the synchronization has been
recovered and remains recovered for 12 seconds (default).

A yellow alarm is sent by the receiving T-1 Digital Network Interface device to
the transmitter device. The yellow alarm indicates to the transmitter device that a

Digital Network Interface Programmer’s Guide for Windows NT

22-CD

red alarm condition exists at the receiver device. The yellow alarm is sent for as
long as the red alarm condition exists at the receiver device.

NOTE: A yellow alarm is sent by the T-1 Digital Network Interface receiver
device by inserting a zero in bit 2 of all time slots.

The blue alarm is a "keep alive" signal. When the T-1 Digital Network Interface
device is used in a drop and insert configuration and it receives an RLOS for
2.5 seconds, a red alarm condition is entered on the T-1 Digital Network Interface
side that received the RLOS. The configuration then transmits a blue alarm signal
from the other Digital Network Interface connected via the PEB cable to its T-1
span. The blue alarm signal informs the receiving station that there is a problem
on the line and allows the receiving station to continue to derive its transmit clock
from the received signal.

NOTE: The blue alarm signal causes an RLOS on the T-1 Digital Network
Interface device that receives the blue signal. A blue alarm consists of an
unframed pattern of 1s.

TRANSMITTING
NETWORK DTI/211 DTI/211

DOWNSTREAM
NETWORK
(OR PBX)

yellow alarm transmitted to upstream network

Blue alarm transmitted to downstream device

Figure 9. T-1 Alarm Conditions

E-1 Alarm Handling

For E-1 applications, the DTI/212 and D/300SC-E1 boards generate four alarm
conditions to indicate loss of synchronization (FSERR or MFSERR):

• Remote alarm
• Unframed all 1s alarm
• Distant multiframe alarm
• Signaling all 1s alarm

2. Digital Network Interface Telephony

23-CD

A remote alarm is generated by the DTI/212 or D/300SC-E1 device to indicate it
has detected a loss of frame synchronization on the receive line (FSERR
condition). The remote alarm is transmitted to the E-1 network. A remote alarm
is returned to the network by setting bit 3 of time slot 0 in non-alignment frames to
1. (“Non-alignment frames” are those frames not carrying the 7-bit frame-sync
pattern 0011011 in time slot 0.)

If the DTI/212 or D/300SC-E1 device is in a drop-and-insert configuration, it also
generates an unframed all 1s alarm. The unframed all 1s alarm is transmitted to
the downstream device to indicate that the data it is receiving is unsynchronized at
the frame level and is therefore unreliable. The downstream device must then
transmit this alarm to the downstream network.

When the DTI/212 or D/300SC-E1 device detects a recovery of frame
synchronization, it will stop transmitting the remote and unframed all 1s alarms.

A distant multiframe alarm is generated by the DTI/212 or D/300SC-E1 device
to indicate it has detected a loss of multiframe synchronization on the receive line
(MSFERR condition). The distant multiframe alarm is transmitted to the E-1
network. The Digital Network Interface device returns a distant multiframe alarm
by setting the bit in position 2 of time slot 16 in frame 0 to 1.

If the DTI/212 device is in a drop-and-insert configuration, it also generates a
signaling all 1s alarm. A signaling all 1s alarm is generated by inserting all 1s in
time slot 16. The signaling all 1s alarm is transmitted to the downstream device to
indicate that the data it is receiving is unsynchronized at the multiframe level and
is therefore unreliable. The downstream device must then transmit this alarm to
the downstream network.

When the DTI/212 or D/300SC-E1 device detects a recovery of multiframe
synchronization, it will stop transmitting the distant multiframe and signaling all
1s alarms.

Digital Network Interface Programmer’s Guide for Windows NT

24-CD

DTI/212 detects loss of frame synch
on the upstream receive line:

TRANSMITTING
NETWORK DTI/212 DTI/212

DOWNSTREAM
NETWORK
(OR PBX)

Any DTI/212 device receiving
one of these alarms must
transmit the given alarm to
the downstream network.

DTI/212 detects loss of multiframe
synch on upstream receive line:

Distant multiframe Alarm Signaling All 1s Alarm

Remote Alarm
transmitted to the
upstream network

Unframed All 1s Alarm
transmitted to the
downstream network

transmitted to the
upstream network

transmitted to the
downstream network

Figure 10. E-1 Loss of Synchronization Alarm Requirements

2.3.8. Digital Network Interface Hardware Alarm Indicators

The three LEDs on the rear bracket of the Digital Network Interface board
indicate the state of the signal being received. All LED indicators will remain lit
until the Digital Network Interface firmware is downloaded to the device.

Red LED: The red LED lights up whenever the Digital Network Interface device
detects RLOS.

Yellow LED: A yellow LED lights up whenever the Digital Network Interface
device receives an alarm indicating that a network span is receiving
unsynchronized data from the Digital Network Interface board.

2. Digital Network Interface Telephony

25-CD

Green LED: A green LED is lit whenever the Digital Network Interface board is
receiving a signal.

NOTES: 1. Red, yellow, and green LEDs will be lit when the system is
powered up, regardless of whether or not a signal is being
received.

2. No alarm handling is performed until Digital Network Interface
boards are downloaded.

3. Once the firmware is downloaded, the default alarm handling
mode for Digital Network Interface boards is terminate alarm
handling.

Digital Network Interface Programmer’s Guide for Windows NT

26-CD

27-CD

3. Digital Network Interface

Function Overview

This chapter describes the Network Windows NT library functions that control the
Digital Network Interface hardware.

3.1. Digital Network Interface Library Function
Categories

NOTE: In the context of this guide, "Digital Network Interface" is used to refer
to the DTI/211 board, the DTI/212 board, the D/240SC-T1 board and the
D/300SC-E1 board unless otherwise noted.

The Network library functions provide the necessary building blocks to create
voice applications using T-1 or E-1 lines. These functions can be divided into the
following categories:

Alarm functions Control T-1 or E-1 alarm handling

Compatibility functions

Diagnostic functions Test Digital Network Interface hardware

Extended Attribute functions Retrieve device-specific attribute data

Parameter Request functions Request device parameters

Parameter Setting functions Set device parameters

Resource Management functions Open and close Digital Network
Interface devices

SCbus Routing functions Generate communication between
devices connected to SCbus time slots

Time Slot Audio functions Generate audio signals on time slots

Time Slot Signaling functions Alter signaling portion of time slot

NOTE: Many Network Windows NT library functions can operate in either
synchronous mode or asynchronous mode. Synchronous functions do not

Digital Network Interface Programmer’s Guide for Windows NT

28-CD

return control to the calling process until the function call is completed.
To operate a function in asynchronous mode, your application must
include an event handler to trap and process the completion event.

Each category and its functions are briefly described in the following sections.

3.1.1. Alarm Functions

dt_setalrm() • set alarm handling mode

dt_xmitalrm() • start/stop alarm transmission

The Alarm functions allow your application to control the way T-1 or E-1 alarms
are handled. The dt_setalrm() function sets the alarm-handling mode. The
dt_xmitalrm() function starts and stops the transmission of alarms.

For a detailed discussion of T-1 and E-1 alarm handling, refer to Chapter 2.
Digital Network Interface Telephony .

3.1.2. Compatibility Functions

dt_libinit() • initializes the Network Library
DLL

dt_GetD11Version() • returns the Network DLL
Version Number

The xx_libinit() function calls the LoadLibrary() function to load a specific
Dialogic technology DLL. If the DLL does not exist, all its functions are set up as
default Not Implemented Functions. If the DLL does exist, the xx_libinit()
function performs a series of GetProcAddress() function calls that. set up the
address pointers for the functions.

3.1.3. Diagnostic Functions

3. Digital Network Interface

29-CD

dt_rundiag() • run diagnostics on Network
firmware

dt_tstcom() • test board Interface
communications

dt_tstdat() • run data test on board device

The Diagnostic functions check the Network firmware and hardware. The
dt_rundiag() function runs diagnostics on the Network firmware and the other
two functions test the hardware. The dt_tstcom() function tests communication
between the PC and the Digital Network Interface device. The dt_tstdat()
function tests the reliability of data transfer between the PC and the Digital
Network Interface device.

3.1.4. Extended Attribute Functions

ATDT_BDMODE() • board signaling mode (all time
slots)

ATDT_BDSGBIT() • board signaling bits (all time
slots)

ATDT_DNLDVER() • downloaded Network firmware
version

ATDT_IDLEST() • time slot idling state

ATDT_ROMVER() • EPROM version

ATDT_STATUS() • time slot status

ATDT_TSMODE() • get time slot signaling mode

ATDT_TSSGBIT() • get time slot signaling bits

Standard Attribute functions, which are contained in the Dialogic Standard
Runtime Library (SRL, see Appendix A), provide generic information about a
device, such as its name or the status of the last function call of the device.
Extended Attribute functions return device specific information. The Network
Windows NT Library Extended Attribute functions return information about
Digital Network Interface logical board and time slot devices.

Digital Network Interface Programmer’s Guide for Windows NT

30-CD

Extended Attribute function error handling is similar to that of other Network
library functions. Most Extended Attribute functions return AT_FAILURE on
error. One Extended Attribute function, ATDT_BDSGBIT(), returns the value
AT_FAILUREP on error. Refer to Section 3.2. Digital Network Interface Error
Handling for information about retrieving errors.

3.1.5. Parameter Request Functions

dt_getparm() • get device parameter

dt_getevt () • blocks and returns control after
event

dt_getevtmsk() • get device event bitmask

Parameter Request functions are used to check the status of Network parameter
and event mask settings.

3.1.6. Parameter Setting Functions

dt_setparm() • change device parameter

dt_setevtmsk() • change device event mask

The Parameter Setting functions set Network device parameters and masks used
for event management.

• When the application is first invoked after a Dialogic Service Startup, if the
application enables signaling transition notification via the dt_setevtmsk()
function, a DTG_SIGEVT is posted automatically. The state of the receiving
signaling is typically DTMM_AOFF and DTMM_BOFF, if enabled, as if the
transition had just occurred. Subsequent generation of these events is only on
signaling state change.

3. Digital Network Interface

31-CD

3.1.7. Resource Management Functions

dt_open() • open board or time slot device

dt_close() • close board or time slot device

Resource Management functions open and close devices. Before you can perform
an operation on a Dialogic device, the device must be opened. The dt_open()
function returns a unique device handle. All subsequent operations on the device
must use this handle.

NOTES: 1. A device handle is NOT the same as a Windows NT system file
handle.

2. Opening or closing a Digital Network Interface device does not
affect other processes using the device but a command can only
be issued while the device is idle. (See Chapter 5. Digital
Network Interface Application Guidelines, for more information
on opening and using DTI/2xx devices.)

3. The value returned by dt_open() for a Digital Network
Interface logical board is referred to as a DTI/2xx logical board
device handle in this guide. The value returned by dt_open()
for a DTI/2xx logical time slot device is referred to as a DTI/2xx
logical time slot device handle.

Digital Network Interface Programmer’s Guide for Windows NT

32-CD

3.1.8. SCbus Routing Functions

dt_getctinfo() • get information about the digital network interface
device time slot connected to theSCbus

dt_getxmitslot() • returns SCbus time slot connected to the
digitalnetwork interface device time slot

dt_listen() • connects the receive of a digital network nterface
device time slot to an SCbus time slot

dt_unlisten() • disconnects the receive of a digital network
interface device time slot from an SCbus time slot

SCbus routing functions enable the application to make or break a connection
between voice, telephone network interface and other resource channels connected
via SCbus time slots.

3.1.9. Time Slot Audio Functions

dt_setidle() • enable/disable time slot
idle state

dt_xmittone() • enable/disable
transmission of test tone

A Time Slot Audio function affects only the transmitted audio portion of a time
slot. It replaces the normal voice data on the audio portion of a time slot with
other data. The dt_setidle() function transmits an idle pattern (digital equivalent
of silence) on the selected digital network interface time slot. The specific idle
pattern transmitted can be specified via the download configuration file or by
using the dt_setparm() function. The dt_xmittone() function transmits a fixed-
frequency test tone to the PEB on the selected DTI/211 time slot.

NOTE: The dt_xmittone() function is not supported by and will not operate on
DTI/212 or D/300SC-E1 devices.

3. Digital Network Interface

33-CD

3.1.10. Time Slot Signaling Functions

dt_dial() • dial a pulse digit string

dt_mtfcn() • initiate or stop a
multitasking function

dt_setsigmod() • change time slot transmit
signaling mode

dt_settssig() • change time slot signaling
bits

dt_settssigsim() • clear and set signaling bits
simultaneously

dt_xmitwink() • transmit wink signaling

Time Slot Signaling functions affect the transmitted signaling portion of a time
slot. The dt_setsigmod() function selects the origin of the signaling information.
The signaling information can either be inserted by the Digital Network Interface
hardware or derived (by way of the PCM Expansion Bus) from a PEB-compatible
resource device (such as a D/12x) or another network device. The dt_settssig()
function sets the state of the signaling bits when the signaling information is
inserted by the DTI/2xx board (signaling insertion mode). The dt_xmitwink()
function transmits wink signaling to the network on any of the available signaling
bits (for T-1, bit A or B; for E-1, bit A, B, C, or D).

NOTES: 1. The signaling bit and polarity used for wink signaling are only
configurable through the download parameter file. See the
System Release Software Installation Reference for Windows
NT for details.

2. Dialing, supported on the DTI/101 device and the D/240SC-T1,
is not supported by and will not operate on DTI/2xx devices. If
your configuration includes Voice boards, you can use a
Windows NT Voice library function instead. The function
name is dx_dial().

Digital Network Interface Programmer’s Guide for Windows NT

34-CD

3.2. Digital Network Interface Error Handling

All Network Windows NT library functions return a value that indicates the
success or failure of the function call. Generally, Network library functions return
the following values:

• 0 function success
• -1 general error
• AT_FAILURE Extended Attribute function error from a

function that returns a value
• AT_FAILUREP Extended Attribute function error from a

function that returns a pointer

If a function fails, the error code can be retrieved using the Dialogic Standard
Runtime Library (SRL) ATDV_LASTERR() function. Each function
description in Chapter 3. Digital Network Interface includes a list of the errors
that can occur for that function. These error codes are defined in dtilib.h and
listed in Table 2.

NOTES: 1. The Network dt_open() function call returns a Dialogic device
handle if the function call is successful. A device handle is a
positive non-zero value. If dt_open() fails, the return code is -
1 and the specific error is a Windows NT system error which
can be found in the global variable errno, contained in errno.h.

2. The ATDT_BDSGBIT() function call returns the value
AT_FAILUREP on error. All other Extended Attribute
functions return AT_FAILURE on error.

3. The SRL Standard Attribute functions ATDV_LASTERR()
and ATDV_ERRMSGP() can be used to obtain the status of
the last function call of the device. Refer to Appendix A for
more information.

4. If the error returned by ATDV_LASTERR() is
EDT_SYSTEM, a Windows NT system error has occurred; you
must check the global variable errno contained in errno.h.

3. Digital Network Interface

35-CD

Table 2. Error Types Defined in dtilib.h

Error Returned Description

EDT_ABORT abort received response

EDT_ADDRS bad address

EDT_BADBRDERR DTI/2xx missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_BADCNT count of bytes requested is bad

EDT_BADDEV bad device error

EDT_BADGLOB bad global (device) parameter number

EDT_BADPORT 1st byte appeared on reserved port

EDT_BADVAL invalid parameter value passed in value
pointer

EDT_BITBSY bit is already set

EDT_CHKSUM bad checksum

EDT_DATTO data reception timed out

EDT_DTTSTMOD in test mode; cannot set DTI/2xx mode

EDT_FWERR firmware returned an error

EDT_INVBD invalid DTI/2xx logical board device
handle

EDT_INVCFG invalid configuration area or EEPROM
configuration data

EDT_INVMSG invalid message

EDT_INVSIGST invalid signaling state

EDT_INVTS invalid DTI/2xx logical time slot device
handle

EDT_MBFMT wrong number of bytes for multiple byte
request

EDT_MBIMM received an immediate termination

EDT_MBINV 1st byte appeared on data port

EDT_MBOVR message was too long, overflow

Digital Network Interface Programmer’s Guide for Windows NT

36-CD

Error Returned Description

EDT_MBPORT received multiple byte data on port other
than 0 or 1

EDT_MBTERM terminating byte other than FEH or FFH

EDT_MBUND under the number of bytes for a multibyte
request

EDT_MSGCNT count received did not match actual count

EDT_MTSIG cannot disable insertion

EDT_NOCLK no PEB clocking source

EDT_NOIDLEERR time slot is not in idle/closed state

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_NOTDNLD not downloaded

EDT_NOTPEBMODE not in PEB mode

EDT_NOTSACS cannot use tsacs on the device

EDT_NOWTCALL not waiting for a call

EDT_PARAMERR invalid parameter

EDT_PDOFFHK wink bit not in correct initial state

EDT_PDSIG cannot disable insertion

EDT_RANGEERR bad/overlapping physical memory range

EDT_SH_BADEXTTS external time slot unsupported at current
clock rate

EDT_SH_BADINDX invalid switching handler index number

EDT_SH_BADLCLTS invalid local time slot number

EDT_SH_BADMODE invalid bus mode

EDT_SH_BADTYPE invalid local time slot type

EDT_SH_LCLDSCNCT local time slot already disconnected from
SCbus

EDT_SH_LCLTSCNCT local time slot already connected to Scbus

EDT_SH_LIBBSY switching handler library is busy

EDT_SH_LIBNOTINIT switching handler library has not been

3. Digital Network Interface

37-CD

Error Returned Description

initialized

EDT_SH_MISSING switching handler is not present

EDT_SH_NOCLK clock fallback failed

EDT_SIGINS signaling insertion not enabled

EDT_SIGTO transmit/receive did not update in time

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_STARTED cannot start when already started

EDT_SUCC no error

EDT_SYSTEM Windows NT system error. Check the
global variable errno for more information
about the error.

EDT_TMOERR timed out waiting for reply from firmware

EDT_TSASN time slot already assigned

EDT_TSBSY time slot is busy

3.3. Include Files

The Network Windows NT library function prototypes and defines are listed in
the dtilib.h file supplied with the System Release Development Package for
Windows NT. Applications that use Network Windows NT library functions must
include the following statements:

 #include <windows.h>
 #include <srllib.h>
 #include <dtilib.h>

To perform error handling in your routines, your source code must include the
following line:

 #include <errno.h>

Digital Network Interface Programmer’s Guide for Windows NT

38-CD

Code that uses Voice devices and version 3.00 of the Windows NT Voice Driver
with Digital Network Interface devices must include the following statements, in
the following order:

 #include <windows.h>
 #include <srllib.h>
 #include <dxxxlib.h>
 #include <dtilib.h>
 #include <errno.h>

39-CD

4. Digital Network Interface Function
Reference

Digital Network Interface Function Overview

This chapter contains an alphabetical listing of all Dialogic Network Windows NT
library functions. Extended Attribute functions, also contained in the Network
Windows NT library, are described here as well (because the functions appear
alphabetically, the Extended Attribute functions are located together near the front
of the reference). For information about Standard Attribute functions, refer to
Appendix A.

NOTE: In the context of this guide, "Digital Network Interface" is used to refer
to the DTI/211 board, the DTI/212 board, the D/240SC-T1 board, and
the D/300SC-E1 board unless otherwise noted.

ATDT_BDMODE() returns the current mode of every time slot

40-CD

Name: long ATDT_BDMODE(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

Returns: signaling mode of all Digital Network Interface time slots
 AT_FAILURE if failure

Includes: srllib.h
 dtilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATDT_BDMODE() function returns the current mode of every time slot on
the specified Digital Network Interface device.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical board device handle returned by a call to
dt_open().

For T-1 applications, the mode is returned as a long integer where bits 0 to 23
represent the mode of Digital Network Interface time slots 1 to 24.

For E-1 applications, the mode is returned as a long integer where bits 0 to 29
represent the mode of Digital Network Interface time slots 1 to 30.

The following signaling mode defines are provided in dtilib.h:

• DTM_SIGINS - signaling insertion mode (Digital Network Interface
board generates signaling to network)

• DTM_TRANSP - transparent signaling mode (D/12x or other Voice
board generates signaling to network)

To determine the mode of a time slot, compare the returned value with the
provided defines.

returns the current mode of every time slot ATDT_BDMODE()

41-CD

n Cautions

1. This function will fail if an invalid Digital Network Interface logical
board device handle is specified.

2. Unless DTI/2xx signaling is set to transparent (DTM_TRANSP), wink
signaling cannot be transmitted on a voice device channel (see the Voice
Software Reference for Windows NT).

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */
 long modebits; /* Mode of all time slots */
 int i; /* Loop counter */

 /*
 * Open board 1 device
 */

 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get the signaling mode of all E-1 time slots (1 to 30)
 */

 if ((modebits = ATDT_BDMODE(devh)) == AT_FAILURE) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 /*
 * Display it
 */for (i = 0; i < 30; i++) {
 switch((modebits >> i) & 1) {
 case DTM_TRANSP:
 printf("Time slot %d on board 1 is in transparent mode\n", i + 1);
 break;
 case DTM_SIGINS:
 printf("Time slot %d on board 1 is in insertion mode\n", i + 1);
 break;
 }
 }
 .
 .

ATDT_BDMODE() returns the current mode of every time slot

42-CD

 .
}

n Errors

If the function returns AT_FAILURE, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid command parameter to driver

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_INVMSG invalid message

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_RANGERR bad/overlapping physical memory range

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_BDSIGBIT()
• ATDT_TSMODE()
• ATDT_TSSGBIT()
• dt_setsigmod()
• dt_settssig()

returns the current state of the transmit and receive ATDT_BDSGBIT()

43-CD

Name: char * ATDT_BDSGBIT(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

Returns: pointer to signaling bit states of all device time slots
 AT_FAILUREP if failure

Includes: srllib.h
 dtilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATDT_BDSGBIT() function returns the current state of the transmit and
receive , bits for all time slots on the Digital Network Interface device specified in
devh.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical board device handle returned by a call to
dt_open().

For T-1 applications, the returned value is a pointer to a 24-byte buffer. Bytes 0
to 23 represent PEB time slots 1 to 24.

For E-1 applications, the returned value is a pointer to a 30-byte buffer. Bytes 0
to 29 represent PEB time slots 1 to 30.

