Empir Software Eng (2014) 19:558-581
DOI 10.1007/s10664-012-9229-5

An industrial study of applying input space partitioning
to test financial calculation engines

Jeff Offutt - Chandra Alluri

Published online: 23 September 2012
© Springer Science+Business Media, LLC 2012

Editor: James Miller

Abstract This paper presents results from an industrial study that applied input
space partitioning and semi-automated requirements modeling to large-scale indus-
trial software, specifically financial calculation engines. Calculation engines are used
in financial service applications such as banking, mortgage, insurance, and trading to
compute complex, multi-conditional formulas to make high risk financial decisions.
They form the heart of financial applications, and can cause severe economic harm
if incorrect. Controllability and observability of these calculation engines are low,
so robust and sophisticated test methods are needed to ensure the results are valid.
However, the industry norm is to use pure human-based, requirements-driven test
design, usually with very little automation. The Federal Home Loan Mortgage
Corporation (FHLMC), commonly known as Freddie Mac, concerned that these test
design techniques may lead to ineffective and inefficient testing, partnered with a
university to use high quality, sophisticated test design on several ongoing projects.
The goal was to determine if such test design can be cost-effective on this type of
critical software. In this study, input space partitioning, along with automation, were
applied with the help of several special-purpose tools to validate the effectiveness
of input space partitioning. Results showed that these techniques were far more
effective (finding more software faults) and more efficient (requiring fewer tests and
less labor), and the managers reported that the testing cycle was reduced from five
human days to 0.5. This study convinced upper management to begin infusing this
approach into other software development projects.

Keywords Software testing - Industrial study - Input space partitioning

J. Offutt ()
Software Engineering, George Mason University, Fairfax, VA, USA
e-mail: offutt@gmu.edu

C. Alluri

Freddie Mac, McLean, VA, USA
e-mail: chandra_alluri@freddiemac.com

@ Springer

Empir Software Eng (2014) 19:558-581 559

1 Introduction

A test criterion is a set of engineering rules that define specific requirements on
designing tests, such as cover every branch, or ensuring that every variable definition
reaches a use. Although researchers and academics have been publishing test criteria
for years, the authors have had difficulty convincing practitioners that the cost of
investing in criteria-based test