The following symbols represent each signaling bit and are defined in dtilib.h:

• DTSG_RCVA - “A” receive signaling bit
• DTSG_RCVB - “B” receive signaling bit
• DTSG_RCVC - “C” receive signaling bit (E-1 only)
• DTSG_RCVD - “D” receive signaling bit (E-1 only)
• DTSG_XMTA - “A” transmit signaling bit
• DTSG_XMTB - “B” transmit signaling bit
• DTSG_XMTC - “C” transmit signaling bit (E-1 only)
• DTSG_XMTD - “D” transmit signaling bit (E-1 only)

ATDT_BDSGBIT() returns the current state of the transmit and receive

44-CD

To determine the state of the signaling bits, perform a logical AND operation on
the byte buffer and the defines, as demonstrated in the example below.

n Cautions

1. This function will fail if an invalid Digital Network Interface logical
board device handle is specified. AT_FAILUREP will be returned.

2. The transmit signaling bits are only valid when the device is in signaling
insertion mode.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */
 char *sigbits; /* Pointer to signaling bits array */
 int i; /* Loop counter */
 int arcv, brcv, axmt, bxmt; /* Bit mask values */

 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get current transmit and receive signaling bits of all time slots
 */
 if ((sigbits = ATDT_BDSGBIT(devh)) == AT_FAILUREP) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 /*
 * Display it
 */
 for (i = 0; i < 24; i++) {
 arcv = (sigbits[i] & DTSG_RCVA) ? 1 : 0;
 brcv = (sigbits[i] & DTSG_RCVB) ? 1 : 0;
 axmt = (sigbits[i] & DTSG_XMTA) ? 1 : 0;
 bxmt = (sigbits[i] & DTSG_XMTB) ? 1 : 0;
 printf("tslot #%d arcv = %d, brcv = %d, axmt = %d, bxmt = %d\n",
 i + 1, arcv, brcv, axmt, bxmt);
 }

returns the current state of the transmit and receive ATDT_BDSGBIT()

45-CD

 .
 .
 .
}

n Errors

If the function returns AT_FAILUREP, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_INVMSG invalid message

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_BDMODE()
• ATDT_TSMODE()
• ATDT_TSSGBIT()
• dt_setsigmod()
• dt_settssig()

ATDT_DNLDVER() returns the firmware version

46-CD

Name: long ATDT_DNLDVER(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

Returns: version of firmware used by the device
 AT_FAILURE if failure

Includes: srllib.h
 dtilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATDT_DNLDVER() function returns the firmware version downloaded to
the device specified in devh. This number is returned in the standard Dialogic
version numbering format.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical board device handle returned by a call to
dt_open().

n Dialogic Version Numbering

A Dialogic version number consists of two parts that provide:

• The release TYPE
Example: Production or Beta

• The release NUMBER, which consists of different elements depending
on the type of release.

returns the firmware version ATDT_DNLDVER()

47-CD

Example: 1.00 Production
 1.00 Beta 5

NOTE: The examples above are shown in the convention used by Dialogic to
display version numbers.

This function returns the version number as a long integer (32 bits) in BCD
(binary coded decimal) format.

Nibble 1 returns the type of release in BCD numbers. A converted value of 0
indicates a Production release and a converted value of 1 indicates a Beta release.

Nibbles 2, 3, and 4 return the Production Release Number.

NOTE: Nibbles 2 through 4 are used in all version numbers. Nibbles 5 through 8
only contain values if the release is not a production release.

Nibbles 5, 6, 7, and 8 return the Internal Release Number used for pre-production
product releases. Nibbles 5 and 6 hold the product’s Beta number. Nibbles 7 and
8 hold additional information used for internal releases.

Table 3 displays a breakdown of the values returned by each nibble in the long
integer.

Table 3. ATDT_DNLDVER() Return Values

Nibble (4 bits)
1 2 3 & 4 5 & 6 7 & 8

TYPE
PRODUCTION

RELEASE NUMBER
INTERNAL
NUMBER

Production Major
Release No.

Minor
Release No.

N/A N/A

Beta Major
Release No.

Minor
Release No.

Beta
Number

N/A

n Major and Minor Release Numbers

Major and minor release numbers distinguish major revisions from minor
revisions to Production releases. The major number converts to a single digit

ATDT_DNLDVER() returns the firmware version

48-CD

integer that increments with each major revision to the release. The minor number
converts to a two digit integer that increments with each minor revision to the
release.

In decimal number format, the major number is the number before the decimal
point, and the minor number is the number after the decimal point.

The following list gives examples of each type of release. The values used in
these examples have been converted from the binary coded decimal numbers
returned in the long integer and are displayed according to Dialogic convention.

1.00 Production
1.00 Beta 5

n Cautions

This function will fail if an invalid Digital Network Interface logical board device
handle is specified.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */
 long version; /* Version number of firmware */

 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get the version number of the firmware
 */
 version = ATDT_DNLDVER(devh);
 if (version == AT_FAILURE) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

returns the firmware version ATDT_DNLDVER()

49-CD

 /*
 * Display it
 */
 printf("DTI/2xx Download version number is %d.%02x\n",
 (int)((version>>24)&0x0F), ((version >>16)&0xFF));

 .
 .
 .
}

n Errors

If the function returns AT_FAILURE, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid command parameter to driver

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_INVMSG invalid message

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_RANGERR bad/overlapping physical memory range

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_ROMVER()

ATDT_IDLEST() returns the current idle state

50-CD

Name: long ATDT_IDLEST(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

Returns: idling state of time slot
 AT_FAILURE if failure

Includes: srllib.h
 dtilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATDT_IDLEST() function returns the current idle state of the Digital
Network Interface time slot specified in devh. “Idling” transmits silence to the
network for the selected time slot.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical time slot device handle returned by a call
to dt_open().

The following defines are provided in dtilib.h.

• DTIS_ENABLE - silence insertion is enabled

• DTIS_DISABLE - silence insertion is disabled

To determine if a time slot is idling, compare the value of the returned integer
with the provided defines.

n Cautions

This function will fail if an invalid Digital Network Interface logical time slot
device handle is specified.

returns the current idle state ATDT_IDLEST()

51-CD

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 long mode; /* Time slot idle state mode */

 /*
 * Open board 1 time slot 1 device
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get silence insertion mode
 */
 if ((mode = ATDT_IDLEST(devh)) == AT_FAILURE) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 switch (mode) {
 case DTIS_ENABLE:
 printf("Time slot 1 on board 1 has silence insertion enabled\n");
 break;
 case DTIS_DISABLE:
 printf("Time slot 1 on board 1 has silence insertion disabled\n");
 break;
 }

 .
 .
 .
}

n Errors

If the function returns AT_FAILURE, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid command parameter to driver

ATDT_IDLEST() returns the current idle state

52-CD

Equate Returned When

EDT_INVTS invalid Digital Network Interface logical time
slot device handle

EDT_INVMSG invalid message

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_RANGERR bad/overlapping physical memory range

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h

n See also

• dt_setidle()

returns the version of the EPROM ATDT_ROMVER()

53-CD

Name: long ATDT_ROMVER(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

Returns: version of EPROM installed on Digital Network Interface
device

 AT_FAILURE if function fails
Includes: srllib.h

 dtilib.h
Category: Extended Attribute

Mode: synchronous

n Description

The ATDT_ROMVER() function returns the version of the EPROM that is
installed on the Digital Network Interface device specified in devh. This number
is returned in the standard Dialogic version numbering format.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical board device handle returned by a call to
dt_open().

n Dialogic Version Numbering

A Dialogic version number consists of two parts that provide:

• The release TYPE
Example: Production or Beta

• The release NUMBER, which consists of different elements depending
on the type of release.

ATDT_ROMVER() returns the version of the EPROM

54-CD

Example: 1.00 Production
 1.00 Beta 5

NOTE: The examples above are shown in the convention used by Dialogic to
display version numbers.

This function returns the version number as a long integer (32 bits) in BCD
(binary coded decimal) format.

Nibble 1 returns the type of release in BCD numbers. A converted value of 0
indicates a Production release and a converted value of 1 indicates a Beta release.

Nibbles 2, 3, and 4 return the Production Release Number.

NOTE: Nibbles 2 through 4 are used in all version numbers. Nibbles 5 through 8
only contain values if the release is not a production release.

Nibbles 5, 6, 7, and 8 return the Internal Release Number used for pre-production
product releases. Nibbles 5 and 6 hold the product’s Beta number. Nibbles 7 and
8 hold additional information used for internal releases.

Table 4 displays a breakdown of the values returned by each nibble in the long
integer.

Table 4. ATDT_ROMVER() Return Values

Nibble (4 bits)
1 2 3 & 4 5 & 6 7 & 8

TYPE
PRODUCTION

RELEASE NUMBER
INTERNAL
NUMBER

Production Major
Release No.

Minor
Release No.

N/A N/A

Beta Major
Release No.

Minor
Release No.

Beta
Number

N/A

n Major and Minor Release Numbers

Major and minor release numbers distinguish major revisions from minor
revisions to Production releases. The major number converts to a single digit

returns the version of the EPROM ATDT_ROMVER()

55-CD

integer that increments with each major revision to the release. The minor number
converts to a two digit integer that increments with each minor revision to the
release.

In decimal number format, the major number is the number before the decimal
point, and the minor number is the number after the decimal point.

The following list gives examples of each type of release. The values used in
these examples have been converted from the binary coded decimal numbers
returned in the long integer and are displayed according to Dialogic convention.

1.00 Production
1.00 Beta 5

n Cautions

This function will fail if an invalid Digital Network Interface logical board device
handle is specified.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */
 long version; /* Version number of EPROM */

 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get the version number of the EPROM
 */
 version = ATDT_ROMVER(devh);
 if (version == AT_FAILURE) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

ATDT_ROMVER() returns the version of the EPROM

56-CD

 /*
 * Display it
 */
 printf("DTI/2xx EPROM version number is %d.%02x\n",
 (int)((version>>24)&0x0F), ((version >>16)&0xFF));

 .
 .
 .
}

n Errors

If the function returns AT_FAILURE, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid command parameter to driver

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_RANGERR bad/overlapping physical memory range

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_DNLDVER()

returns the current status ATDT_STATUS()

57-CD

Name: long ATDT_STATUS(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

Returns: status of time slot
 AT_FAILURE if failure

Includes: srllib.h
 dtilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATDT_STATUS() function returns the current status of the Digital Network
Interface time slot specified in devh.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical time slot device handle returned by a call
to dt_open().

The following defines are provided:

• DTST_INACTIVE - time slot is idle

• DTST_BUSY - time slot is not idle

To determine the status of the time slot, compare the value of the returned integer
with the defines listed above.

The time slot is considered busy if it is currently executing a multitasking
function, for example, wink signaling.

n Cautions

This function will fail if an invalid Digital Network Interface logical time slot
device handle is specified.

ATDT_STATUS() returns the current status

58-CD

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 long mode; /* Current status of time slot */

 /*
 * Open board 1 time slot 1 device
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get current wink status of time slot
 */
 if ((mode = ATDT_STATUS(devh)) == AT_FAILURE) {
 printf("Error message = %s.", ATDV_ERRMSGP(devh));
 exit(1);
 }

 /*
 * Display it
 */
 switch (mode) {
 case DTST_INACTIVE:
 printf("Time slot 1 on board 1 is idle\n");
 break;
 case DTST_BUSY:
 printf("Time slot 1 on board 1 is busy\n");
 break;
 }

 .
 .
 .
}

n Errors

If the function returns AT_FAILURE, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

returns the current status ATDT_STATUS()

59-CD

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid command parameter to driver

EDT_INVMSG invalid message

EDT_INVTS invalid Digital Network Interface logical time
slot device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_RANGERR bad/overlapping physical memory range

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• dt_xmitwink()

ATDT_TSMODE() returns the current signaling mode

60-CD

Name: long ATDT_TSMODE(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

Returns: time slot signaling mode
 AT_FAILURE if failure

Includes: srllib.h
 dtilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATDT_TSMODE() function returns the current signaling mode of the time
slot specified in devh.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical time slot device handle returned by a call
to dt_open().

The following defines are provided in dtilib.h.

• DTM_SIGINS - signaling insertion mode (Digital Network Interface
board generates signaling to network)

• DTM_TRANSP - transparent signaling mode (D/12x or other Voice
board generates signaling to network)

To determine the signaling mode of a specified time slot, compare the returned
value with the defines listed above.

n Cautions

This function will fail if an invalid Digital Network Interface logical time slot
device handle is specified.

returns the current signaling mode ATDT_TSMODE()

61-CD

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 long mode; /* Time slot signaling mode */

 /*
 * Open board 1 time slot 1 device
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get current time slot signaling mode
 */
 if ((mode = ATDT_TSMODE(devh)) == AT_FAILURE) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 /*
 * Display it
 */
 switch (mode) {
 case DTM_SIGINS:
 printf("Time slot 1 on board 1 has signaling insertion\n");
 break;
 case DTM_TRANSP:
 printf("Time slot 1 on board 1 has signaling transparent\n");
 break;
 }

 .
 .
 .
}

n Errors

If the function returns AT_FAILURE, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

ATDT_TSMODE() returns the current signaling mode

62-CD

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid command parameter to driver

EDT_INVTS invalid Digital Network Interface logical time
slot device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_RANGERR bad/overlapping physical memory range

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_BDSGBIT()
• ATDT_BDMODE()
• dt_setsigmod()
• dt_settssig()

retrieves the current state of the transmit and receive signaling bits ATDT_TSSGBIT()

63-CD

Name: long ATDT_TSSGBIT(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

Returns: state of time slot signaling bits
 AT_FAILURE if failure

Includes: srllib.h
 dtilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATDT_TSSGBIT() function retrieves the current state of the transmit and
receive signaling bits for the time slot specified by devh.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical time slot device handle returned by a call
to dt_open().

The returned bitmask represents the following signaling bits:

• DTSG_RCVA - “A” receive signaling bit
• DTSG_RCVB - “B” receive signaling bit
• DTSG_RCVC - “C” receive signaling bit (E-1 only)
• DTSG_RCVD - “D” receive signaling bit (E-1 only)
• DTSG_XMTA - “A” transmit signaling bit
• DTSG_XMTB - “B” transmit signaling bit
• DTSG_XMTC - “C” transmit signaling bit (E-1 only)
• DTSG_XMTD - “D” transmit signaling bit (E-1 only)

To determine the state of the signaling bits for the specified time slot, perform a
logical AND operation on the byte buffer and the defines, as demonstrated in the
example below.

ATDT_TSSGBIT()retrieves the current state of the transmit and receive signaling bits

64-CD

n Cautions

1. This function will fail if an invalid Digital Network Interface logical time
slot device handle is specified.

2. The transmit signaling bits are only valid when the device is in signaling
insertion mode.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 long tsbits; /* Time slot signaling bits */
 int arcv, brcv, axmt, bxmt; /* Bit mask values */
 /*
 * Open board 1 time slot 1 device
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }
 /*
 * Get time slot signaling bits
 */
 tsbits = ATDT_TSSGBIT(devh);
 if (tsbits == AT_FAILURE) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 /*
 * Display it
 */
 arcv = (tsbits & DTSG_RCVA) ? 1 : 0;
 brcv = (tsbits & DTSG_RCVB) ? 1 : 0;
 axmt = (tsbits & DTSG_XMTA) ? 1 : 0;
 bxmt = (tsbits & DTSG_XMTB) ? 1 : 0;
 printf("tslot 1 arcv = %d, brcv = %d, axmt = %d, bxmt = %d\n",
 arcv, brcv, axmt, bxmt);
 .
 .
 .
}

n Errors

If the function returns AT_FAILURE, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to

retrieves the current state of the transmit and receive signaling bits ATDT_TSSGBIT()

65-CD

obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid command parameter to driver

EDT_INVTS invalid Digital Network Interface logical time
slot device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_RANGERR bad/overlapping physical memory range

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_BDSGBIT()
• ATDT_BDMODE()
• ATDT_TSMODE()
• dt_setsigmod()
• dt_settssig()

dt_close() closes Digital Network Interface devices

66-CD

Name: int dt_close(devh)
Inputs: int devh • Dialogic Digital Network

Interface logical board or
Digital Network Interface
logical time slot device
handle

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Resource Management
Mode: synchronous

n Description

The dt_close() function closes Digital Network Interface devices opened
previously by a call to dt_open(). The specified device may be either a Digital
Network Interface logical board or time slot device. The dt_close() function
releases the handle and breaks the link between the calling process and the device.

Parameter Description

devh:: Specifies the valid Digital Network Interface
logical board or Digital Network Interface
logical time slot device handle returned by a call
to dt_open().

n Cautions

1. This function will fail if the device handle is invalid.

2. The dt_close() function affects only the link between the calling process
and the device. Other processes are unaffected by dt_close().

3. If event notification is active for the device to be closed, call the SRL
sr_dishdlr() function prior to calling dt_close().

4. A call to dt_close() does not affect the configuration of the device.

5. Dialogic devices should never be closed using the Windows NT close().

closes Digital Network Interface devices dt_close()

67-CD

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */

 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Continue processing
 */
 .
 .
 .
 /*
 * Done processing - close device.
 */

 if (dt_close(devh) == -1) {
 printf("Cannot close board dtiB1. errno = %d", errno);
 }
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the following error value:

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

n See also

• dt_open()

dt_dial() allows the application to pulse dial

68-CD

Name: int dt_dial(devh,digstr,tmo)
Inputs: int devh • Dialogic time slot device

handle
 char *digstr • pointer to an ASCIIZ string

of digits
 unsigned int tmo • timeout value

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Time Slot Signaling
Mode: synchronous/asynchronous

n Description

The dt_dial() function allows the application to pulse dial an ASCIIZ string of
digits on a specified D/240SC-T1 or D/300SC-E1 time slot. The function can
operate in either the synchronous (blocking) or asynchronous (non-blocking)
mode.

Parameter Description

devh: Specifies the valid time slot device handle
returned by a call to dt_open(). The specified
time slot must be in the offhook, idle state when
dt_dial() is called.

digstr: Pointer to the ASCIIZ string of digits to dial.
The maximum length of the string is 32 digits.

tmo: Specifies the maximum number of seconds that
the function will block while awaiting a dial
status response from the D/240SC-T1 or
D/300SC-E1 .

n Asynchronous Mode

To operate this function in asynchronous (non-blocking) mode, specify 0 for tmo.
This allows the application to continue processing while awaiting a completion
event. If event handling is set up properly for your application, DTEV_PDDONE

allows the application to pulse dial dt_dial()

69-CD

will be returned by the sr_getevttype() function included in the SRL when the
dial is successfully completed. See Appendix A for information on event handling.

n Synchronous Mode

To operate the function in synchronous (blocking) mode, specify a length of time
in seconds that the function will block for tmo. This causes the application to
wait for a return from the function before performing any other processing. A
suggested tmo setting for this function is 60.

n Cautions

1. This function will fail under the following conditions:

• A logical board or invalid time slot device handle is specified.
• More than a 32 digit buffer is passed.
• There is insufficient memory.
• Signaling insertion is not enabled.
• The time slot is already pulse dialing.
• The time slot is not in the offhook idle state.

2. This function is not supported by DTI/211 and DTI/212 devices. To
pulse dial a string of ASCIIZ digits on a system using DTI/211, DTI/212,
and Voice devices, you can use the Voice library function dx_dial() (see
the Voice Software Reference for Windows NT).

3. The time slot must be in signaling insertion mode before this function is
called. Signaling insertion mode is enabled using the dt_setsigmod()
function.

4. To use this function in asynchronous mode, you must use the
dt_setevtmsk() and SRL sr_enbhdlr() functions to enable trapping the
completion event and create an event handler to process the event. See
Appendix A for more information on Digital Network Interface event
management.

5. Make sure adequate time is given to the function to complete the dial if
the synchronous mode is used.

n Example

#include <windows.h>

dt_dial() allows the application to pulse dial

70-CD

#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

/*
 * Basic error handler
 */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);
 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d. Error message = %s.", errorval,
 ATDV_ERRMSGP(devh));
 if (errorval == EDT_SYSTEM) {
 printf("errno = %d.\n", errno);
 } else {
 printf("\n");
 }
}

main()
{
 int tsdev; /* Time Slot device handle */
 /*
 * Open time slot 1 on board 1
 */
 if ((tsdev = dt_open("dtiB1T1", 0)) == -1) {
 printf("Failed to open device dtiB1T1. errno = %d\n", errno);
 exit(1);
 }
 /*
 * Set signaling mode to signaling insertion
 */

if (dt_setsigmod(tsdev, DTM_SIGINS) == -1) {
 do_error(tsdev, "dt_setsigmod()");
 exit(1);
 }

 /*
 * Disable silence transmission
 */
 if (dt_setidle(tsdev, DTIS_DISABLE) == -1) {
 do_error(tsdev, "dt_setidle()");
 exit(1);
 }
 /*
 * Go offhook
 */
 if (dt_settssig(tsdev, DTB_ABIT | DTB_BBIT, DTA_SETMSK) == -1) {
 do_error(tsdev, "dt_settssig()");
 exit(1);
 }
 /*
 * Dial number with 60 second timeout. Note that this is the blocking
 * mode dial.
 */
 if (dt_dial(tsdev, "7223689", 60) == -1) {
 do_error(tsdev, "dt_dial()");
 exit(1);
 }

allows the application to pulse dial dt_dial()

71-CD

 /*
 * Continue processing
 * .
 * .
 * .
 */
 /*
 * Done processing - close device.
 */
 if (dt_close(tsdev) == -1) {
 do_error(tsdev, "dt_close()");
 }
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code. See Appendix A for more
information on SRL functions. The error codes returned by ATDV_LASTERR
are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or
defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about
the error.

EDT_TMOERR timed out waiting for reply from firmware

EDT_INVTS invalid time slot device handle

EDT_SIGINS signaling insertion not enabled

EDT_TSBSY time slot is busy

EDT_PDOFFHK not in offhook idle state

dt_dial() allows the application to pulse dial

72-CD

EDT_PDSIG cannot disable insertion when pulse dialing

Error defines can be found in the file dtilib.h.

n See also

In Voice Software Reference for Windows NT:

• dx_dial()

returns information about the Digital network interface dt_getctinfo()

73-CD

Name: int dt_getctinfo(devh,ct_devinfop)
Inputs: int devh • D/240SC-T1 or

D/300SC-E1 Digital
network interface
device time slot handle

 CT_DEVINFO *ct_devinfop • pointer to device
information structure

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: SCbus routing
Mode: Synchronous

n Description

The dt_getctinfo() function returns information about the Digital network
interface device associated with the specified digital channel (time slot) (dtiBxTx)
on a D/240SC-T1 or D/300SC-E1 board.

Parameter Description

devh: Specifies the valid digital network interface time
slot device handle returned by a call to
dt_open().

ct_devinfop: Specifies the pointer to the data structure
CT_DEVINFO.

On return from the function, the CT_DEVINFO structure contains the relevant
information and is declared as follows:

 typedef struct {
 unsigned long ct_prodid;
 unsigned char ct_devfamily;
 unsigned char ct_devmode;
 unsigned char ct_nettype;
 unsigned char ct_busmode;
 unsigned char ct_busencoding;
 unsigned char ct_rfu[7];
 } CT_DEVINFO;

Valid values for each member of the CT_DEVINFO structure are defined in
dtilib.h. Possible return values are:

dt_getctinfo() returns information about the Digital network interface

74-CD

ct_prodid: field contains a valid Dialogic product identification
number for the device.

ct_devfamily: specifies the device family and contains:

 CT_DFSPAN specifies a D/240SC-T1 or
D/300SC-E1 digital interface device.

ct_devmode: not valid for D/240SC-T1 or D/300SC-E1 devices.

ct_nettype: specifies the type of network interface for the device.
The two valid values are:

 CT_NTT1 specifies a D/240SC-T1 T-1 digital
channel.

 CT_NTE1 specifies a D/300SC-E1 E-1 digital
channel.

ct_busmode: specifies the bus architecture used to communicate with
other devices in the system. The two valid values are:

 CT_BMPEB specifies PEB (PCM Expansion Bus)
architecture.

 CT_BMSCBUS specifies SCbus architecture.

ct_busencoding: describes the PCM encoding used on the bus. Valid
values are:

 CT_BEULAW specifies Mu-law encoding.

 CT_BEALAW specifies A-law encoding.

n Cautions

This function will fail if an invalid time slot device handle is specified.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{

 int devh; /* Digital network interface device handle */
 CT_DEVINFO ct_devinfo; /* Device information structure */

returns information about the Digital network interface dt_getctinfo()

75-CD

 /* Open board 1 time slot 1 on Digital network interface device */
 if ((devh = dt_open("dtiB1T1", 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /* Get Device Information */
 if (dt_getctinfo(devh, &ct_devinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(devh));
 exit(1);
 }

 printf("%s Product Id = 0x%x, Family = %d, Network = %d, Bus mode = %d,
 Encoding = %d", ATDV_NAMEP(devh), ct_devinfo.ct_prodid,
 ct_devinfo.ct_devfamily, ct_devinfo.ct_nettype, ct_devinfo.ct_busmode,
 ct_devinfo.ct_busencoding);
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. The error codes returned by
ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Board missing or defective

EDT_BADCMDERR Invalid command parameter to driver

EDT_FWERR Firmware returned an error

EDT_INVTS Invalid time slot device handle

EDT_INVMSG Invalid message

EDT_SH_BADLCLTS Invalid local time slot number

EDT_SH_BADINDX Invalid Switch Handler library index
number

EDT_SH_BADTYPE Invalid local time slot type

EDT_SH_LIBBSY Switch Handler library busy

EDT_SH_LIBNOTINIT Switch Handler library is uninitialized

EDT_SH_MISSING Switch Handler is not present

EDT_SH_NOCLK Switch Handler clock fallback failed

EDT_SYSTEM Windows NT system error

EDT_TMOERR Timed out waiting for reply from firmware

dt_getctinfo() returns information about the Digital network interface

76-CD

n See also

In Voice Software Reference for Windows NT:

• ag_getctinfo()

returns the Network DLL Version Number dt_GetDllVersion()

77-CD

Name: dt_GetDllVersion (dwfileverp, dwprodverp)
Inputs: LPDWORD dwfileverp • Network DLL Version Number

 LPDWORD dwprodverp • Product version of this release
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 dtilib.h

n Description

The dt_GetDllVersion() function returns the Network DLL Version Number for
the file and product.

This function has the following parameters:

Parameter Description

dwfileverp pointer to where to return file version information

dwprodverp pointer to where to return product version information

n Cautions

If using older DLL’s with no version number stamps, a default version 4.10
(0x0004000A) is returned.

n Example

#include <windows.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <dtilib.h>

int InitDevices()
{
 DWORD dwfilever, dwprodver;

 //
 // Initialize all the DLLs required. This will cause the DLLs to be
 // loaded and entry points to be resolved. Entry points not resolved
 // are set up to point to a default not implemented function in the
 // ‘C’ library. If the DLL is not found all functions are resolved
 // to not implemented.

dt_GetDllVersion() returns the Network DLL Version Number

78-CD

 //

 if (sr_libinit(DLGC_MT) == -1) {
 // Must be already loaded, only reasoon if sr_libinit() was
 // already called

 }

 //
 // Call technology specific dt_libinit() functions to load Network DLL
 //
 if (dt_libinit(DLGC_MT) == -1) {
 // Must be already loaded, only reasoon if dx_libinit() was
 // already called
 }

 //
 // Network library initialised so all other DTI/ISDN/MSI functions may be called
 // as normal. Display the version number of the DLL //

 dt_GetDllVersion(&dwfilever, &dwprodver);
 printf(“File Version for network DLL is %d.%02d\n”,
 HIWORD(dwfilever), LOWORD(dwfilever));
 printf(“Product Version for network DLL is %d.%02d\n”,
 HIWORD(dwprodver), LOWORD(dwprodver));
 //

 // Now open all the network devices
 //
}

n Errors

None.

n See Also

• dx_GetDllVersion()
• fx_GetDllVersion()
• sr_GetDllVersion()
• vr_GetDllVersion()

blocks and returns control to the program dt_getevt()

79-CD

Name: int dt_getevt(devh,eblkp,timeout)
Inputs: int devh • D/240SC-T1 or

D/300SC-E1 Digital
network interface
device time slot handle

 EV_EBLK *eblkp • pointer to Event Block
Structure

 int timeout • timeout value in
seconds

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Parameter Request
Mode: Synchronous

n Description

This dt_getevt() function blocks and returns control to the program after one of
the events set by dt_setevtmsk() occurs on the channel specified in the devh
parameter, or a timeout occurs. dt_getevt() is used with multi-threaded
applications only.

Parameter Description

devh: Specifies the valid digital network interface time
slot device handle returned by a call to
dt_open().

*eblkp: Points to the Event Block Structure DX_EBLK,
which will contain the event that ended the
blocking.

timeout: Specifies the maximum amount of time in
seconds to wait for an event to occur. timeout
can have one of the following values:

• # of seconds: maximum length of time to
wait for an event. When time has elapsed,
the function will terminate and return an
error.

dt_getevt() blocks and returns control to the program

80-CD

Parameter Description

• -1: block until an event occurs. The function
will not timeout.

• 0: return -1 immediately if no event is
present.

NOTE: When the time specified expires, dt_getevt() will terminate and
return an error. The Standard Attribute function
ATDV_LASTERR() can be used to determine the cause of the error,
which in this case is EDX_TIMEOUT.

On successful return from the function the event block structure will have the
following information.

eblk.ev_dev: device on which the event occured. This will be
the same as the devh parameter passed in.

eblk.ev_event: DTEV_SIG indicates signaling transition event.
DTEV_T1ERRC indicates alarm.

eblk.ev_data[]: DTEV_SIG contains information about the
signalling event. ev_data[] is an array of bytes
where ev_data[0] and ev_data[1] contain the
signaling information. Retrieve the signaling
information in a short variable and see the
example below to get the signaling information
from ev_data[0] and ev_data[1].
DTEV_T1ERRC contains information about the
type of alarm occuring.

The event block structure is defined as follows:

typedef struct ev_eblk {
 long ev_dev; /* Device on which event occured */
 unsigned long ev_event; /* Event type */
 long ev_len; /* Length of data associated with event */
 char ev_data[8]; /* 8 byte data buffer */
 void * ev_datap; /* Variable pointer if more than 8 bytes of
 data */
} EV_EBLK;

blocks and returns control to the program dt_getevt()

81-CD

n Cautions

dt_getevt() is only used for multithreaded applications.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

EV_EBLK eblk;
main()
{
 int devh; /* Board device handle */
 unsigned short bitmaskp; /* Bitmask variable */
 unsigned short sigmsk = DTMM_AON | DTMM_AOFF | DTMM_BON | DTMM_BOFF;
 short sig, indx;

 /*
 * Open Timeslot 1 device
 */
 if ((devh = dt_open("dtiB1T1", 0)) == -1) {
 printf("Cannot open timeslot dtiB1T1. errno = %d", errno);
 exit(1);
 }
 if (dt_setevtmsk(ddd, DTG_SIGEVT, sigmsk, DTA_SETMSK) == -1) {
 printf("%s: dt_setevtmsk DTG_SIGEVT DTA_SETMSK ERROR %d: %s: Mask =
 0x%x\n",ATDV_NAMEP(ddd),ATDV_LASTERR(ddd),ATDV_ERRMSGP(ddd),sigmsk);
 dt_close(ddd);
 exit(1);
 }
 /*
 * Wait for events on this timeslot
 */
 while(1) {
 dt_getevt (devh, &eblk, -1); /* Wait for ever */
 sig = eblk.ev_data[0] | ((short) eblk.ev_data[1] << 8);

 for (indx = 0; indx <4; indx++) {
 if (!(sig & (0x1010 << indx))) {
 continue;
 }
 switch (sig & (0x1111 << indx)) {
 case DTMM_AOFF:
 fprintf(stderr,"A-OFF ");
 break;

 case DTMM_AON:
 fprintf(stderr,"A-ON ");
 break;
 case DTMM_BOFF:
 fprintf(stderr,"B-OFF ");
 break;
 case DTMM_BON:
 fprintf(stderr,"B-ON ");
 break;
 } /* End of switch Statement */
 } /* end of for statement */
 } /* end of while statement */

dt_getevt() blocks and returns control to the program

82-CD

 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. The error codes returned by
ATDV_LASTERR() are:

Equate Returned When

EDT_BADPARM Invalid parameter

EDT_SYSTEM Windows NT system error

EDT_TMOERR Timed out waiting for reply from firmware

n See also

• dt_getevtmsk()

retrieves the current event bitmask(s) dt_getevtmsk()

83-CD

Name: int dt_getevtmsk(devh,event,bitmaskp)
Inputs: int devh • Dialogic Digital Network

Interface logical board or
Digital Network Interface
logical time slot device
handle

 int event • event to retrieve
 unsigned short *bitmaskp • pointer to bitmask variable

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Parameter Request
Mode: synchronous

n Description

The dt_getevtmsk() function retrieves the current event bitmask(s) for the
specified event type and Digital Network Interface logical board or time slot
device. The function can be used to find which bitmask was set by the
dt_setevtmsk() function.

Parameter Description

devh: Specifies the valid Digital Network Interface logical board
or Digital Network Interface logical time slot device handle
returned by a call to dt_open().

event: Specifies which event’s bitmask will be retrieved. The
possible values for event are:

 • DTG_T1ERREVT - get T-1 error bitmask (board level
event)

 • DTG_E1ERREVT - get E-1 error bitmask (board level
event)

 • DTG_SIGEVT - get signaling bitmask (time slot
event)

 • DTG_PDIGEVT - determine if pulse digit detection is
enabled or disabled for the selected time slot device

bitmaskp: Variable that will contain the value of the bitmask.

dt_getevtmsk() retrieves the current event bitmask(s)

84-CD

Table 5. dt_getevtmsk() Return Values

event return description

DTG_T1ERREVT DTEC_LOS loss of T-1 digital signal mask

 DTEC_DPM driver performance monitor mask

 DTEC_RED receive red alarm mask

 DTEC_BPVS bipolar violation count saturation
mask

 DTEC_ECS error count saturation mask

 DTEC_RYEL receive yellow alarm mask

 DTEC_RCLX receive carrier loss mask

 DTEC_FERR frame bit error mask

 DTEC_B8ZSD bipolar 8 zero substitution detect
mask

 DTEC_RBL receive blue alarm mask

 DTEC_RLOS receive loss of sync mask

 DTEC_OOF out of frame error mask

DTG_E1ERREVT DEEC_RLOS receive loss of sync mask

 DEEC_RUA1 receive unframed all ones alarm
mask

 DEEC_FSERR frame sync error mask

 DEEC_RRA receive remote alarm mask

 DEEC_BPVS bipolar violation count saturation
mask

 DEEC_CECS CRC error count saturation mask

 DEEC_ECS error count saturation mask

 DEEC_LOS loss of E-1 digital signal detected
mask

 DEEC_DPM driver performance monitor mask

 DEEC_MFSERR multiframe sync error mask

 DEEC_RSA1 receive signaling all ones alarm
mask

 DEEC_RDMA receive distant multiframe alarm

retrieves the current event bitmask(s) dt_getevtmsk()

85-CD

event return description
mask

DTG_SIGEVT DTMM_AON signaling bit A ON event mask

 DTMM_AOFF signaling bit A OFF event mask

 DTMM_BON signaling bit B ON event mask

 DTMM_BOFF signaling bit B OFF event mask

 DTMM_WINK receive wink signaling event mask

(E-1 only) DTMM_CON signaling bit C ON event mask

" " DTMM_COFF signaling bit C OFF event mask

" " DTMM_DON signaling bit D ON event mask

" " DTMM_DOFF signaling bit D OFF event mask

DTG_PDIGEVT DTIS_ENABLE pulse digit detection enabled

 DTIS_DISABLE pulse digit detection disabled

NOTE: When the DTG_T1ERREVT, DTG_E1ERREVT, DTG_SIGEVT, or
DTG_PDIGEVT event is generated, call the sr_getevtdatap() function in
the event handler to get a pointer to the event value. The pointer should
be cast to an unsigned short pointer and the event retrieved as an unsigned
short value.

Refer to Appendix A for more information on SRL data structures and functions.

n Cautions

This function will fail under the following conditions:

• The board or time slot device handle is invalid.
• The event field is invalid.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */
 unsigned short bitmaskp; /* Bitmask variable */

dt_getevtmsk() retrieves the current event bitmask(s)

86-CD

 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }
 /*
 * Get current T1 error mask
 */
 if (dt_getevtmsk(devh, DTG_T1ERREVT, &bitmaskp) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 /*
 * Check for loss of T-1 digital signal
 */
 if (bitmaskp & DTEC_LOS) {
 printf("Loss of T-1 digital signal will be reported \n");
 }

 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_INVTS invalid Digital Network Interface logical time slot
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

retrieves the current event bitmask(s) dt_getevtmsk()

87-CD

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

In this guide:

• dt_setevtmsk()

In Appendix A:

• sr_enbhdlr()
• sr_dishdlr()

dt_getparm() gets the current value

88-CD

Name: int dt_getparm(devh,param,valuep)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

 unsigned long param • device parameter defined
name

 void *valuep • pointer to integer variable
for parameter value

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Parameter Request
Mode: synchronous

n Description

The dt_getparm() function gets the current value of the selected Digital Network
Interface device parameter.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical board device handle returned by a call to
dt_open().

param: Specifies the parameter to be examined.

valuep: Points to the variable to which the value of the
parameter will be assigned.

Table 6 lists each parameter name, its default value, and a brief description.

gets the current value dt_getparm()

89-CD

Table 6. dt_getparm() Parameters

#DEFINE VALUE DESCRIPTION

DTG_RDEBON 0-255
5 (default)

debounce value for receive
signaling transitions from
logical 0 to 1 and 1 to 0 (in
10 ms units).
DTG_RDEBON is used for
only the debounce on value
for DTI/1xx boards, but is
used for both debounce on
and debounce off for Digital
Network Interface boards.

DTG_RDEBOFF 0-255
5 (default)

included only for DTI/1xx
boards, debounce off value
for receive signaling
transitions from logical 1 to 0
and 0 to 1 (in 10 ms units).

DTG_CABTYPE - - - line interface unit (LIU) cable
length and type (T-1 only):

DTI/211 only

 DTLL_G703 CCITT recommendation
G.703, 2.048 Mhz.

 DTLL_FCC68 FCC part 68 option A, CSU

 DTLL_ANSIT1 ANSI T1.403, CSU

 DTLL_133ABAM 0-133 feet DSX-1 ABAM
(default)

 DTLL_266ABAM 133-266 feet DSX-1 ABAM

 DTLL_399ABAM 266-399 feet DSX-1 ABAM

 DTLL_533ABAM 399-533 feet DSX-1 ABAM

 DTLL_655ABAM 533-655 feet DSX-1 ABAM

D/240SC-T1 only

 DTLL_000 000-110 feet

 DTLL_110 110-220 feet

 DTLL_220 220-330 feet

dt_getparm() gets the current value

90-CD

#DEFINE VALUE DESCRIPTION

 DTLL_330 330-440 feet

 DTLL_440 440-550 feet

 DTLL_550 550-655 feet

 DTLL_655 655 feet or greater

 DTLL_SQUARE square pulse

DTG_CODESUPR - - - bipolar format suppression
value (T-1 only).

 DTSP_TRAN transparent (default).

 DTSP_B8ZS binary 8 zero suppression.

 DTSP_BIT7 bit 7 stuffing.

DTG_IDLTYP - - - gets IDLE value:

 IDLE_7F (default) T-1 IDLE value is 7FH

 IDLE_54 E-1 IDLE value is 54H

 IDLE_FF T-1 IDLE value is FFH

 IDLE_D5 E-1 IDLE value is D5H

DTG_SETBDMD - - - get device mode value. This
parameter will NOT change
the device mode if the Digital
Network Interface remote
loopback test switch is set to
ON.

 DTMD_NORMAL normal mode (default if
Digital Network Interface
remote loopback test switch is
set to OFF).

 DTMD_XCVRLB transceiver local loopback
mode (used for Digital
Network Interface testing).

 DTMD_LIULLB line interface unit local
loopback mode (used for
Digital Network Interface
testing).

 DTMD_LIURLB line interface unit remote
loopback mode (used by

gets the current value dt_getparm()

91-CD

#DEFINE VALUE DESCRIPTION
network for network testing).

DTG_SETCLK - - - get clock source (see the
System Release Software
Installation Reference for
Windows NT):

 DTC_LOOP
(default)

loop timing (clock derived
from receive sync; if RLOS
detected, falls back to
DTC_IND).

 DTC_IND 1.544 Mhz (T-1) or 2.048
Mhz (E-1) independent
timing.

 DTC_NOCLK no clock.

 DTC_EXT external (clock derived from
PEB).

DTG_OOFMAX 0 (default) (T-1 only) number of out-of-
frame errors to allow before
sending an alarm (maximum
<= 15). For the default value,
an alarm is sent after first
detected frame error.

DTG_PCDEAD - - - This parameter is provided
only for backward
compatibility with DTI/1xx
applications. The following
masks tell the DTI/1xx what
to do when the DTI/1xx
firmware cannot
communicate with the PC
(default = 0 for all masks):

 DTD_SNDIDLE transmit IDLE (0 = NO,
1 = YES).

 DTD_IDLEVAL IDLE value to transmit (0 =
7F for T-1, 54 for E-1; 1 = FF
for T-1, D5 for E-1).

 DTD_STXSIG (0 = NO, 1 = YES).

 DTD_SIGVAL transmit signaling value (0 =

dt_getparm() gets the current value

92-CD

#DEFINE VALUE DESCRIPTION
0,
1 = 1).

DTG_ECRRSTTM 10 (default) (E-1 only) rate, in 100 ms
units, to reset the following 3
error-count registers.

DTG_BPVCMAX 0 - 255
(255 default)

bipolar violation count
saturation.

DTG_CECRMAX 0 - 255
(255 default)

(E-1 only) CRC error count
saturation.

DTG_FECRMAX 0 - 255
(4 default)

(E-1 only) frame sync error
count saturation.

DTG_FECSMAX 0 (default) (T-1 only) frame error count
saturation.

DTG_PREWINK 0 (default) prewink transmit delay in 10
ms units.

DTG_WINKLEN 15 (default) transmit wink duration in 10
ms units.

DTG_WINKMIN 10 (default) minimum receive wink time
in 10 ms units.

DTG_WINKMAX 32 (default) maximum receive wink time
in 10 ms units.

DTG_REDTIME 250 (default) (T-1 only) time in 10 ms units
during which loss of sync
(LOS) must exist before
declaring a red alarm.

DTG_RCOVRTM DTI/211 - 1200
(default)

(T-1 only) time in 10 ms units
after recovery of red alarm
that a yellow alarm must still
be transmitted.

 DTI/212 - 300 (default) (E-1 only) time in 10 ms units
after recovery of FECS alarm.

DTG_RXTXIDLE 0x0F0E (default) used to set the receive and
transmit idle patterns that
must be present prior to
waiting for a seizure. The
upper byte represents the

gets the current value dt_getparm()

93-CD

#DEFINE VALUE DESCRIPTION
receive signaling pattern, and
the lower byte represents the
transmit signaling pattern.
Bits 0 to 3 represent transmit
A, B, C, and D bits. Bits 8 to
11 represent receive A, B, C,
and D bits. OFF=0 and
ON=1.

DTG_SEIZESIG 0x0C0F (default) used to set the receive
signaling pattern that defines
a line seizure and the transmit
signaling pattern to use for a
response. Bits 0 to 3
represent transmit A, B, C,
and D bits. Bits 8 to 11
represent receive A, B, C, and
D bits. OFF=0 and ON=1.

n Cautions

1. This function will fail under the following conditions:

• An invalid Digital Network Interface logical board device handle is
specified.

• The parameter specified is invalid.

2. This function will not fail if time slot devices are open on the Digital
Network Interface logical board device.

3. The value of the parameter returned by this function is an integer. The
valuep pointer is the address of an integer, but should be cast as a void
pointer when passed in the parameter field.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{

dt_getparm() gets the current value

94-CD

 int devh; /* Board device handle */
 int valuep; /* Parameter value */
 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get current clock parameter value
 */
 if (dt_getparm(devh, DTG_SETCLK, (void *)&valuep) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

/*
 * Report current clock setting
 */
 if (valuep & DTC_LOOP) {
 printf("Clock is set to loop timing \n");
 }

.
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_BADGLOB invalid param value

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

gets the current value dt_getparm()

95-CD

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• dt_setparm()

dt_getxmitslot() returns the SCbus time slot

96-CD

Name: int dt_getxmitslot(devh,sc_tsinfop)
Inputs: int devh • D/240SC-T1 or D/300SC-

E1 Digital network
interface device time slot

 SC_TSINFO *sc_tsinfop • pointer to SCbus time slot
information structure

Returns: 0 on success
 -1 if error

Includes: srllib.h
 dtilib.h

Category: SCbus routing
Mode: Synchronous

n Description

The dt_getxmitslot() function returns the SCbus time slot connected to the
transmit of a digital network interface device time slot on a D/240SC-T1 or
D/300SC-E1 board.

Parameter Description

devh: Specifies the valid digital network interface time
slot device handle returned by a call to
dt_open().

sc_tsinfop: Specifies the pointer to the data structure
SC_TSINFO.

NOTE: The SCbus convenience funtion nr_scroute() includes
dt_getxmitslot() functionality; see the Voice Programmer’s Guide
for Windows NT.

The sc_numts member of the SC_TSINFO structure must be initialized with the
number of SCbus time slots requested ("1" for a digital network interface device
time slot). The sc_tsarrayp member of the SC_TSINFO structure must be
initialized with a pointer to a valid array. Upon return from the function, the array
will contain the number (between 0 and 1023) of the SCbus time slot on which the
digital network interface device time slot transmits. The SC_TSINFO structure is
declared as follows:

 typedef struct {
 unsigned long sc_numts;

returns the SCbus time slot dt_getxmitslot()

97-CD

 long *sc_tsarrayp;
 } SC_TSINFO;

A D/240SC-T1 or D/300SC-E1 digital network interface device time slot can
transmit on only one SCbus time slot.

n Cautions

This function will fail under the following conditions:

• An invalid time slot device handle is specified.
• A PEB time slot is requested.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* SCbus time slot */

 /* Open board 1 time slot 1 for Digital network interface device */
 if ((devh = dt_open("dtiB1T1", 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /* Fill in the SCbus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get SCbus time slot connected to transmit of time slot (digital
 channel) 1 on board 1 */
 if (dt_getxmitslot(devh, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(devh));
 exit(1);
 }

 printf("%s is transmitting on SCbus time slot %d", ATDV_NAMEP(devh),
 scts);
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to

dt_getxmitslot() returns the SCbus time slot

98-CD

obtain a descriptive error message. The error codes returned by
ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Board missing or defective

EDT_BADCMDERR Invalid command parameter to driver

EDT_FWERR Firmware returned an error

EDT_INVTS Invalid time slot device handle

EDT_INVMSG Invalid message

EDT_SH_BADLCLTS Invalid local time slot number

EDT_SH_BADINDX Invalid Switch Handler library index number

EDT_SH_BADMODE Invalid Switch Handler bus configuration

EDT_SH_BADTYPE Invalid local time slot type

EDT_SH_LCLDSCNCT Local time slot is already disconnected from
SCbus

EDT_SH_LIBBSY Switch Handler library busy

EDT_SH_LIBNOTINIT Switch Handler library is uninitialized

EDT_SH_MISSING Switch Handler is not present

EDT_SH_NOCLK Switch Handler clock fallback failed

EDT_SYSTEM Windows NT system error

EDT_TMOERR Timed out waiting for reply from firmware

n See also

In the Voice Software Reference for Windows NT:

• ag_listen()

initializes the Network Library DLL dt_libinit ()

99-CD

Name: dt_libinit (flags)
Inputs: unsigned short flags • Specifies the programming

model
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dtilib.h
 msilib.h
 cclib.h

n Description

The dt_libinit () function initializes the Network Library DLL and resolves all
entry points in the LIBDTIMT.DLL.

This function has the following parameter:

Parameter Description

flags This flag has two possible values:

DLGC_MT - Specify if using a multi-threaded or window
callback model.

DLGC_ST - Specify if using the single threaded model.

n Cautions

The sr_libinit() function must be called prior to using the dt_libinit() function.

n Example

#include <windows.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <dtilib.h>

int InitDevices()

{
 DWORD dwfilever, dwprodver;
 //
 // Initialize all the DLLs required. This will cause the DLLs to be
 // loaded and entry points to be resolved. Entry points not resolved
 // are set up to point to a default not implemented function in the

dt_libinit () initializes the Network Library DLL

100-CD

 // ‘C’ library. If the DLL is not found all functions are resolved
 // to not implemented.
 //

 if (sr_libinit(DLGC_MT) == -1) {
 // Must be already loaded, only reasoon if sr_libinit() was
 // already called
 }

 //
 // Call technology specific dt_libinit() functions to load Network DLL
 //
 if (dt_libinit(DLGC_MT) == -1) {
 // Must be already loaded, only reasoon if dx_libinit() was
 // already called
 }

 //
 // Network library initialised so all other DTI/ISDN/MSI functions may be called
 // as normal. Display the version number of the DLL
 //
 dt_GetDllVersion(&dwfilever, &dwprodver);
 printf(“File Version for network DLL is %d.%02d\n”,
 HIWORD(dwfilever), LOWORD(dwfilever));
 printf(“Product Version for network DLL is %d.%02d\n”,
 HIWORD(dwprodver), LOWORD(dwprodver));

 //
 // Now open all the network devices
 //
}

n Errors

The dt_libinit() function fails if the library has already been initialized. For
example, if you try to make a second call to dt_libinit(), it fails.

n See Also

• dx_libinit()
• fx_libinit()
• vr_libinit()

connects the receive dt_listen()

101-CD

Name: int dt_listen(devh,sc_tsinfop)
Inputs: int devh • D/240SC-T1 or D/300SC-

E1 Digital network
interface device time slot

 SC_TSINFO *sc_tsinfop • pointer to SCbus time slot
information structure

Returns: 0 on success
 -1 if error

Includes: srllib.h
 dtilib.h

Category: SCbus routing
Mode: Synchronous

n Description

The dt_listen() function connects the receive (listen) of a digital network
interface device time slot on a D/240SC-T1 or D/300SC-E1 board to an SCbus
time slot.

Parameter Description

devh: Specifies the valid digital network interface time
slot device handle returned by a call to
dt_open().

sc_tsinfop: Specifies the pointer to the data structure
SC_TSINFO.

NOTE: The SCbus convenience funtion nr_scroute() includes
dt_getxmitslot() functionality; see the Voice Programmer’s Guide
for Windows NT.

The sc_numts member of the SC_TSINFO structure must be initialized with the
number "1". The sc_tsarrayp member of the SC_TSINFO structure must be
initialized with a pointer to an array that contains a valid SCbus time slot number.
Upon return from the function, the receive of the digital network interface device
time slot will be connected to this SCbus time slot.

The SC_TSINFO data is obtained by calling the dt_getxmitslot() function (or an
equivalent) prior to calling the dt_listen() function. The SC_TSINFO data
structure contains two fields. The first field specifies the number "1" (a digital
network interface time slot can connect to only one SCbus time slot). The second

dt_listen() connects the receive

102-CD

field points to the array that lists the SCbus time slot number (between 0 and
1023) of the voice device or other technology device to be connected. The
SC_TSINFO structure is declared as follows:

 typedef struct {
 unsigned long sc_numts;
 long *sc_tsarrayp;
 } SC_TSINFO;

Although multiple D/240SC-T1 or D/300SC-E1 time slots may listen to the same
SCbus transmit time slot, the receive of each D/240SC-T1 or D/300SC-E1 time
slot can connect to only one SCbus time slot.

n Cautions

This function will fail under the following conditions:

• An invalid time slot device handle is specified.
• An invalid SCbus time slot number is specified.
• A PEB time slot is requested.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int voxh; /* Voice channel device handle */
 int dtih; /* Digital channel (time slot) device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* SCbus time slot */

 /* Open board 1 channel 1 device */
 if ((voxh = dx_open("dxxxB1C1", 0)) == -1) {
 printf("Cannot open channel dxxxB1C1. errno = %d", errno);
 exit(1);
 }

 /* Fill in the SCbus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get SCbus time slot connected to transmit of channel 1 on board 1 */
 if (dx_getxmitslot(voxh, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(voxh));
 exit(1);
 }

 /* Open board 1 time slot 1 on Digital network interface device */

connects the receive dt_listen()

103-CD

 if ((dtih = dt_open("dtiB1T1", 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /* Connect the receive of digital channel (time slot) 1 on board 1 to
 SCbus transmit time slot of voice channel 1*/
 if (dt_listen(dtih, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dtih));
 exit(1);
 }
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. The error codes returned by
ATDV_LASTERR() are:
Equate Returned When

EDT_BADBRDERR Board missing or defective

EDT_BADCMDERR Invalid command parameter to driver

EDT_FWERR Firmware returned an error

EDT_INVTS Invalid time slot device handle

EDT_INVMSG Invalid message

EDT_SH_BADLCLTS Invalid local time slot number

EDT_SH_BADEXTTS External time slot unsupported at current clock
rate

EDT_SH_BADINDX Invalid Switch Handler library index number

EDT_SH_BADMODE Invalid Switch Handler bus configuration

EDT_SH_BADTYPE Invalid local time slot type

EDT_SH_LCLTSCNCT Local time slot is already connected to SCbus

EDT_SH_LIBBSY Switch Handler library busy

EDT_SH_LIBNOTINIT Switch Handler library is uninitialized

EDT_SH_MISSING Switch Handler is not present

EDT_SH_NOCLK Switch Handler clock fallback failed

EDT_SYSTEM Windows NT system error

EDT_TMOERR Timed out waiting for reply from firmware

dt_listen() connects the receive

104-CD

n See also

• dt_unlisten()

In the Voice Software Reference for Windows NT:

• ag_getxmitslot()
• dx_getxmitslot()

initiates or stops the multitasking (asynchronous) function dt_mtfcn()

105-CD

Name: int dt_mtfcn(devh,fncid,tmo)
Inputs: int devh • Dialogic E-1 logical time

slot device handle
 unsigned char fncid • ID of the function to be

performed
 unsigned int tmo • Timeout value

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Time Slot Signaling
Mode: synchronous / asynchronous

n Description

The dt_mtfcn() function initiates or stops the multitasking (asynchronous)
function specified by the function ID (fncid) parameter for a DTI/212 time slot.
This function is used to allow the application to wait for a line seizure on an E-1
line. The purpose of this function is to give the DTI/212 the ability to respond to
a line seizure faster to ensure compatibility with faster switches. The firmware
responds to the seizure with a seizure acknowledge.

The application previously needed to receive a signaling event indicating seizure
and then use the signaling functions to acknowledge.

NOTE: The specified DTI/212 time slot must be in signaling insertion mode.

dt_mtfcn() initiates or stops the multitasking (asynchronous) function

106-CD

Parameter Description

devh: Specifies the valid DTI/212 logical time slot device
handle returned by a call to dt_open().

fncid: The fncid parameter specifies the function to initiate or
the multitasking function to abort. This parameter can
take either of the following values:

 • DEMT_WTCALL - transmit FREE line signaling
defined by DTG_RXTXIDLE and respond to line
seizure defined by DTG_SEIZESIG.

 • DEMT_ABORT - abort the multitasking function.

tmo: Specifies the maximum amount of time in seconds that the
function will block while awaiting a response from the
DTI/212.

This function is dependent upon the following global parameters:

DTG_RXTXIDLE - used to set the receive and transmit idle patterns that must be
present prior to waiting for a seizure. The upper byte represents the receive IDLE
signaling pattern and the lower byte is the transmit FREE signaling pattern. Bits 0
to 3 represent transmit A, B, C, and D bits. Bits 8 to 11 represent receive A, B, C,
and D bits. (OFF = 0 and ON = 1.)

DTG_SEIZESIG - used to set the receive SEIZE signaling pattern that defines a
line seizure and the transmit BUSY signaling pattern to use for a response. Bits 0
to 3 represent transmit A, B, C, and D bits. Bits 8 to 11 represent receive A, B, C,
and D bits. (OFF = 0 and ON = 1.)

This function should be called when valid signaling states are present on the line.
Signaling states are configurable through the download parameter file (see the
System Release Software Installation Reference for Windows NT for details).
The following line signaling states are valid:

initiates or stops the multitasking (asynchronous) function dt_mtfcn()

107-CD

Receive Transmit

IDLE FREE

SEIZE FREE

IDLE BUSY

The function will return the error EDT_INVSIGST if using the DEMT_WTCALL
fncid and invalid transmit or receive signaling states are on the line. The function
will return EDT_NOWTCALL if using the DEMT_ABORT fncid and
DEMT_WTCALL is not in progress.

It should be noted that DEMT_WTCALL automatically transmits the FREE
pattern. To be safe, it’s best to have the time slot transmitting BUSY to the
network, then call the function with DEMT_WTCALL to transmit FREE and
respond to a line seizure.

n Asynchronous Mode

To operate this function in asynchronous (non-blocking) mode, specify 0 for tmo.
Setting tmo to 0 allows the application to continue processing while awaiting a
completion event from the device. If event handling is set up properly for your
application, DTEV_MTFCNCPT is returned by the SRL sr_getevttype()
function when the multitasking function is successfully completed. See Appendix
A for information on event handling.

n Synchronous Mode

To run this function in synchronous (blocking) mode, set tmo to the desired length
of time, in seconds, to await a return. If a response is not returned within tmo
seconds, an error is returned. A suggested tmo setting for this function is -1, so
the function will wait indefinitely for an incoming call.

n Cautions

1. This function will fail under the following conditions:

• The time slot is busy.
• The specified DTI/212 time slot is not in signaling insertion mode

(EDT_SIGINS).

dt_mtfcn() initiates or stops the multitasking (asynchronous) function

108-CD

• The specified DTI/212 logical time slot device handle is invalid.
• The specified time slot is not in the correct signaling state

(EDT_INVSIGST)
• The function is used on a DTI/211 board or a D/240SC-T1 board.

2. To use this function in asynchronous mode, you must use the SRL
sr_enbhdlr() function to enable trapping of events and create an event
handler to process the completion event returned by the device. The
event can be detected by using the SRL event management functions.
See Appendix A for more information on Digital Network Interface event
management.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

#define IDLEFREE 0x0F07
#define SEIZEBUSY 0x0303
#define BUSY 0x03

main()
{
 int devh; /* Board and time slot device handle */

 /*
 * Open board 1 device
 */
 if ((devh = dt_open("dtiB1", 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Set the receive and transmit idle patterns before
 * waiting for a seizure
 */
 if (dt_setparm (devh, DTG_RXTXIDLE, IDLEFREE) == -1) {
 printf("Error message = %s \n", ATDV_ERRMSGP(devh));
 exit(1);
 }

/*
 * Set the receive signaling pattern to watch
 * for while waiting for a call
 * and the transmit signaling pattern to use for a response
 */
 if (dt_setparm (devh, DTG_SEIZESIG, SEIZEBUSY) == -1) {
 printf("Error message = %s \n", ATDV_ERRMSGP(devh));
 exit(1);
 }

initiates or stops the multitasking (asynchronous) function dt_mtfcn()

109-CD

 /*
 * Close board 1 device
 */
 if (dt_close(devh) == -1) {
 printf("Cannot close board dtiB1. errno = %d", errno);
 }

 /*
 * Open board 1 time slot 1 device
 */
 if ((devh = dt_open("dtiB1T1", 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /*
 * Set signaling bits to a known state
 */
 if (dt_settssigsim(devh, BUSY) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 /*
 * Set signaling mode to signaling insertion
 */
 if (dt_setsigmod(devh, DTM_SIGINS) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 /*
 * Execute the function in async mode, transmit FREE
 * and respond to seizure
 */

if (dt_mtfcn (devh, DEMT_WTCALL, 0) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 /*
 * Wait for DTEV_MTFCNCPT event
 */
 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message (see Appendix A for more information). The
error codes returned by ATDV_LASTERR() are:

dt_mtfcn() initiates or stops the multitasking (asynchronous) function

110-CD

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVSIGST invalid signaling state

EDT_INVTS invalid Digital Network Interface logical time
slot device handle

EDT_NOIDLEERR time slot not in idle/closed state

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_NOWTCALL not waiting for a call

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIGINS signaling insertion not enabled

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• dt_setparm()

opens a Digital Network Interface device dt_open()

111-CD

Name: int dt_open(name,oflags)
Inputs: char *name • Digital Network Interface

logical board or time slot
device name

 int oflags • open attribute flags;
reserved for future use

Returns: device handle if successful
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Resource Management
Mode: synchronous

n Description

The dt_open() function opens a Digital Network Interface device and returns a
unique Dialogic handle to identify the device. A device can be opened more than
once by any number of processes. All subsequent references to an opened device
must use the returned device handle.

NOTE: The device handle returned by this function is Dialogic defined. It is not
a standard Windows NT file descriptor. Any attempts to use Windows
NT operating system commands such as read(), write(), or ioctl() will
produce unexpected results.

dt_open() opens a Digital Network Interface device

112-CD

Parameter Description

name: Points to an ASCIIZ string that contains the name of a
valid Digital Network Interface logical board or time slot
device.

oflags: Reserved for future use. Set this parameter to 0.

NOTE: If a parent process opens a device and enables events, there is no
guarantee that the child process will receive a particular event. It is
recommended that you open devices in a parent process and enable
events in a child process.

All Digital Network Interface logical boards and time slot devices can be opened
with this function. Opening a Digital Network Interface device does not alter the
state of the device. Opening or closing a Digital Network Interface device does
not affect other processes using the device but a command can only be issued
while the device is idle.

To avoid conflict between the DTI/ driver and the generic driver, follow the
guidelines below when defining devices in the configuration files:

The name of the DTI/211 or DTI/212 device defined in /usr/dialogic/config/dticfg
must be in the form dtiBx or dtiBxTy where:

x is the DTI/212 logical board device number (e.g. 1, 2, 3, ...)

y is the time slot number, beginning with 1 (e.g. 1, 2, ... 24 for T-1; 1, 2,
... 30 for E-1)

The name of the D/240SC-T1 or D/300SC-E1 device defined in
/usr/dialogic/cfg/.voxcfg may be in the form dtiBx, dtiBx, dtiBxTy, or dtiBxTy
where:

x is the D/240SC-T1 logical board device number (e.g. 1, 2, 3, ...)

y is the time slot number, beginning with 1 (e.g. 1, 2, ... 24)

The logical board device number of the D/240SC-T1 or D/300SC-E1 device must
not be the same as the logical board device number of the DTI/211 or DTI/212
device. The devices are named dtiBx and dtiBxTy by default, but may be named
dtiBx or dtiBxTy to allow backwards compatibility for previously designed
applications.

opens a Digital Network Interface device dt_open()

113-CD

n Cautions

1. This function will fail under the following conditions:

• The device name is not valid.
• The device is already open.
• The system has insufficient memory to complete the open.

2. For T-1 systems, time slot number must be in the range of 1 to 24.

3. For E-1 systems, time slot number must be in the range of 1 to 30.

4. Dialogic devices should never be opened using the Windows NT
open().

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */

 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 .
 .
 .
}

n Errors

The dt_open() function does not return errors in the standard Digital Network
Interface return code format because it is a Windows NT system error. If an error
occurs during the dt_open() call, a -1 will be returned and the specific error
message will be returned in the errno global variable. If a call to dt_open() is
successful, the return value is a valid handle for the open device.

dt_open() opens a Digital Network Interface device

114-CD

n See also

• dt_close()

runs diagnostics dt_rundiag()

115-CD

Name: int dt_rundiag(devh,tmo,diagbufp)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

 unsigned int tmo • Timeout value
 char *diagbufp • Pointer to 1 byte buffer for

diagnostic code
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Diagnostic

Mode: synchronous/asynchronous

n Description

The dt_rundiag() function runs diagnostics on the Network firmware. The
function can operate in synchronous (blocking) or asynchronous (non-blocking)
mode.

Parameter Description

devh: Specifies the valid Digital Network Interface board device
handle returned by a call to dt_open().

tmo: When operating the function in synchronous mode, specifies
the length of time in seconds the function will block while
waiting for a response from the device.

diagbufp: Pointer to a one-byte data buffer to which the diagnostic code
will be returned when the function is operating in
synchronous mode.

Please note the following guidelines when using this function:

• This function can be issued at any time, but it is recommended that all
time slots be idle and closed.

• This function is destructive to calls in progress.

• The board will be restored to its previous state; that is, the state the
board was in before the function was called.

dt_rundiag() runs diagnostics

116-CD

Parameter Description

• The function should take about 5 seconds to complete.

n Synchronous Mode

To operate the function in synchronous (blocking) mode, specify in tmo the length
of time in seconds that the function will block. This causes the application to
await a return from the function before performing any other processing. A
suggested setting for tmo is 5.

n Asynchronous Mode

To operate the function in asynchronous (non-blocking) mode, set tmo to 0. This
allows the application to continue processing while awaiting a completion event
from the device.

If event handling is set up properly for your application, DTEV_RETDIAG is
returned by the SRL sr_getevttype() function when the diagnostics are
successfully completed.

To use this function in asynchronous mode, you must use the SRL sr_enbhdlr()
function to enable trapping of the event and create an event handler to process the
completion event returned by the device. See Appendix A for more information
on Digital Network Interface event management.

NOTE: To run this function in asynchronous operation, you must pass a NULL
pointer to diagbufp.

Diagnostic Return Codes

The diagnostic codes listed below provide results of the diagnostics run on the
Digital Network Interface firmware. In synchronous mode, the diagnostic codes
are returned to the one-byte buffer pointed to by diagbufp. In asynchronous
mode, the codes are returned by the SRL sr_getevtdatap() function.

runs diagnostics dt_rundiag()

117-CD

D2DE_BRDCFG • Invalid board configuration data
D2DE_INVEE • Invalid EEPROM data (not valid for D/240SC-

T1)
D2DE_LIUFAIL • Read/write to LIU failed
D2DE_MEMTST • Memory test failed
D2DE_NOERR • No errors
D2DE_ROMCHK • Bad ROM checksum (not valid for D/240SC-

T1)
D2DE_XCVRFAIL • Read XCVR register failed

n Cautions

1. This function will fail under the following conditions:

• An invalid Digital Network Interface logical board device handle is
specified.

• There is a firmware/hardware problem on the device.

2. Make sure all time slots are closed and idle. This function is destructive
to calls in progress.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */
 int retval; /* Return value from function call */
 char diagbufp; /* Diagnostic buffer */
 /*
 * Open board 1 device
 */

 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }
 /*
 * Run diagnostics on the board with a 5 second timeout.
 */
 if ((retval = dt_rundiag(devh, 5, &diagbufp)) == -1) {
 printf("Error activating diag tests: error message = %s\n",
 ATDV_ERRMSGP(devh));

dt_rundiag() runs diagnostics

118-CD

 }
 if (diagbufp ! = DTDE_NOERR)
 printf("Diagnostic buffer value = %d\n", diagbufp);
 exit(1);
 }
 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out.

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZEERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM indicates Windows NT system error. Look at
global variable errno for actual error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• dt_tstcom()
• dt_tstdat()

sets the Digital Network Interface device dt_setalrm()

119-CD

Name: int dt_setalrm(devh, mode)
Inputs: int devh • Dialogic Digital Network

Interface logical board device
handle

 unsigned int mode • alarm handling mode
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Alarm

Mode: synchronous

n Description

The dt_setalrm() function sets the Digital Network Interface device to one of
three alarm handling modes. The alarm handling mode determines how the
Digital Network Interface device and the application interact to perform T-1 or
E-1 alarm handling. For more information on alarm handling, see Chapter 2.
Digital Network Interface Telephony .

Parameter Description

devh: Specifies the valid Digital Network Interface logical
board device handle returned by a call to dt_open().

mode: Specifies one of three alarm handling modes:

 • DTA_NONE - no firmware controlled alarm
handling. All alarm handling must be controlled by
the application.

 • DTA_TERM (default) - terminate alarm handling
mode. Alarms in terminate configuration are handled
automatically by device firmware. In terminate alarm
handling mode, a red alarm will cause the automatic
transmission of a yellow alarm.

 • DTA_DROP (except DTI/212 or D/300SC-E1) -
drop-and-insert alarm handling mode. Alarm
handling duties are shared by application and
DTI/211 or D/240SC-T1 board firmware. In this
mode, alarm transmission responsibilities are left to
the application.

dt_setalrm() sets the Digital Network Interface device

120-CD

n Cautions

1. This function will fail under the following conditions:

• An invalid Digital Network Interface logical board device handle is
specified.

• The specified mode is invalid.

2. The DTA_DROP parameter is not supported by the DTI/212 device.
Using this parameter with a DTI/212 device will produce an error. For
DTI/212 devices, use the DTA_NONE or DTA_TERM alarm handling
mode.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */

 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Set alarm mode to terminate
 */
 if (dt_setalrm(devh, DTA_TERM) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to

sets the Digital Network Interface device dt_setalrm()

121-CD

obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_BADVAL invalid mode passed in parameter

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• dt_xmitalrm()

dt_setevtmsk() enables and disables notification for events

122-CD

Name: dt_setevtmsk(devh,event,bitmask,action)
Inputs: int devh • Dialogic Digital Network

Interface logical board or
Digital Network Interface
logical time slot device
handle

 int event • event to be enabled/disabled
 unsigned short bitmask • bitmask for events
 int action • set, add, or subtract bitmask

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Parameter Setting
Mode: synchronous

n Description

The dt_setevtmsk() function enables and disables notification for events that
occur on a Digital Network Interface logical board or time slot device. This
function allows the application to set and alter a bitmask of transition events. The
bitmask determines which transitions will cause an event to be generated.

The event can be retrieved by using the event management functions included in
the Standard Runtime Library (refer to Appendix A for more information on the
SRL). The current bitmask can be examined by using the dt_getevtmsk()
function.

Parameter Description

devh: Specifies the valid Digital Network Interface logical board
or Digital Network Interface logical time slot device handle
returned by a call to dt_open().

event: Specifies the type of event to be enabled or disabled on the
device specified by devh:

 • DTG_T1ERREVT - T-1 error events (DTI/211 and
D/240SC-T1 logical board device handles only).
Several T-1 error events can be monitored. Specific
T-1 error events are enabled or disabled by setting the

enables and disables notification for events dt_setevtmsk()

123-CD

Parameter Description

bitmask parameter.

 • DTG_E1ERREVT - E-1 error events (DTI/212 or
D/300SC-E1 logical board device handles only).
Several E-1 error events can be monitored. Specific
E-1 error events are enabled or disabled by setting the
bitmask parameter.

 • DTG_SIGEVT - Signaling bit transition events (time
slot device handles only). Specific signaling events
are enabled or disabled by setting the bitmask
parameter.

 • DTG_PDIGEVT - pulse digit events (D/240SC-T1 or
D/300SC-E1 time slot device handles only).

 NOTE: For D/240SC-T1 and D/300SC-E1 products, you
must enable both the ON and OFF transitions on a
speciifed bit to get events on that bit. For
example, AON and AOFF must be enabled to
detect events on the A bit.

bitmask: Specifies the event to be enabled or disabled by setting the
bitmask for that event.

 Multiple transition events may be enabled or disabled with
one function call if the bitmask values are logically ORed
together.

 The bitmask values for each event parameter are
described in Table 5, found in the dt_getevtmsk()
function description.

action: Specifies how the signaling bit transition event mask is
changed. Events can be added to or subtracted from those
specified in bitmask, or events can replace the existing
ones. The possible values for the action parameter are:

 • DTA_SETMSK - enable notification of events
specified in bitmask and disable notification of
previously set events.

 • DTA_ADDMSK - enable notification of events
specified in bitmask in addition to previously set

dt_setevtmsk() enables and disables notification for events

124-CD

Parameter Description

events. (Not valid for DTG_PDIGEVT.)

 • DTA_SUBMSK - disable notification of events
specified in bitmask.

For example, to enable event notification:

1. Specify the events to enable in the bitmask field.

2. Specify the DTA_SETMSK bitmask in the action field.

This enables notification of the events specified in the bitmask parameter and
disables notification of previously set events.

To enable an additional event:

1. Specify the events in bitmask.

2. Specify DTA_ADDMSK in the action field.

This adds the notification of events specified in bitmask without disabling the
currently enabled events.

To disable events, use the following procedure:

1. Specify the events in bitmask.

2. Specify DTA_SUBMSK in the action field.

This disables the event in bitmask without disabling any other events.

To disable all currently enabled events:

1. Specify 0 in bitmask.

2. Specify DTA_SETMSK in the action field.

n Event Notification and Handling

NOTE: Event handling operations vary with the mode type (i.e., callback, polled,
synchronous, etc.) used by your application. For more information on
application development models, refer to the Standard Runtime Library

enables and disables notification for events dt_setevtmsk()

125-CD

Programmer’s Guide for Windows NT (part of the Voice Software
Reference for Windows NT).

To trap and handle a specified Digital Network Interface event, follow these steps
in the order listed:

• Call sr_enbhdlr(). This function specifies the event and the application
defined event handler that is called when this event occurs.

• Call dt_setevtmsk(). This specifies the list of events for which the
application should be notified.

NOTE: When the DTG_T1ERREVT, DTG_E1ERREVT, or DTG_SIGEVT
event is generated, call the sr_getevtdatap() function in the event
handler to get a pointer to the event value. The pointer should be cast to
an unsigned short pointer and the event retrieved as an unsigned short
value.

Refer to Appendix A for more information on SRL data structures and functions.

n Cautions

1. This function will fail under the following conditions:

• An invalid time slot or an invalid Digital Network Interface logical
board device handle is specified.

• The event specified is invalid.

• The action specified is invalid.

2. For the application to process an event, the SRL sr_enbhdlr() Event
Management function should be called prior to calling the
dt_setevtmsk() function.

3. When a wink event occurs, the signaling bits associated with the wink
will be reported to the application. Therefore, your application’s
signaling event handlers must make sure that any transition of the
selected wink signaling bit is not part of a wink event.

n Example

#include <windows.h>
#include <srllib.h>

dt_setevtmsk() enables and disables notification for events

126-CD

#include <dtilib.h>
#include <errno.h>

main()
{

 int devh; /* Time slot device handle */
 /*
 * Open board 1 time slot 1 device
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Cannot open device dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /*
 * Enable an event handler to catch AON and AOFF events
 */
 .
 .
 .
 /*
 * Enable AON and AOFF signaling transition events
 */
 if (dt_setevtmsk(devh, DTG_SIGEVT, DTMM_AON | DTMM_AOFF, DTA_SETMSK)
 ts

== -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board

enables and disables notification for events dt_setevtmsk()

127-CD

device handle

EDT_INVTS invalid Digital Network Interface logical time
slot device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

In this guide:

• dt_getevtmsk()

In Appendix A:

• sr_enbhdlr()
• sr_dishdlr()

dt_setidle() enables or disables transmission of silence

128-CD

Name: int dt_setidle(devh,state)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

 unsigned int state • idle state of time slot
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Time Slot Audio

Mode: synchronous

n Description

The dt_setidle() function enables or disables transmission of silence to the
network for the audio portion of the specified time slot. Transmitting silence is
referred to as “idling“ or “inserting idle” on a time slot.

When two Digital Network Interface boards are arranged in drop-and-insert
configuration, this function can be used to disable pass-through operation.
Transmitting idle overrides voice data being passed between Dialogic network
devices on the selected time slot.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical time slot device handle returned by a call
to dt_open().

state: Specifies whether to enable or disable the
transmission of silence. The possible values are:

 • DTIS_DISABLE - disable idling on the time
slot

 • DTIS_ENABLE - enable idling on the time
slot

The default idle value transmitted is 7FH (T-1 only) or 54H (E-1 only). We
recommend you initialize the device idle value to a known state before idling a
time slot. The device idle value is set using the dt_setparm() function with the
parameter DTG_IDLTYP. The values of this parameter can be set as follows:

enables or disables transmission of silence dt_setidle()

129-CD

• IDLE_7F - sets idle value to 7FH (T-1 only)
• IDLE_FF - sets idle value to FFH (T-1 only)
• IDLE_54 - sets idle value to 54H (E-1 only)
• IDLE_D5 - sets idle value to D5H (E-1 only)

n Cautions

1. This function will fail under the following conditions:

• An invalid Digital Network Interface logical time slot device handle
is specified.

• The state specified is invalid.

2. If the signaling mode is set to transparent for a time slot on a T-1 system
(one using a DTI/211 or D/240SC-T1 board), the time slot is idled, and
the idle pattern is FF, then the signaling data for that time slot will be
overwritten with ones. Before idling a T-1 time slot, the time slot should
be set to signaling insertion mode.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 /*
 * Open time slot 1 on board 1
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Failed to open device dtiB1T1. errno = %d\n", errno);
 exit(1);
 }
 /*
 * Set signaling mode to signaling insertion
 */
 if (dt_setsigmod(devh, DTM_SIGINS) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 /*
 * Disable silence transmission
 */
 if (dt_setidle(devh, DTIS_DISABLE) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

dt_setidle() enables or disables transmission of silence

130-CD

 /*
 * Go offhook
 */
 if (dt_settssig(devh, DTB_ABIT | DTB_BBIT, DTA_SETMSK) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVTS invalid Digital Network Interface logical time
slot device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_IDLEST()

enables or disables transmission of silence dt_setidle()

131-CD

• dt_setsigmod()

dt_setparm() changes the value of a device parameter

132-CD

Name: int dt_setparm(devh,param,valuep)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

 unsigned long param • device parameter defined
name

 void* valuep • pointer to device parameter
value

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Parameter Setting
Mode: synchronous

n Description

The dt_setparm() function changes the value of a device parameter.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical board device handle returned by a call to
dt_open().

param: Specifies the parameter value to alter.

valuep: Specifies the address of the integer containing
the value to be assigned to the parameter.

All time slots on the selected Digital Network Interface device must be closed
when this function is called.

Table 6, found in the dt_getparm() function description, lists each parameter
name, its default value, and a brief description.

n Cautions

1. This function will fail under the following conditions:

changes the value of a device parameter dt_setparm()

133-CD

• An invalid Digital Network Interface logical board device handle is
specified.

• One or more time slots on the Digital Network Interface device are
open.

• The parameter specified is invalid.
• The Digital Network Interface is in test mode (remote loopback

switch set to ON) and DTG_SETBDMD is passed in the param
field.

2. Changing a Digital Network Interface device parameter affects all the
time slots on the logical board. All the time slots on a logical board must
be closed when device parameters are altered.

3. All values of the parameter have to be integers, but since this routine
expects a void pointer to valuep, the address must be cast as a void*.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */
 int valuep; /* Parameter value */
 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }
 /*
 * Set current clock parameter value
 */
 valuep = DTC_EXT;
 if (dt_setparm(devh, DTG_SETCLK, (void *)&valuep) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 .
 .
 .
}

dt_setparm() changes the value of a device parameter

134-CD

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_BADGLOB invalid param

EDT_BADVAL invalid parameter value passed in valuep pointer

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_NOCLK no clock source present

EDT_NOIDLEERR time slot not in idle/closed state

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

EDT_TSTMOD in test mode; cannot set Digital Network
Interface mode

Error defines can be found in the file dtilib.h.

n See also

• dt_getparm()

sets the type of signaling dt_setsigmod()

135-CD

Name: int dt_setsigmod(devh,mode)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

 unsigned int mode • transmit mode
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Time Slot Signaling

Mode: synchronous

n Description

The dt_setsigmod() function sets the type of signaling that will be performed on
the transmitted time slot.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical time slot device handle returned by a call
to dt_open().

mode: Specifies the transmit mode. Possible values are:

 • DTM_TRANSP - set to transparent
signaling

 • DTM_SIGINS - set to signaling insertion

n Transparent Signaling

When a time slot is set to transparent, transmit signaling for the selected Digital
Network Interface time slot originates at a compatible resource device; for
example a D/12x. The Digital Network Interface has no control over signaling
information from the resource device in transparent signaling mode.

NOTES: 1. To initiate a wink from a Voice device channel using the Voice
library function dx_wink(), the Digital Network Interface time
slot attached to that channel MUST be in transparent signaling
mode.

dt_setsigmod() sets the type of signaling

136-CD

2. The DTI/212 board does not support transparent signaling when
used in a drop-and-insert configuration.

n Signaling Insertion

When a time slot is set to signaling insertion, transmit signaling for the selected
time slot is inserted by the Digital Network Interface. The Digital Network
Interface can insert signaling information over the transmit signaling already on
that time slot.

n Cautions

This function will fail under the following conditions:

• An invalid Digital Network Interface logical time slot device handle is
specified.

• The mode specified is invalid.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */

 /*
 * Open time slot 1 on board 1
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Failed to open device dtiB1T1. errno = %d\n", errno);
 exit(1);
 }

 /*
 * Set signaling mode to signaling insertion
 */
 if (dt_setsigmod(devh, DTM_SIGINS) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 .
 .

sets the type of signaling dt_setsigmod()

137-CD

 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVTS invalid Digital Network Interface logical time
slot device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_BDMODE()
• ATDT_BDSIGBIT()
• ATDT_TSMODE()
• ATDT_TSSGBIT()
• dt_settssig()

dt_settssig() sets or clears the transmit

138-CD

Name: int dt_settssig(devh,bitmask,action)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

 unsigned short bitmask • signaling bits to change
 int action • set, add, or subtract bitmask

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Time Slot Signaling
Mode: synchronous

n Description

The dt_settssig() function sets or clears the transmit for the time slot requested.

Parameter Description

devh: Specifies the valid Digital Network Interface logical time
slot device handle returned by a call to dt_open().

bitmask: Specifies which signaling bits to change. All signaling bits
may be changed with one function call if the bitmask
values are logically ORed together as in the example. The
possible values for the bitmask parameter are:

 • DTB_ABIT - A signaling bit

 • DTB_BBIT - B signaling bit

 • DTB_CBIT - C signaling bit (E-1 only)

 • DTB_DBIT - D signaling bit (E-1 only)

action: Specifies whether the signaling bits in the mask should be
set or cleared, (i.e. set to one or set to zero). The possible
values are:

 • DTA_SETMSK - set bits specified in bitmask and
clear all other bits. (Not valid for a DTI/101 device.)

 • DTA_ADDMSK - set bits specified in bitmask. This
will not affect other bits that are currently set.

 • DTA_SUBMSK - clear bits in specified bitmask.
This will not affect other bits that are currently set.

sets or clears the transmit dt_settssig()

139-CD

n Cautions

1. This function will fail under the following conditions:

• An invalid Digital Network Interface logical time slot device handle
is specified.

• The action specified is invalid.

2. On a DTI/212, do not set all signaling bits (A, B, C, and D) to 0 (0000).
A setting of four zeros in the signaling bits is used to provide multiframe
synchronization by identifying frame 0.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 /*
 * Open time slot 1 on board 1
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Failed to open device dtiB1T1. errno = %d\n", errno);
 exit(1);
 }
 /*
 * Set signaling mode to signaling insertion
 */
 if (dt_setsigmod(devh, DTM_SIGINS) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 /*
 * Go offhook
 */
 if (dt_settssig(devh, DTB_ABIT | DTB_BBIT, DTA_SETMSK) == -1) {
 printf("Error message = %s.", ATDV_ERRMSGP(devh));
 exit(1);
 }
 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to

dt_settssig() sets or clears the transmit

140-CD

obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVTS invalid Digital Network Interface logical time slot
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_BDMODE()
• ATDT_BDSIGBIT()
• ATDT_TSMODE()
• ATDT_TSSGBIT()
• dt_setsigmod()

setting or clearing of the transmit signaling bits dt_settssigsim()

141-CD

Name: int dt_settssigsim(devh,bitmask)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

 unsigned short bitmask • signaling bits to
simultaneously clear and set

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dtilib.h

Category: Time Slot Signaling
Mode: synchronous

n Description

The dt_settssigsim() allows simultaneous setting or clearing of the transmit
signaling bits on a Digital Network Interface time slot. The bitmask parameter
specifies which signaling bits to change. To simultaneously set and clear the
transmit signaling bits, the chosen values can be logically ORed together.

Parameter Description

devh: Specifies the valid Digital Network Interface logical
time slot device handle returned by a call to dt_open().

bitmask: Specifies which signaling bits to change. All signaling
bits may be changed with one function call if the
bitmask values are logically ORed together as in the
example. The possible values for the bitmask
parameter are:

 • DTB_AON - A signaling bit on

 • DTB_AOFF - A signaling bit off

 • DTB_BON - B signaling bit on

 • DTB_BOFF - B signaling bit off

 • DTB_CON - C signaling bit on (E-1 only)

 • DTB_COFF - C signaling bit off (E-1 only)

 • DTB_DON - D signaling bit on (E-1 only)

 • DTB_DOFF - D signaling bit off (E-1 only)

dt_settssigsim() setting or clearing of the transmit signaling bits

142-CD

Parameter Description

 All signaling bits may be changed with one function
call if the bitmask values are ORed together.

n Cautions

1. This function will fail if an invalid Digital Network Interface logical time
slot device handle is specified.

2. Do not set all signaling bits (A, B, C, and D) to 0 (0000) on a DTI/212
time slot. A setting of four zeros in the signaling bits is used to provide
multiframe synchronization by identifying frame 0.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 /*
 * Open time slot 1 on board 1
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Failed to open device dtiB1T1. errno = %d\n", errno);
 exit(1);
 }
 /*
 * Set signaling mode to signaling insertion
 */
 if (dt_setsigmod(devh, DTM_SIGINS) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 /*
 * Set A & C time slot bits while clearing the B bit simultaneously
 * the D bit is left untouched
 * /
 bitmask = DTB_AON | DTB_CON | DTB_BOFF;

if (dt_settssigsim(devh, bitmask) == -1) |{
 printf("Error message = %s.", ATDV_ERRMSGP(devh));
 exit(1);
 } .
 .
 .
}

setting or clearing of the transmit signaling bits dt_settssigsim()

143-CD

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVTS invalid Digital Network Interface logical time slot
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• ATDT_BDMODE()
• ATDT_BDSIGBIT()
• ATDT_TSMODE()
• ATDT_TSSGBIT()
• dt_setsigmod()

dt_tstcom() tests the ability of a Digital Network Interface device

144-CD

Name: int dt_tstcom(devh,tmo)
Inputs: int devh • Dialogic Digital Network

Interface logical board device
handle

 unsigned int tmo • timeout value
Returns: Digital Network Interface return code

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Diagnostic

Mode: synchronous/asynchronous

n Description

The dt_tstcom() function tests the ability of a Digital Network Interface device to
communicate with the host PC. This function can operate in either synchronous
(blocking) or asynchronous (non-blocking) mode.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical board device handle returned by a call to
dt_open().

tmo: Specifies the maximum amount of time in
seconds that the function will block while waiting
for a response from the Digital Network
Interface. If a response is not returned within
tmo seconds, an error is returned.

Please note the following guidelines when using this function:

• This function can be issued at any time, but it is recommended that all
time slots be idle and closed.

• This function has no effect on calls in progress.

• This function has no effect on the state of the board.

tests the ability of a Digital Network Interface device dt_tstcom()

145-CD

n Synchronous Mode

To run this function in synchronous (blocking) mode, set tmo to the length of
time, in seconds, to await a return. If a response is not returned within tmo
seconds, an error is returned. A suggested tmo setting for this function is 5.

n Asynchronous Mode

To operate this function in asynchronous (non-blocking) mode, specify 0 for tmo.
This allows the application to continue processing while awaiting a completion
event. If event handling is set up properly for your application, DTEV_COMRSP
will be returned by the sr_getevttype() function included in the SRL when the
test is successfully completed. See Appendix A for information on event handling.

n Cautions

1. This function returns a failure under the following conditions:

• The specified device fails to respond within tmo seconds, if
operating in synchronous mode.

• A time slot or invalid Digital Network Interface logical device
handle is specified.

• There is a hardware problem on the Digital Network Interface.
• There is a configuration problem (for example, IRQ conflict).

NOTE: Device configuration information is found in the appropriate
hardware installation card (see Appendix B).

2. To use this function in asynchronous mode, you must use the SRL
sr_enbhdlr() function to enable trapping of events and create an event
handler to process the completion event returned by the device.

The event can be detected by using the new event management functions
included in the new release of the Standard Runtime Library. See
Appendix A for more information on Digital Network Interface event
management.

n Example

#include <windows.h>
#include <srllib.h>

dt_tstcom() tests the ability of a Digital Network Interface device

146-CD

#include <dtilib.h>
#include <errno.h>

main()
{

 int devh; /* Board device handle */
 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Test the board's ability to communicate with the system. Give it 5
 * seconds to complete.
 */
 if (dt_tstcom(devh, 5) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

tests the ability of a Digital Network Interface device dt_tstcom()

147-CD

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• dt_tstdat()
• dt_rundiag()

dt_tstdat() performs a test

148-CD

Name: int dt_tstdat(devh,tmo)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

 unsigned int tmo • timeout value
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Diagnostic

Mode: synchronous/asynchronous

n Description

The dt_tstdat() function performs a test that verifies the integrity of the Digital
Network Interface I/O interface to the PC. The data test is performed by sending
a series of bytes to the Digital Network Interface and checking the integrity of the
bytes returned.

Please note the following guidelines when using this function:

• This function can be issued at any time, but it is recommended that all
time slots be idle and closed.

• This function has no effect on calls in progress.

• This function has no effect on the state of the board.

performs a test dt_tstdat()

149-CD

Parameter Description

devh: Specifies the valid Digital Network Interface
logical board device handle returned by a call to
dt_open().

tmo: Specifies the maximum amount of time in
seconds that the function will block while
awaiting a response from the Digital Network
Interface.

n Asynchronous Mode

To operate this function in asynchronous (non-blocking) mode, specify 0 for tmo.
This allows the application to continue processing while awaiting a completion
event. If event handling is set up properly for your application, DTEV_DATRSP
will be returned by the sr_getevttype() function included in the SRL when the
test is successfully completed. See Appendix A for information on event handling.

n Synchronous Mode

To run this function in synchronous (blocking) mode, set tmo to the length of
time, in seconds, to await a return. If a response is not returned within tmo
seconds, an error is returned. A suggested tmo setting for this function is 5.

n Cautions

1. This function will return a failure if:

• The test data is corrupted.
• A time slot or invalid Digital Network Interface logical board

device handle is specified.

2. To use this function in asynchronous mode, you must use the SRL
sr_enbhdlr() function to enable trapping of events and create an event
handler to process the completion event returned by the device. The
event can be detected by using the SRL event management functions.
See Appendix A for more information on Digital Network Interface event
management.

dt_tstdat() performs a test

150-CD

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */

 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Perform a data integrity test between the board and PC. Give it 5
 * seconds to complete.
 */
 if (dt_tstdat(devh, 5) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }

 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

performs a test dt_tstdat()

151-CD

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h

n See also

• dt_tstcom()
• dt_rundiag()

dt_unlisten() disconnects the receive

152-CD

Name: dt_unlisten(devh)
Inputs: int devh • D/240SC-T1 or D/300SC-

E1 Digital network
interface device time slot

Returns: 0 on success
 -1 on error

Includes: srllib.h
 dtilib.h

Category: SCbus routing
Mode: Synchronous

n Description

The dt_unlisten() function disconnects the receive of a digital network interface
device time slot on a D/240SC-T1 or D/300SC-E1 board from the SCbus time
slot.

Calling the dt_listen() function to connect to a different SCbus time slot will
automatically break an existing connection. Thus, when changing connections,
you need not call the dt_unlisten() function.

NOTE: The SCbus convenience funtion nr_scunroute() includes
dt_getxmitslot() functionality; see the Voice Programmer’s Guide for
Windows NT.

Parameter Description

devh: Specifies the valid digital network interface time
slot device handle returned by a call to
dt_open().

n Cautions

This function will fail under the following conditions:
• An invalid time slot device handle is specified.
• If called to disconnect a PEB time slot.

disconnects the receive dt_unlisten()

153-CD

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Digital channel (time slot) device handle */

 /* Open board 1 time slot 1 device */
 if ((devh = dt_open("dtiB1T1", 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }

 /*
 * Disconnect receive of board
 * 1, time slot 1 from all
 * SCbus time slots
 */
 if (dt_unlisten(devh) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(devh));
 exit(1);
 }
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. The error codes returned by
ATDV_LASTERR() are:
Equate Returned When

EDT_BADBRDERR Board missing or defective

EDT_BADCMDERR Invalid command parameter to driver

EDT_FWERR Firmware returned an error

EDT_INVTS Invalid time slot device handle

EDT_INVMSG Invalid message

EDT_SH_BADLCLTS Invalid local time slot number

EDT_SH_BADEXTTS External time slot unsupported at current clock
rate

EDT_SH_BADINDX Invalid Switch Handler library index number

EDT_SH_BADMODE Invalid Switch Handler bus configuration

dt_unlisten() disconnects the receive

154-CD

Equate Returned When

EDT_SH_BADTYPE Invalid local time slot type

EDT_SH_LCLDSCNCT Local time slot is already disconnected from
SCbus

EDT_SH_LIBBSY Switch Handler library busy

EDT_SH_LIBNOTINIT Switch Handler library is uninitialized

EDT_SH_MISSING Switch Handler is not present

EDT_SH_NOCLK Switch Handler clock fallback failed

EDT_SYSTEM Windows NT system error

EDT_TMOERR Timed out waiting for reply from firmware

n See also

• dt_listen()

starts and stops transmission of an alarm dt_xmitalrm()

155-CD

Name: int dt_xmitalrm(devh, alrmtype, state)
Inputs: int devh • Dialogic Digital Network

Interface logical board
device handle

 unsigned char alrmtype • T-1 or E-1 alarm type
 unsigned int state • enable or disable sending

the alarm
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Alarm

Mode: synchronous

n Description

The dt_xmitalrm() function starts and stops transmission of an alarm to a
network span. For a detailed description of T-1 and E-1 alarm handling, refer to
Chapter 2. Digital Network Interface Telephony .

Parameter Description

devh: Specifies the valid Digital Network Interface logical board
device handle returned by a call to dt_open().

alrmtype: Specifies the T-1 or E-1 alarm type to be transmitted:

 • YELLOW - T-1 only

 • BLUE - T-1 only

 • DEA_REMOTE - E-1 only

 • DEA_UNFRAMED1 (unframed all 1s) - E-1 only

 • DEA_SIGNALALL1 (signaling all 1s) - E-1 only

 • DEA_DISTANTMF (distant multiframe alarm) - E-1
only

state: Specifies whether to enable or disable transmission of the
specified alarm:

 • DTIS_DISABLE - disable transmission of alarm

 • DTIS_ENABLE - enable transmission of alarm

dt_xmitalrm() starts and stops transmission of an alarm

156-CD

n Cautions

1. This function will fail under the following conditions:

• The specified Digital Network Interface device is invalid.
• The specified alrmtype parameter is invalid.
• The specified state parameter is invalid.

2. Transmission of alarms requires that the proper alarm mode is set by the
dt_setalrm() function.

3. The alarm type transmitted must correspond to the type of network
circuit you are using (either T-1 or E-1).

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Board device handle */
 /*
 * Open board 1 device
 */
 if ((devh = dt_open(“dtiB1”, 0)) == -1) {
 printf("Cannot open board dtiB1. errno = %d", errno);
 exit(1);
 }
 /*
 * Transmit a BLUE alarm
 */
 if (dt_xmitalrm(devh, BLUE, DTIS_ENABLE) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

starts and stops transmission of an alarm dt_xmitalrm()

157-CD

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVBD invalid Digital Network Interface logical board
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

n See also

• dt_setalrm()

dt_xmittone() enables or disables transmission of a test tone

158-CD

Name: int dt_xmittone(devh,state)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

 unsigned int state • enable/disable test tone
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Time Slot Audio

Mode: synchronous

n Description

The dt_xmittone() function enables or disables transmission of a test tone to the
PEB on the specified DTI/211 or D/240SC-T1 time slot. The digital milliwatt test
tone can be used to test for proper connections between DTI/211 or D/240SC-T1
boards and the PEB module.

Parameter Description

devh: Specifies the valid Digital Network Interface
logical time slot device handle returned by a call
to dt_open().

state: Specifies tone on or off. The possible values are:

 • DTIS_DISABLE - disable tone
generation

 • DTIS_ENABLE - enable tone
generation

n Cautions

1. This function will fail under the following conditions:

• An invalid Digital Network Interface logical time slot device handle
is specified.

• The state specified is invalid.

2. This function is not supported by the DTI/212 or D/300SC-E1 device.
Using the dt_xmittone() function will produce an error.

enables or disables transmission of a test tone dt_xmittone()

159-CD

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 /*
 * Open board 1 time slot 1 device
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Cannot open time slot dtiB1T1. errno = %d", errno);
 exit(1);
 }
 /*
 * Start transmitting a test tone on this time slot
 */
 if (dt_xmittone(devh, DTIS_ENABLE) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 .
 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. See Appendix A for more information on SRL
functions. The error codes returned by ATDV_LASTERR() are:

Equate Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVTS invalid Digital Network Interface logical time slot
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_RANGEERR bad/overlapping physical memory range

dt_xmittone() enables or disables transmission of a test tone

160-CD

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

Error defines can be found in the file dtilib.h.

transmits wink signaling dt_xmitwink()

161-CD

Name: int dt_xmitwink(devh, tmo)
Inputs: int devh • Dialogic Digital Network

Interface logical time slot
device handle

 unsigned int tmo • timeout value
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dtilib.h
Category: Time Slot Signaling

Mode: synchronous/asynchronous

n Description

The dt_xmitwink() function transmits wink signaling to the T-1 or E-1 network
span on any of the available signaling bits. The bit to be used and the polarity or
beginning state of the wink are configurable through the download parameter file
(see the System Release Software Installation Reference for Windows NT for
details). A wink starts by transmitting signaling state 0, then transmits signaling
state 1, and returns to signaling state 0. The signaling bit selected must be in the
proper state (state 0) when the dt_xmitwink() function is called. Also, the time
slot must be in signaling insertion mode to transmit a wink.

Board parameters may be set through dt_setparm() to control prewink delay and
transmit wink duration for all time slots simultaneously.

NOTE: Separate board parameters are provided for setting minimum and
maximum receive wink duration. These have no effect on wink
transmission.

dt_xmitwink() transmits wink signaling

162-CD

Parameter Description

devh: Specifies the valid Digital Network Interface logical time slot
device handle returned by a call to dt_open().

tmo: Specifies the maximum amount of time in seconds that the
function will block while awaiting a response from the
Digital Network Interface.

n Asynchronous Mode

To operate this function in asynchronous (non-blocking) mode, specify 0 for tmo.
This allows the application to continue processing while awaiting a completion
event from the device. If event handling is set up properly for your application,
DTEV_WINKCPLT is returned by the SRL sr_getevttype() function when the
wink is successfully completed. See Appendix A for information on event
handling.

n Synchronous Mode

To run this function in synchronous (blocking) mode, set tmo to the length of
time, in seconds, to await a return. If a response is not returned within tmo
seconds, an error is returned. A suggested tmo setting for this function is 2.

n Cautions

1. This function will fail under the following conditions:

• The specified Digital Network Interface logical time slot device
handle is invalid.

• The specified time slot is not in the correct signaling state (must
begin in state 0).

• Signaling insertion is not enabled for the specified time slot device.
• A T-1 system (DTI/211 or D/240SC-T1 board) is configured for

wink transmission using the C or D bit.
• An application attempts to change signaling mode or signaling bits

while wink transmission is in progress.

2. To use this function in asynchronous mode, you must use the SRL
sr_enbhdlr() function to enable trapping of events and create an event
handler to process the completion event returned by the device. The

transmits wink signaling dt_xmitwink()

163-CD

event can be detected by using the SRL event management functions.
See Appendix A for more information on Digital Network Interface event
management.

n Example

#include <windows.h>
#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

main()
{
 int devh; /* Time slot device handle */
 /*
 * Open time slot 1 on board 1
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Failed to open device dtiB1T1. errno = %d\n", errno);
 exit(1);
 }
 /*
 * Set signaling bits to a known state
 */
 if (dt_settsig (devh, DTB_ABIT | DTB_BBIT, DTA_SUBMSK) == -1) {
 printf("Error message = %s \n", ATDV_ERRMSGP(devh));
 exit(1);
 }
 /*
 * Set signaling mode to signaling insertion
 */
 if (dt_setsigmod(devh, DTM_SIGINS) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 /*
 * Disable silence transmission
 */
 if (dt_setidle(devh, DTIS_DISABLE) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 /*
 * Go offhook assuming that wink set to negative polarity on A bit
 */
 if (dt_settssig(devh, DTB_ABIT, DTA_SETMSK) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 /*
 * Transmit wink with 2 second timeout. Note that this is the blocking
 * (synchronous) mode
 */

if (dt_xmitwink(devh, 2) == -1) {
 printf("Error message = %s.",ATDV_ERRMSGP(devh));
 exit(1);
 }
 .

dt_xmitwink() transmits wink signaling

164-CD

 .
 .
}

n Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message (see Appendix A for more information). The
error codes returned by ATDV_LASTERR() are:

Equates Returned When

EDT_BADBRDERR Digital Network Interface missing or defective

EDT_BADCMDERR invalid or undefined command to driver

EDT_DATTO data reception timed out

EDT_FWERR firmware returned an error

EDT_INVTS invalid Digital Network Interface logical time slot
device handle

EDT_NOMEMERR cannot map or allocate memory in driver

EDT_PARAMERR invalid parameter

EDT_PDOFFHK wink bit not in correct initial state

EDT_RANGEERR bad/overlapping physical memory range

EDT_SIGINS signaling insertion not enabled

EDT_SIZERR message too big or too small

EDT_SKIPRPLYERR a required reply was skipped

EDT_SYSTEM Windows NT system error. Check the global
variable errno for more information about the
error.

EDT_TMOERR timed out waiting for reply from firmware

EDT_WKACT already transmitting wink

EDT_WKSIG cannot disable insertion when transmitting wink

Error defines can be found in the file dtilib.h.

n See also

• dt_setparm()

transmits wink signaling dt_xmitwink()

165-CD

• dt_setsigmod()
• dt_settssig()

dt_xmitwink() transmits wink signaling

166-CD

167-CD

5. Digital Network Interface
Application Guidelines

Digital Network Application Overview

This chapter offers advice and suggestions to guide programmers in designing and
coding a Dialogic Digital Network Interface application for Windows NT.

NOTE: In the context of this guide, "Digital Network Interface" is used to refer
to the DTI/211 board, the DTI/212 board, the D/240SC-T1 board or the
D/300SC-E1 board unless otherwise noted.

5.1. Writing a Simple Digital Network Interface
Application

This chapter is not meant to be a comprehensive guide to developing or debugging
Digital Network Interface applications. Instead, the following sections provide
Digital Network Interface general and task-specific programming guidelines:

• General Guidelines
• Initialization
• Processing
• Terminating
• Compiling and Linking
• Aborting

5.1.1. General Guidelines

The following general guidelines for writing Dialogic applications are explained
in this section.

• Use symbolic defines
• Include header files
• Check return codes

Digital Network Interface Programmer’s Guide for Windows NT

168-CD

Use Symbolic Defines

Dialogic does not guarantee that the numerical values of defines will remain the
same as new versions of a software package are released. In general, do not use a
numerical value in your application when an equivalent symbolic define is
available.

Include Header Files

Various header files must be included in your application to test for error
conditions, to use other library functions from the System Release Development
Package, or to perform event management and standard attribute functions. An
example is shown below. See Section 3.3. Include Files, for details.

 #include <srllib.h>
 #include <dtilib.h>
 #include <errno.h>

NOTE: To avoid redundancy in the remaining programming examples in this
chapter, #include statements will not be shown.

Check Return Codes

Most Digital Network Interface Windows NT library functions return a value of -1
if they fail (extended attribute functions return AT_FAILURE or AT_FAILUREP
if they fail). Any call to a Digital Network Interface library function should
therefore check for a return value indicating an error. This can be done using a
format similar to the following:

 /* call to Dialogic DTI/xxx Library function */

 if (dt_xxx(arguments) == -1) {
 /* error handling routine */
}
 /* successful function call -
 continue processing ... */

Using this technique ensures that all errors resulting from a Digital Network
Interface device Windows NT library call will be trapped and handled properly by
the application. In many cases, you can check for a return value of other than zero
(0), as shown in the example below. However, this should only be used where a
nonzero value is returned when the function fails. See Section 3.2. Digital

5. Digital Network Interface Application Guidelines

169-CD

Network Interface Error Handling, or Chapter 4. Digital Network Interface
Function Reference, for function specific details.

 .
 .
 .
 /* error handling routine */
 void do_error(devh, funcname)
 int devh;
 char *funcname;
 {
 int errorval = ATDV_LASTERR(devh);
 printf("Error while calling function %s on device %s. \n", funcname,
 ATDV_NAMEP(devh));
 if (errorval == EDT_SYSTEM) {
 printf("errno = %d\n", errno);
 perror("");
 } else {
 printf("Error value = %d\n Error message = %s\n",
 errorval,ATDV_ERRMSGP(devh));
 }
 return;
 }

 main()
 {
 .
 .
 .

 /* call to Dialogic DTI/xxx library function */
 if (dt_setevtmsk(devh, DTG_SIGEVT, 0, DTA_SETMSK)) != 0) {
 do_error(devh, "dt_setevtmsk()");
 }

 /* successful function call -
 continue processing ... */
 .
 .
 .

}

NOTES: 1. Calls to dt_open() return either -1 or a nonzero device handle.
Therefore, when issuing the dt_open() function, check for a
return of -1. The specific error can be found in the global
variable errno, contained in errno.h. Calls to
ATDT_BDSGBIT() return the pointer AT_FAILUREP when
the function fails.

2. To avoid redundancy in the remaining programming examples
in this chapter, the do_error() function will not be shown.

Digital Network Interface Programmer’s Guide for Windows NT

170-CD

The dtilib.h header file lists Windows NT library symbolic defines.

5.1.2. Initialization

Before a Digital Network Interface application can perform any processing or
access devices, it should initialize the Digital Network Interface hardware to
reflect the physical configuration of your system and set other parameters needed
to support the application. Tasks that are performed as a part of initialization
generally include:

• Set hardware configuration
• Set alarm handling parameters and masks
• Initialize time slots

These involve the following Digital Network Interface device Windows NT
functions:

• dt_setalrm()
• dt_setevtmsk()
• dt_setidle()
• dt_setparm()
• dt_setsigmod()
• dt_settssig()

NOTE: Preferably, parameters set by dt_setparm() are those that must be
changed "on the fly" or that cannot be set through the download
parameter file (see the System Release Software Installation Reference
for Windows NT).

Set Hardware Configuration

Use dt_setparm() to set hardware configuration, test mode, clock source, and
network telephony parameters. Specific settings include:

• cable type connecting the Digital Network Interface device to the
network

• loopback test mode
• clock source (see dt_setparm() in Chapter 4. Digital Network Interface

Function Reference for an example)
• wink detection and transmission duration

5. Digital Network Interface Application Guidelines

171-CD

NOTE: If your application uses the dt_xmitwink() function for receipt of
Automatic Number Identification (ANI) or Direct Number Identification
Service (DNIS) digits, you must make sure that Digital Network
Interface wink duration conforms to the proper protocol requirements.
Consult your carrier for details.

For specific parameter or mask values to use for configuring your hardware, see
the relevant function description(s) in Chapter 4. Digital Network Interface
Function Reference.

Set Alarm Handling Parameters and Masks

Use dt_setalrm() to set the alarm handling mode for each Digital Network
Interface device. Recommended settings are shown in Table 7. See dt_setalrm
in Chapter 4. Digital Network Interface Function Reference for an example of
setting the alarm handling mode.

Table 7. Recommended dt_setalrm() Settings

Telephony Standard Configuration Alarm Handling Mode

T-1 terminate DTA_TERM
 drop and insert DTA_DROP

E-1 terminate DTA_TERM
 drop and insert DTA_TERM

Use dt_setevtmsk() to set the alarm handling masks for each Digital Network
Interface device. At a minimum, your application must set masks to detect the T-1
or E-1 alarm conditions listed below.

NOTE: Unless your application is running in poll mode, your application must
issue the SRL sr_enbhdlr() function to enable trapping of the event
return before setting alarm handling masks with dt_setevtmsk(). You
must enable event handlers when running in callback or interrupt mode.
See Section Error! Reference source not found., for more details.

• T-1 alarm masks:
• DTEC_RBL (receive blue alarm)

Digital Network Interface Programmer’s Guide for Windows NT

172-CD

• DTEC_RED (receive red alarm)
• DTEC_RLOS (receive loss of sync)
• DTEC_RYEL (receive yellow alarm)

• E-1 alarms:
• DEEC_FSERR (frame sync error)
• DEEC_MFSERR (multiframe sync error)
• DEEC_RDMA (receive distant multiframe alarm)
• DEEC_RLOS (receive loss of sync)
• DEEC_RRA (receive remote alarm)
• DEEC_RSA1 (receive signaling all 1s alarm)
• DEEC_RUA1 (receive unframed all 1s alarm)

Initialize Time Slots

Before making or receiving any calls, an application should initialize all time slots
to a known state. Initialization consists of:

• clearing/setting all signaling event masks
• setting time slots to the idle state
• setting the proper signaling mode
• idling the time slots

Setting event masks to a known state helps ensure that the application receives
only those events it “expects” and can handle appropriately. Use dt_setevtmsk()
to set the signaling event masks to the desired state.

Setting all time slots to the idle state at the start of your application helps ensure
that off-hook/on-hook transitions will be processed correctly. Use dt_settssig()
to set the state of a time slot to idle.

To generate system signaling from the Digital Network Interface board, it must be
in the signaling insertion mode. In this mode, signaling from a resource board,
such as a D/12x, will be overwritten by the Digital Network Interface board. To
throughput the signaling data generated by the D/12x resource, the Digital
Network Interface must be set to transparent signaling mode. In transparent
signaling, signaling data from a PEB resource is routed straight through the
Digital Network Interface board to the network without modification.

5. Digital Network Interface Application Guidelines

173-CD

NOTES: 1. Before idling a T-1 time slot, set the signaling mode to signaling
insertion. If the Digital Network Interface board is set to
transparent signaling in a T-1 system and idle is transmitted, the
signaling bits could be overwritten by the idle pattern. Use
dt_setsigmod() to initialize Digital Network Interface time
slots to transparent signaling mode (DTM_TRANSP) or
signaling insertion mode (DTM_SIGINS), as required.

2. To transmit a wink to the network, the Digital Network Interface
time slot on which the wink is to be transmitted must be set to
signaling insertion.

Use dt_setidle() to idle a time slot.

The programming example below represents a typical initialization routine for a
single time slot on a single board in a T-1 environment.

int init()
{
 int dti1;

 /* open time slot 1 on DTI/211 or D/240SC-T1 board 1 ("dti1") */
 .
 .
 .
 /* Set time slot "onhook" */
 if (dt_onhook (dti1) !=0) {
 do_error(dti1, "dt_onhook() ");
 exit(1);
 }
 /* Reset all signaling event masks */
 if (dt_setevtmsk(dti1, DTG_SIGEVT, 0, DTA_SETMSK) !=0) {
 do_error(dti1, "dt_setevtmsk()");
 exit (1);
 }
}
int dt_onhook (devh)
 int devh;

{
 int retval;

 /*
 * Transmit AOFF and BOFF
 */
 if ((retval = dt_settssig(devh, DTB_ABIT | DTB_BBIT,
 DTA_SUBMSK)) != 0) {
 do_error(devh, "dt_settssig()");
 return (retval);
 }
 /*
 * Set signaling mode to signaling insertion
 */

Digital Network Interface Programmer’s Guide for Windows NT

174-CD

 if ((retval = dt_setsigmod(devh, DTM_SIGINS)) != 0) {
 do_error(devh, "dt_setsigmod()");
 return (retval);
 }
 /*
 * Enable idle transmission
 */
 if ((retval = dt_setidle(devh, DTIS_ENABLE)) != 0) {
 do_error(devh, "dt_setidle()");
 }
 return (retval);
}

The dt_setevtmsk() function disables generation of signaling events (see
Appendix A or Chapter 4. Digital Network Interface Function Reference for
details).

The dt_onhook() routine is a user-defined function that forces the selected time
slot to the on-hook, idle state using three separate library functions.

The dt_setsigmod() function sets the time slot to signaling insertion mode. (This
enables the device to transmit idle on the time slot without overriding signaling.)

The dt_settssig() function forces the time slot to the on-hook state.

NOTE: This example assumes that clearing both the A-bits and B-bits is equal to
the on-hook state. Your carrier service may differ.

The dt_setidle() function transmits an idle pattern to the network on the selected
time slot.

NOTE: When two Digital Network Interface boards are arranged in drop-and-
insert configuration, dt_setidle() can be used to disable pass-through
operation. Transmitting idle overrides voice data being passed between
Dialogic network devices on the selected time slot(s).

5.1.3. Processing

The main processing tasks for a Digital Network Interface application involve:

• Opening Digital Network Interface board and time slot devices
• Establishing connections

5. Digital Network Interface Application Guidelines

175-CD

Opening and Using Board and Time Slot Devices

Windows NT opens and closes devices in the same manner that it opens and
closes files. Windows NT views Digital Network Interface board and time slot
devices as special files. When you open a file under Windows NT, it returns a
unique file descriptor for that file. For example:

 int file_descriptor;
 file_descriptor = open(filename,mode);

Any subsequent action you perform on that file is accomplished by identifying the
file using file_descriptor. No action at all can be performed on the file until it is
first opened. Dialogic devices work in a similar fashion. You must first open a
Dialogic device before you can perform an operation with it. When you open a
device, the value returned is a unique handle for that process:

 int device_handle;
 device_handle = dt_open(device_name,mode);

NOTE: A Dialogic device handle is NOT the same handle returned by an open()
system call.

The Dialogic Digital Network Interface Windows NT device driver treats time
slot and Digital Network Interface logical board devices similarly. Each is
referred to by using a device handle. Any time you want to use the device, you
must identify the device with its handle. A time slot device is an individual T-1 or
E-1 time slot; for example, 1 of the 30 time slots on a DTI/212. A DTI/212 is one
Digital Network Interface logical board device containing 30 time slot devices.

NOTE: Time slot devices can be opened without opening the board device
containing that time slot. (It is unnecessary to open a board device unless
you are setting or getting a board-level device parameter or alarm
handling.)

To avoid conflict between the DTI driver and the generic driver, follow the
guidelines below when defining devices in the configuration file:

Valid device names for DTI devices are found in the /dev directory. For the
DTI/211 and DTI/212 boards, the device name format is dtiBx or dtiBxTy, where:

• x represents the Digital Network Interface logical board number

Digital Network Interface Programmer’s Guide for Windows NT

176-CD

• y represents the time slot number, ranging from 1 to 24 (T-1) or 1 to 30
(E-1)

Valid device names for the D/240SC-T1 and D/300SC-E1 are built from the
board name specified in the configuration file. The name of the D/240SC-T1 or
D/300SC-E1 device may be in the form dtiBx, dtiBx, dtiBxTy, or dtiBxTy where:

• x represents the D/240SC-T1 or D/300SC-E1 logical board number
• y represents the time slot number, ranging from 1 to 24 (T-1) or 1 to 30

(E-1)

NOTE: The logical board device number of the D/240SC-T1 or D/300SC-E1
device must not be the same as the logical board number of the DTI/211
device or the DTI/212 device.

The following example shows how time slot 1 can be opened on two different
D/240SC-T1 boards. For details on opening and closing Dialogic devices, refer to
dt_open() in Chapter 4. Digital Network Interface Function Reference.

 int dti1;
 int dti2;

 /* Open device dtiB1T1 */
 if ((dti1 = dt_open("dtiB1T1", 0)) == -1) {
 printf("Cannot open DTI device dtiB1T1\n");
 perror(" ");
 exit (1);
 }

 /* Open device dtiB2T1 */
 if ((dti2 = dt_open("dtiB2T1", 0)) == -1) {
 printf("Cannot open DTI device dtiB2T1\n");
 perror(" ");
 exit (1);
 }

NOTE: To avoid redundancy in the remaining programming examples in this
chapter, the dt_open() function will not be shown. The remaining
examples are based on the device name conventions used in the examples
above and assume that the relevant Digital Network Interface devices
have previously been opened.

Establishing Connections

The examples below show how an incoming call can be established.

5. Digital Network Interface Application Guidelines

177-CD

#include <srllib.h>
#include <dtilib.h>
#include <errno.h>

int devh; /* Time slot device handle */
int retval; /* Function return value */
int AON_received = 0; /* AON_received flag */
int AON_handler()
{
 int event = sr_getevttype();
 int *datap = (int *)sr_getevtdatap();
 short indx;
 if (event != DTEV_SIG) {
 printf("Unknown event %d received. Data = %d\n",event,*datap);
 return 0;
 }
 for (indx = 0; indx < 4; indx++) {
 /*
 * Check if bit in change mask (upper nibble - lower byte) is
 * set or if this is a WINK (upper nibble - upper byte) event
 */
 if (!(*datap & (0x1010 << indx))) {
 continue;
 }
 switch (*datap & (0x1111 << indx)) {
 case DTMM_AON:
 AON_received = 1;
 break;
 .
 .
 .
 default:
 printf(Signal Event Error: Data = %d\n,*datap);
 }
 }
 return 0;
}
int wait_ring()
{
/*
 * This routine waits for an event from AON_handler to signal
 * an incoming call
 */

 int devh; /* Time slot device handle */

/*
 * Open board 1 time slot 1 device (dti1)
 */
 if ((devh = dt_open(“dtiB1T1”, 0)) == -1) {
 printf("Cannot open device dtiB1T1. errno = %d", errno);
 return (-1);
 }
 /*
 * Enable event handler to catch AON events
 */
 if ((retval = sr_ehbhdlr(devh, DTEV_SIG, AON_handler)) == -1) {
 printf("Unable to set AON handler for device %s",
 ATDV_NAMEP (devh));
 return(retval);
 }

Digital Network Interface Programmer’s Guide for Windows NT

178-CD

 /*
 * Enable AON signaling transition events
 */
 if ((retval = dt_setevtmsk(devh, DTG_SIGEVT, DTMM_AON,
 DTA_SETMSK)) == -1) {
 printf ("Error message = %s.", ATDV_ERRMSGP(devh));
 return (retval);
 }
 /*
 * Now wait for an incoming call
 */
 while(AON_received == 0) {
 sleep(-1); /* Sleep until we receive an incoming call */
 }
 /* We have received an incoming call. See next segment. */
 .
 .
 .
}

The AON_handler() routine is an asynchronous event handler that flags
transitions of signaling bit “A” to the ON state. When the system detects an
A-ON condition, AON_handler() sets the AON_received flag to 1. The
AON_handler() function uses the SRL sr_enbhdlr() function and related event
management functions to determine when a signaling transition occurs. For
details, see Appendix A.

NOTES: 1. Asynchronous signal handling is one of several ways to manage
event notification and is shown for ease of explanation only.
For more information on application development models, refer
to the Standard Runtime Library Programmer’s Guide for
Windows NT (part of the Voice Software Reference for Windows
NT).

2. This example assumes that setting the A-bit to ON is equal to
the off-hook state. Your carrier service may differ.

The wait_ring() routine is a user-defined function that performs the following
tasks:

• Opens a time slot device
• Enables trapping of the desired signaling condition for the selected time

slot device
• Puts the application to sleep until detection of the appropriate signaling

condition.

5. Digital Network Interface Application Guidelines

179-CD

The dt_open() function opens time slot 1 on Digital Network Interface board 1
and assigns the returned device handle to variable devh.

The SRL sr_enbhdlr() function enables processing by the AON_handler
function of any signaling events detected on the device represented by devh (for
details see Appendix A).

The dt_setevtmsk() function enables detection of signaling bit A-ON transitions
on device devh. Using E&M signaling protocol, a transition of the A-bit from
OFF to ON signifies a request for service or ring event. When enabling event
notification, the dt_setevtmsk() function should be invoked only after the
applicable handler has been enabled; otherwise, events could be missed. In the
previous example, the AON_handler() function was used.

The while statement puts the routine to sleep until the AON_handler routine
detects a ring event. When a ring event is detected, processing resumes with the
following segment.

/*
 * Continued from previous example
 */
 .
 .
int dt_offhook (devh)
int devh;
{
 int retval;
 /*
 * Transmit AON and BON
 */
 if ((retval = dt_settssig(devh, DTB_ABIT | DTB_BBIT,
 DTA_ADDMSK)) != 0) {
 do_error(devh, "dt_settssig()");
 return (retval);
 }
 /*
 * Set signaling mode to signaling insertion
 */
 if ((retval = dt_setsigmod(devh, DTM_SIGINS)) != 0) {
 do_error(devh, "dt_setsigmod()";
 return (retval);
 }
 /*
 * Disable idle transmission
 */
 if ((retval = dt_setidle(devh, DTIS_DISABLE)) != 0) {
 do_error(devh, "dt_setidle()");
 }
 return (retval);
}

Digital Network Interface Programmer’s Guide for Windows NT

180-CD

The dt_offhook() routine is a user-defined function that forces the selected time
slot to the off-hook state and disables the transmission of idle using three separate
library functions.

NOTE: The dt_offhook() function is similar to the dt_onhook() function
explained above, under Initialize Time Slots, in the init() example.

The dt_setsigmod() function sets the time slot to signaling insertion mode.

NOTES: 1. Setting signaling to insertion mode is necessary if your
application will be generating signaling from the Digital
Network Interface board. To generate signaling from a Voice
or other resource channel, set the signaling mode to transparent.

2. The DTI/212 board does not support transparent signaling mode
in drop and insert. In a DTI/212-based drop-and-insert
configuration, the signaling mode must be set to insertion and
the signaling must be generated from the DTI/212 board.

The dt_settssig() function forces the time slot to the off-hook state.

NOTE: This example assumes that setting the A-bits and B-bits is equal to the
off-hook state. Your carrier service may differ.

The dt_setidle() function disables the transmission of the idle pattern to the
network on the selected time slot.

5.1.4. Terminating

When your process completes, devices should be shut down in an orderly fashion.
Tasks that are performed to terminate an application generally include:

• Disable events
• Reset time slots
• Close devices

The example that follows is based in part on the processes illustrated in the
previous examples. When your application is done processing a call, the
following example should be executed.

5. Digital Network Interface Application Guidelines

181-CD

NOTE: The following example assumes that relevant devices have been
previously opened and variable names have been declared.

/* Disable all signaling events for this time slot */
if (dt_setevtmsk(dti1, DTG_SIGEVT, 0, DTA_SETMSK) != 0) {
 do_error(dti1, "dt_setevtmsk()"); /* Error function */
}

 /*
 * Disable event handler for AON events
 */
 if ((retval = sr_dishdlr(devh, DTEV_SIG, AON_handler)) == -1) {
 printf("Unable to disable AON handler for device %s",
 ATDV_NAMEP (devh));
 return(retval);
 }

/*
 * close time slot 1 on Digital Network Interface board 1 ("dti1") and Digital Network
Interface board2 ("dti2")
 */
if (dt_close(dti1) != 0) {
 do_error(dti1, "dt_close()");
}
if (dt_close(dti2) != 0) {
 do_error(dti2, "dt_close()");
}

The dt_setevtmsk() function disables all currently enabled event notification
masks. The routine that follows uses SRL functions (not illustrated) to disable all
signal handlers (for SRL details, see Appendix A).

NOTES: 1. The dt_setevtmsk() and any SRL functions must be called in
the order shown in the example.

2. SRL Event Management functions (such as sr_dishdlr(), which
disables an event handler) must be called prior to closing the
device that is sending the handler event notifications (see
Appendix A for SRL details).

The dt_onhook() routine is a user-defined function that forces the selected time
slot back to the on-hook, idle state using three separate library functions.

NOTE: The dt_onhook() function is identical to the one explained above, under
Initialize Time Slots, in the init() example segment.

The dt_setsigmod() function resets the time slot device to signaling insertion
mode.

Digital Network Interface Programmer’s Guide for Windows NT

182-CD

The dt_settssig() function sets the time slot device to the on-hook state, ready for
another call.

The dt_setidle() function transmits idle on the selected time slot. When two
Digital Network Interface boards are arranged in drop-and-insert configuration,
dt_setidle() can be used to disable pass-through operation. Transmitting idle
overrides voice data being passed between Dialogic network devices on the
selected time slot(s).

The dt_close() function closes the time slot device.

5.1.5. Compiling and Linking

To compile and link your application, follow the syntax instructions for your
version of the Windows NT C Development Package.

NOTE: If your application includes a Digital Network Interface and you are
using the single-threaded asynchronous programming model, you must
link the application with libdti.lib. If your application includes a Digital
Network Interface and you are using the multi-threaded synchronous
programming model, you must link the application with libdtint.lib. See
the Standard Runtime Library Programmer’s Guide for Windows NT for
a full discussion of programming models.

183-CD

Appendix A
Dialogic Standard Runtime Library

Digital Network Interface Entries and Returns

The Dialogic Standard Runtime Library (SRL) is a device independent library
containing Event Management functions, Standard Attribute functions, and the
DV_TPT Termination Parameter table. Dialogic SRL functions and data
structures are described in detail in the Standard Runtime Library Programmer’s
Guide for Windows NT (part of the Voice Software Reference for Windows NT).
This appendix lists all Dialogic SRL entries and returns applicable to the Digital
Network Interface. Table 8 provides a guide to the contents of this appendix.

NOTES: 1. This appendix documents the Dialogic Standard Runtime
Library (SRL 4.1), included in the System Release Development
Package for Windows NT. SRL 4.1 is fully compatible with the
earlier releases of the SRL, therefore, existing applications
designed to work with earlier versions of the voice software for
Windows NT will work with the current voice software and
SRL 4.1. However, Dialogic encourages you to upgrade your
applications to the voice software included in the System
Release Development Package to take advantage of new
functionality. See the Dialogic Application Note entitled
Upgrading Applications for Voice Driver for Windows NT
(version 4.1) for instructions on upgrading applications.

2. In the context of this guide, "Digital Network Interface" is used
to refer to the DTI/211 board, the DTI/212 board, the D/240SC-
T1 board and the D/300SC-E1 board unless otherwise noted.

Digital Network Interface Programmer’s Guide for Windows NT

184-CD

Table 8. Guide to Appendix A

Digital Network Interface
Table
SRL Components Data Number

Event Management
functions

Digital Network Interface inputs for
Event Management functions.

Table 9

 Digital Network Interface returns
from Event Management functions.

Table 10

Standard Attribute functions Digital Network Interface values
returned by the Standard Attribute
functions.

Table 11

DV_TPT Table Termination conditions and related
data, required to set the DV_TPT for
a Digital Network Interface device.

Table 12

NOTE: The header file for this library is srllib.h. It must be "included" in
application code prior to including dtilib.h. For example:

#include <srllib.h>
#include <dtilib.h>

Event Management Functions

The enable processing of unsolicited and asynchronous termination events
returned by Dialogic library functions. For the Digital Network Interface, these
functions include:

dt_rundiag()
dt_setevtmsk()
dt_tstcom()
dt_tstdat()
dt_xmitwink()

Each of the Event Management functions applicable to the Digital Network
Interface are listed in the following tables. Table 9 shows Digital Network

Appendix A - Dialogic Standard Runtime Library

185-CD

Interface-specific inputs and Table 10 shows valid Digital Network Interface
returns.

Table 9. Digital Network Interface Inputs for Event Management
Functions

Event Management
Function

Digital Network
Interface-specific
Input

Valid
Input Value

sr_enbhdlr()
Enable event handler

evt_type DTEV_T1ERRC - T-1
alarm condition detected.

 DTEV_E1ERRC - E-1
alarm condition detected

 DTEV_SIG - Signaling
transition event detected.

 DTEV_COMRSP -
Successful
communications test.

 DTEV_DATRSP -
Response to data test.

 DTEV_RETDIAG -
Diagnostic complete
(DTI/211 devices only).

 DTEV_WINKCPLT -
Wink transmission
complete.

 DTEV_RCVPDG -
Receive pulse digits.

 DTEV_PDDONE - Pulse
dial complete events.

 DTEV_ERREVT - Error
condition event.

 DTEV_MTFCNCPT -
Multitasking function
complete.

Digital Network Interface Programmer’s Guide for Windows NT

186-CD

Event Management
Function

Digital Network
Interface-specific
Input

Valid
Input Value

sr_dishdlr()
Disable event handler

evt_type Same as above.

sr_getevtdev()
Get Dialogic device handle

device Digital Network Interface
device handle.

sr_getevttype()
Get event type

event type DTEV_T1ERRC

 DTEV_E1ERRC

 DTEV_SIG

 DTEV_COMRSP

 DTEV_DATRSP

 DTEV_RETDIAG

 DTEV_WINKCPLT

 DTEV_RCVPDG

 DTEV_PDDONE

 DTEV_ERREVT

 DTEV_MTFCNCPT

sr_getevtlen()
Get event data length

event length Number of bytes in the
data returned.

sr_getevtdatap()
Get pointer to event data

event data Pointer to event specific
data.

Table 10. Digital Network Interface Returns Event Management
Functions

Event Management
Function

Digital Network
Interface-specific
Return Returned Value

sr_getevtdev()
Get Dialogic device
handle

device Digital Network Interface
device handle.

sr_getevttype() event type DTEV_T1ERRC

Appendix A - Dialogic Standard Runtime Library

187-CD

Event Management
Function

Digital Network
Interface-specific
Return Returned Value

Get event type DTEV_E1ERRC

 DTEV_SIG

 DTEV_COMRSP

 DTEV_DATRSP

 DTEV_RETDIAG

 DTEV_WINKCPLT

 DTEV_RCVPDG

 DTEV_PDDONE

 DTEV_ERREVT

 DTEV_MTFCNCPT

sr_getevtlen()
Get event data length

event length Digital Network Interface
event length
information

sr_getevtdatap()
Get pointer to event data

event data Digital Network Interface
event data pointer
information

Standard Attribute Functions

The Standard Attribute functions return general Dialogic device information, such
as the device name or the last error that occurred on the device. The Standard
Attribute functions and the Digital Network Interface-specific information they
return are listed in Table 11.

Table 11. Standard Attribute Functions

Standard Attribute Function
Information Returned for Digital
Network Interface

ATDV_ERRMSGP() Pointer to string describing the error
that occurred during the last function
call on the Digital Network Interface.
(See the error listing section and

Digital Network Interface Programmer’s Guide for Windows NT

188-CD

Standard Attribute Function
Information Returned for Digital
Network Interface
function reference section of the
appropriate software reference.)

ATDV_IOPORT() Valid port address for the Digital
Network Interface.

ATDV_IRQNUM() Valid IRQ number range.

ATDV_LASTERR() The error that occurred during the last
function call on the Digital Network
Interface. (See the error listing section
and function reference section of the
appropriate software reference.)

ATDV_NAMEP() Pointer to device name (dtiBbXx).

ATDV_SUBDEVS() Number of subdevices (time slots,
channels, etc.). List Digital Network
Interface-specific returns. Refer to the
Standard Runtime Library
Programmer’s Guide for Windows NT
(part of the Voice Software Reference
for Windows NT) for information on
subdevices.

PT Structure

The DV_TPT termination parameter table sets termination conditions for a range
of Dialogic products. The valid values for the DV_TPT structure in relation to
the Digital Network Interface board are contained in this section.

The DV_TPT structure has the following format:

typedef struct dv_tpt (
 unsigned short tp_type; /* Flags describing this entry */
 unsigned short tp_termno; /* Termination Parameter number */
 unsigned short tp_length; /* Length of terminator */
 unsigned short tp_flags; /* Parameter attribute flag */
 unsigned short tp_data; /* Optional additional data */
 unsigned short rfu; /* Reserved */
 DV_TPT *tp_nextp; /* Pointer to next termination
 * parameter if IO_LINK set
 */
}DV_TPT;

Appendix A - Dialogic Standard Runtime Library

189-CD

Table 12 shows the Digital Network Interface equates for this structure.

Table 12. DV_TPT Structure

Field Value Description

tp_type IO_LINK Structure is part of a linked list.
The structure is linked through the
Dialogic Standard Runtime Library.

 IO_CONT
(default)

The next structure will be
contiguous in memory.

 IO_EOT This structure is the final entry in
the DV_TPT table.

rfu 0 Reserved for future use.

tp_nextp 0 Pointer to the next termination
parameter.

Refer to the Dialogic Standard Runtime Library Programmer’s Guide for
Windows NT for further information on the termination parameter table structure.

Digital Network Interface Programmer’s Guide for Windows NT

190-CD

191-CD

Appendix B
Related Publications

This section lists publications you should refer to for additional information on
Dialogic products or T-1 and/or E-1 telephony.

Dialogic Digital Network Interface References

• For information about the Voice And Diagnostic Libraries and about
library data structures, see the Voice Programmer’s Guide for Windows
NT in the Voice Software Reference for Windows NT.

• For information about the Standard Runtime Library, see the
Standard Runtime Library Programmer’s Guide for Windows NT in the
Voice Software Reference for Windows NT.

• For information about installing software, see the System Release
Software Installation Reference for Windows NT.

• For information about the D/2x, D/4x, D/81A, D/12x and D/xxxSC
(D/160SC-LS, D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC)
Voice boards, see the Voice Hardware Reference.

Other Dialogic Publications

• Porting Windows NT Applications to the SCbus, Dialogic Application
Note

• Why Is T-1 Important and How It Can Be Used , Dialogic Application
Note

• Use of Dialogic T-1 for Telemarketing Applications, Dialogic
Application Note

• Use of Dialogic T-1 in Operator Services Applications, Dialogic
Application Note

• Use of Dialogic T-1 in Telephone Company Networks, Dialogic
Application Note

• Use of Dialogic T-1 Equipment in CPE Gateways, Dialogic Application
Note

Digital Network Interface Programmer’s Guide for Windows NT

192-CD

• Integrating Analog Devices Into Dialogic-Based T-1 Voice Processing
Systems, Dialogic Application Note

• Designing Operator-Assisted Voice Processing Systems, Dialogic
Application Note

• Use of Dialogic Components in Automatic Number Identification
Systems, Dialogic Application Note

• Ordering Service and Installing Equipment for T-1 Applications,
Dialogic Application Note

T-1/E-1 Technology

• Bellamy, John. Digital Telephony. 2nd ed. New York: John Wiley &
Sons, 1991.

• Fike, John L., and George Friend. Understanding Telephone
Electronics. Indiana: Howard W. Sams & Company, 1988.

• Flanagan, William A. The Guide To T-1 Networking. 4th ed. New
York: Telecom Library Inc., 1990.

193-CD

Glossary

 A-LAW: A pulse-code modulation (PCM) algorithm used in digitizing
telephone audio signals in E-1 areas.

 ANI: Automatic Number Identification. A feature of certain
telecommunications networking protocols or processes that allows the
caller’s phone number to be detected and displayed by the called party.

 asynchronous function: On Windows NT platforms, a function that
allows program execution to continue without waiting for a task to
complete. To implement an asynchronous function, an application
defined event handler must be enabled to trap and process the
completion event. See synchronous function.

 AT bus: The common communication channel in a PC AT. The channel
uses a 16-bit data path architecture. This bus architecture includes the
standard PC bus plus a set of 36 lines for additional data transmission,
addressing, and interrupt request (IRQ) handling.

 AT-class: Used to describe an IBM or IBM-compatible Personal
Computer (PC) containing an 80286 or higher microprocessor, a 16-bit
bus architecture, and a compatible BIOS.

 BCD: Binary coded decimal. A numbering system often used in data
processing where each decimal digit is represented by a four-bit binary
value.

 BIOS: Basic input-output system. The set of permanently stored system
service programs needed to manage the PC and consisting of drivers
and other software to control peripheral units.

 B8ZS: Binary 8-zero Substitution. Basic bipolar coding algorithm for
digital telephony. At the transmitting end, a string of 8 zeros is
deliberately replaced with a pulse that produces a bipolar violation. At
the receiving end, bipolar violations are replaced with a string of 8
zeros. See HDB3.

 Board Locator Technology: Operates in conjunction with a rotary switch
to determine and set non-conflicting slot and IRQ interrupt-level
parameters, thus eliminating the need to set confusing jumpers or DIP
switches.

Digital Network Interface Programmer’s Guide for Windows NT

194-CD

 buffer: A block of memory or temporary storage device that holds data
until it can be processed. It is used to compensate for the difference in
the rate of the flow of information (or time occurrence of events) when
transmitting data from one device to another.

 bus: An electronic path which allows communication between multiple
points or devices in a system.

 CAS: Channel Associated Signaling. The signaling protocol used with the
CEPT E-1 telephony standard. In CAS, one of the 32 channels, time
slot 16, is dedicated to signaling for all of the 30 voice channels.
Unlike T-1 systems, which use robbed-bit signaling, telephony systems
using CAS are considered examples of out-of-band signaling. See in-
band signaling, robbed-bit signaling.

 CEPT: Conference of European Postal and Telecommunications
administrations. Defines how bits of a PCM carrier system in E-1 areas
will be used and in what sequence. CEPT format consists of 30 voice
channels, one signaling channel, and one framing (synchronization)
channel. See E-1.

 CCITT: International Telephone and Telegraph Consultative Committee, a
part of the ICU (International Telecommunications Union) responsible
for formulating telephony and other standards, such as E-1.

 CO: Central Office. The telephone company facility where subscriber
lines are linked, through switches, to other subscriber lines (including
local and long distance lines).

 CRC: Cyclic Redundancy Check. A basic error checking mechanism for
digital transmissions in which a CRC character, indicating the number
of bits in a block of data, is included in the transmission. The receiving
end calculates the number of bits in the block independently and
compares the result to the received CRC character. CRC4 is a specific
algorithm used to implement error checking.

 crossover cable: A cable used to interconnect two Dialogic network
boards, often to join two T-1 or E-1 lines. The cable is split and folded
so that the lines carrying network receive data on one side of the
crossover connector mate with network transmit lines on the other side
of the crossover.

 D/xxx: A general term used to refer to any Voice board made by Dialogic.

Glossary

195-CD

 D/120: A model of 12-channel Voice board from Dialogic that consists of
a SpringBoard-based expansion device and downloaded software. On
the PEB bus, the D/120 serves as a resource module to the installed
network module.

 D/121: A model of 12-channel Voice board from Dialogic with all the
features of the D/120 plus patented call-analysis algorithms for
outbound applications and multifrequency (MF) tone capability.

 D/121A: A model of 12-channel Voice board from Dialogic with all the
features of the D/121 plus additional RAM, increased performance and
reliability, and improved downstream compatibility.

 D/12x: A general term used to refer to any 12-channel Voice board made
by Dialogic.

 D/240SC-T1: 24 port DSP-based voice board that runs SpringWare
firmware and has an onboard digital T-1 telephone interface.

 D/300SC-E1: 30 port DSP-based voice board that runs SpringWare
firmware and has an onboard digital E-1 telephone interface.

 D/81: A model of 8-channel Voice board from Dialogic which can
interface to eight analog telephone lines in conjunction with Dialogic
LSI products or to digital E-1 spans in conjunction with Dialogic DTI
products.

 data structure: C programming term for a data element consisting of
fields, where each field may have a different type definition and length.
The elements of a data structure usually share a common purpose or
functionality, rather than being similar in size, type, etc.

 device: A computer peripheral or component that is controlled through a
software device driver. A Dialogic Digital Network Interface board is
considered a physical board containing one or more logical board
devices, and each time slot on the board is a time slot device.

 device channel: A Dialogic voice data path that processes one incoming
or outgoing call at a time (equivalent to the terminal equipment
terminating a phone line). There are 12 device channels on a D/12x.
Compare time slot.

 DNIS: Dialed Number Identification Service. An 800 service feature that
allows a business to determine the geographical area from which a call

Digital Network Interface Programmer’s Guide for Windows NT

196-CD

originated by the digits dialed (a different phone number is made
available to callers in each region).

 drop-and-insert: A Dialogic system configuration in which two network
boards are interconnected by a PEB crossover cable and continuously
pass all time slots through to each other. A time slot from one network
can be “dropped” to a resource module (such as a D/12x) for
processing. In return, the resource module can “insert” signaling and
audio into the bit stream received from the other side of the PEB
crossover connector. (A resource module can insert only to the network
board on the same side of the PEB crossover.) This bit stream is applied
through the network module for outbound transmission to the attached
network span.

 DTI/101: A first generation model of Dialogic digital telephony interface
boards designed for use with the T-1 telephony standard used in North
American market.

 Digital Network Interface: A general term used to refer to any of
Dialogic second generation digital telephony interface boards.

 DTI/211: A second generation model of Dialogic digital telephony
interface device designed for use with the T-1 telephony standard.

 DTI/212: A second generation model of Dialogic digital telephony
interface board designed for use with the E-1 telephony standard.

 E-1: Another name given to the CEPT digital telephony format devised by
the CCITT. See CEPT.

 E&M protocol: A signaling protocol that defines the sending and
receiving of signals. E&M protocol is the most common protocol on T-
1 trunks.

 8-bit expansion slot: These slots connect additional circuit boards
(expansion boards) into the PC bus. The slot contains contacts for the
62 lines of the standard PC bus.

 EPROM: Erasable Programmable Read-Only Memory.

 event: An unsolicited or asynchronous communication from a hardware
device to an operating system, application, or driver. Events are
generally attention getting messages, allowing a process to decide when
and where to redirect its resources.

Glossary

197-CD

 event handler: A portion of a Dialogic application program designed to
trap and control processing of device-specific events. The rules for
creating a Digital Network Interface event handler are the same as those
for creating a Windows NT signal handler.

 Extended Attribute functions: Class of functions that take one input
parameter (a valid Dialogic device handle) and return device-specific
information. For instance, a Digital Network Interface Windows NT
Extended Attribute function returns information specific to the Digital
Network Interface class of devices. Extended Attribute function names
are case-sensitive and must be in capital letters. See Standard Attribute
functions.

 firmware: A set of program instructions that reside (usually in EPROM)
on an expansion board.

 HDB3: Digital line-coding algorithm used by the DTI/212. HDB3 (high
density bipolar) is a variation on the basic bipolar coding scheme BNZS
(Binary N zero substitution), in which a string of N zeros is deliberately
replaced with a pulse that produces a bipolar violation. At the receiving
end, bipolar violations are replaced with a string of N zeros. In HDB3,
strings of four zeros are replaced with a bipolar violation. The bipolar
violation always occurs in the fourth bit position.

 in-band signaling: 1. In an analog telephony circuit, in-band refers to
signaling that occupies the same transmission path and frequency band
used to transmit voice tones. 2. In digital telephony, “in-band” has
come to mean signaling that is transmitted within an 8-bit voice sample
or time slot, as in T-1 “robbed-bit” signaling. 3. On the Dialogic PCM
Expansion Bus (PEB), signaling is considered “in-band” only if it
occupies the same transmission path and frequency band used to
transmit voice data. See CAS, robbed-bit signaling.

 IRQ: Interrupt request. A signal sent to the central processing unit (CPU)
to temporarily suspend normal processing and transfer control to an
interrupt handling routine. Interrupts may be generated by conditions
such as completion of an I/O process, detection of hardware failure,
power failures, etc.

 Mu-LAW: (1) A pulse code modulation (PCM) algorithm used in
digitizing telephone audio signals in T-1 areas.ss (2) The PCM coding
and compounding standard used in Japan and North America.

Digital Network Interface Programmer’s Guide for Windows NT

198-CD

 MSI: Modular Station Interface. A PEB-based Dialogic expansion board
that interfaces PEB time slots to analog station devices by way of
modular daughterboards.

 PC: Personal computer. In this guide, the term refers to an IBM Personal
Computer or compatible machine.

 PC AT: An IBM Personal Computer or compatible having the
characteristics described under AT-class.

 PC-bus: The common communication channel in a PC. The channel uses
an 8-bit data path architecture. The bus contains 62 lines for data and
power transmission, addressing, and interrupt request handling.

 PEB: PCM Expansion Bus. The common communication medium for
passing signaling, audio, and control information between Dialogic
D/12x, Digital Network Interface, and other PEB-compatible expansion
boards. Non-Dialogic products using the appropriate encoding method
and clock rate may interface with Dialogic products by using this bus.

 peripheral: Any equipment, apart from the central processing unit, that
provides a system with outside communication or additional facilities.

 PSTN: Public Switched Telephone Network.

 robbed-bit signaling: The type of signaling protocol implemented in
areas using the T-1 telephony standard. In robbed-bit signaling,
signaling information is carried in-band, within the 8-bit voice samples.
These bits are later stripped away, or “robbed,” to produce the signaling
information for each of the 24 time slots. See CAS, in-band signaling.

 route: Assign a resource to a time slot.

 separate signaling: A Dialogic-unique signaling protocol for data
crossing the PEB that makes use of different physical lines than are
used for voice data. Boards that support this protocol can write
signaling data to the PEB independent of the network signaling
protocol. See CAS, in-band signaling, out-of-band signaling, robbed-
bit signaling.

 16-bit AT expansion slot or 16-bit AT bus slot: These slots connect
additional circuit boards (expansion boards) into the bus of AT
machines. One of the main features of the AT bus is 16-bit memory
data transfer. AT expansion slots are really two slots placed end to end

Glossary

199-CD

on the motherboard. The larger slot contains contacts for the 62 lines
of the standard PC bus. The smaller slot contains contacts for the 36
lines added to the standard PC bus to make up the AT bus.

 SCbus: Signal Computing Bus. Third generation TDM (Time Division
Multiplexed) resource sharing bus that allows information to be
transmitted and received among resources over multiple data lines.

 SCSA: See Signal Computing System Architecture.

 Signal Computer System Architecture: SCSA. A Dialogic standard
open development platform. An open hardware and software standard
that incorporates virtually every other standard in PC-based switching.
All signaling is out of band. In addition, SCSA offers time slot bundling
and allows for scalability.

 signaling insertion: Mode in which the Digital Network Interface (or any
network board) overwrites signaling data from PEB resource modules
in order to perform signaling to the network (see transparent
signaling).

 SpringBoard: A Dialogic expansion board using digital signal processing
to emulate the functions of other products. The SpringBoard is a
development platform for Dialogic products.

 SRL: Standard Runtime Library. A Dialogic software resource containing
Event Management functions, Standard Attribute functions, and data
structures used by all Dialogic devices, but which return data unique to
the device. Version 2.00 of the SRL is included with version 3.00 and
later of the Voice Development Package for Windows NT. Version
1.00 of the SRL was packaged with the DTI/1xx Development Package
for Windows NT and if needed, can still be ordered separately.

 Standard Attribute functions: Class of functions that take one input
parameter (a valid Dialogic device handle) and return generic
information about the device. For instance, Standard Attribute
functions return IRQ and error information for all device types.
Standard Attribute function names are case-sensitive and must be in
capital letters. Standard Attribute functions for all Dialogic devices are
contained in the Dialogic SRL. See Extended Attribute functions.

Digital Network Interface Programmer’s Guide for Windows NT

200-CD

 synchronous function: On Windows NT platforms, a function that
blocks program execution until a value is returned by the device. Also
called a blocking function. See asynchronous function.

 time slot: In a digital telephony environment, a normally continuous and
individual communication (for example, someone speaking on a
telephone) is (1) digitized, (2) broken up into pieces consisting of a
fixed number of bits, (3) combined with pieces of other individual
communications in a regularly repeating, timed sequence (multiplexed),
and (4) transmitted serially over a single telephone line. Each
individual digitized communication is called a time slot. In T-1 areas,
24 time slots are multiplexed onto a single twisted-wire pair. In E-1
areas, 32 time slots are multiplexed together. Compare device channel.

 time slot assignment: The ability to route the digital information
contained in a time slot to a specific device channel. See device
channel.

 transparent signaling: Mode in which the Digital Network Interface (or
any network board) accepts signaling data from a PEB resource module
transparently, or without modification. In effect, the resource module
performs signaling to the network (see signaling insertion).

 wink: In T-1 or E-1 systems, a signaling bit transition from on to off, or
off to on, and back again to the original state. In T-1 systems, the wink
signal can be transmitted on either the A or B signaling bit. In E-1
systems, the wink signal can be transmitted on either the A, B, C, or D
signaling bit. Using either system, the choice of signaling bit and wink
polarity (on-off-on or off-on-off hook) is configurable through Digital
Network Interface board download parameters.

 Voice board: Any of Dialogic D/xxx family of 4-, 8-, and 12-channel
voice-store-and-forward boards.

201-CD

Index

A
Agent automation, 2

alarm
transmission to network, 155

Alarm functions, 28

alarm handling, 3, 119, 171
E-1, 3
hardware alarm indicators, 23
mode, 119

asynchronous, 68, 145, 149, 162

asynchronous mode, 27, 105

Audiotex, 1

backward compatibility, 2

billing automation
See Operator services, 2

blue alarm, 21

CAS, 14

Cellular messaging, 1

Central-office-based voice mail
See CO-based voice mail, 1

CEPT, 14

Channel Associated Signaling
See CAS, 14

clear channel TS16, 17

closing devices, 66

compatibility library functions
dt_libinit(), 99

D/120
terminology, 5

D/121
terminology, 5

D/121A
terminology, 5

D/121B
terminology, 5

D/12x
terminology, 5

D/160SC-LS
terminology, 5

D/240SC
terminology, 5

D/240SC-T1
terminology, 5

D/300SC-E1
terminology, 6

D/320SC
terminology, 6

D/81A
terminology, 5

D/xxx
terminology, 6

D/xxxSC
terminology, 6

D4 superframe, 10

D4 frame, 10

defines, 168

device handle, 111

device parameter, 132

device parameters

Digital Network Interface Programmer’s Guide for Windows NT

202-CD

See dt_getparm(), 88

Diagnostic functions, 29

diagnostics, 115
testing communications, 144
testing I/O interface, 148

dialing, 2

DIALOG/HD
terminology, 6

Direct dial-in (DDI) service, 2

directory assistance
See Operator services, 2

distant multiframe alarm, 22

DMX, 4

drop-and-insert configuration, 2

DS-0, 9

DS-1, 9

dt_getctinfo(), 73

dt_getxmitslot(), 96

dt_libinit(), 99

dt_listen(), 101

dt_unlisten(), 152

DTI/101
terminology, 6

DTI/211
terminology, 6

DTI/212
terminology, 6

DTI/212 devices, 4

DTI/212 or D/300SC-E1 devices, 3

DTI/2xx devices, 3

DTI/xxx

terminology, 6

dtilib.h, 37

E&M, 11

E-1, 1, 3

E-1 frame, 12

EPROM
See ATDT_ROMVER(), 53
version, 53

event mask, 83, 122
values, 85

events
event bitmask

See event mask, 83
event management, 1

Extended Attribute functions, 29

firmware
See ATDT_DNLDVER(), 46
version, 46

function
dt_getctinfo(), 73
dt_getxmitslot(), 96
dt_listen(), 101
dt_unlisten(), 152

function library, 2
See also Voice library, 2

hardware compatibility
backward compatibility, 2

hardware configuration, 170

header files, 168

idle state
See ATDT_IDLEST(), 50

idling, 128

include files, 168

initialize time slots, 172

Index

203-CD

Intelligent Network Interfaces, 17
clear channel TS16, 17
modifying network parameters, 18

intercept treatments
See Operator services, 2

LEDs, 23

MSI, 4

multitasking function
See also asynchronous mode, 105

network parameters
Intelligent Network Interfaces, 18
signalling features, 18

opening time slots, 3

Operator services, 2

Parameter Request functions, 30

Parameter Setting functions, 30

PEB, 1
terminology, 6

Products covered by this guide, 4

red alarm, 20

remote alarm, 22

Resource Management functions, 31

robbed-bit signaling, 11

routing, 3, 19

SCbus
compatibility, 3
routing, 20
routing functions, 32
terminology, 4, 6

SCbus routing functions, 32

Service bureaus, 2

signaling

E-1 national/international bits, 16
mode, 40
See ATDT_BDMODE(), 40
T-1, 11

signaling all 1s alarm, 22

signaling bits, 141
See ATDT_TSSGBIT(), 63
transmit, 138

signaling insertion mode, 136

signaling mode
See ATDT_TSMODE(), 60

silence, 128

Spancard
terminology, 6

SpringBoard
terminology, 6

SpringWare
terminology, 7

SRL, 1, 29

Standard Attribute functions
See SRL, 29

Standard Runtime Library
see SRL, 1

synchronization
T-1, 10

synchronous, 145, 149, 162

synchronous mode, 27

T-1, 1, 3

Telemarketing, 2

terminate configuration, 1

test tone, 158

tests, 144, 148

Digital Network Interface Programmer’s Guide for Windows NT

204-CD

time division multiplexing, 10

time slot, 10
signaling bits, 63
signaling mode, 60

Time Slot Audio functions, 32

Time Slot Signaling functions, 33

time slot status
See ATDT_STATUS, 57

transparent signaling mode, 3, 135
See also signaling mode, 3

unframed all 1s alarm, 22

Voice
terminology, 7

Voice library, 2

wink signaling, 161

yellow alarm, 20

205-CD

Dialogic Sales Offices

North American Sales
1-800-755-4444
fax: 201-631-9631

Corporate Headquarters
1515 Route 10
Parsippany, NJ 07054-4596
201-993-3000
fax: 201-993-3093

Northeastern US
70 Walnut Street
Wellesley, MA 02181

Southeastern US
1040 Crown Pointe Pkwy.
Suite 360
Atlanta, GA 30338

Central US
3307 Northland Drive
Suite 270
Austin, TX 78731

Western US
1314 Chesapeake Terrace
Sunnyvale, CA 94089

Northwestern US
19125 North Creek Parkway #120
Bothell, WA 98011

GammaLink Division
1314 Chesapeake Terrace
Sunnyvale, CA 94089

Computer-Telephone Division
100 Unicorn Park Drive
Woburn, MA 01801

Spectron Microsystems Division
315 Bollay Drive
Santa Barbara, CA 93117
805-968-5100
fax: 805-968-9770

Canada
Dialogic Corporation
1033 Oak Meadow Road
Oakville, Ontario
L6M 1J6 Canada

Latin America and the Caribbean
Dialogic Latin America and Caribbean
Roque Saenz Pena
730 Tercer Piso
Oficina 34 y 37
1035 - Buenos Aires
Argentina
541-328-1531 or -9943
fax: 541-328-5425

European Headquarters (serving Western
Europe, Middle East and Africa)
Dialogic Telecom Europe N.V.-S.A.
Airway Park
Lozenberg 23 (3rd floor)
B-1932 Sint-Stevens-Woluwe
Belgium
32-2-712-4311
fax: 32-2-712-4300

Germany, Switzerland & Austria
Dialogic Telecom Deutschland GmbH
Ridlerstrasse, 11
D-80339 Munich
Germany
49-89-50-20-09-14
fax: 49-89-50-24-540

France
Dialogic Telecom France
42, Avenue Montaigne
75008
Paris France
33-1-53-67-52-80
fax: 33-1-53-67-52-79

Italy
Dialogic Telecom Italy
Strade Pavese, 1/3
I-20089 Rozzano
Milan Italy
39-2-57554302
fax: 39-2-57554310

United Kingdom, Ireland and
Scandinavian Countries
Dialogic Telecom U.K. Ltd.
Dialogic House

Digital Network Interface Programmer’s Guide for Windows NT

206-CD

Dairy Walk
Hartley Wintney
Hampshire
RG27 8XX
United Kingdom
44-1252-844000
fax: 44-1252-844525

Japan and Korea
Dialogic Systems K.K.
Suntowers Center
Building 18F
2-11-22 Sangenjaya
Setagayaku, Tokyo 154
Japan
81-3-5430-3252
fax: 81-3-5430-3373

East Asia, Southeast Asia, West Asia and
Australia
Dialogic SEA Pte. Ltd.
150 Beach Road
#17-08 Gateway West Bldg.
Singapore 0718
65-298-8208
fax: 65-298-1820

New Zealand
Dialogic (N.Z.) Ltd.
Level 6
Tower 2
Shortland Towers
55-63 Shortland Street
Auckland
New Zealand
64-9-366-1133
fax: 64-9-302-1793

Dialogic On-Line Information Retrieval
System
1-800-755-5599
or 201-993-1063

Dialogic Telecom Europe (DTE) On-Line
Information Retrieval System
32-2-712-4322

GammaLink Fax on Demand
408-734-9906

Computer Telephony BBS (ctBBS)

201-993-0864

Dialogic Telecom Europe (DTE) BBS
32-2-725-7846

CTI@ Dialogic WWW Site
http://www.dialogic.com

Dialogic Sales Internet
sales@dialogic.com

NOTES

NOTES

NOTES

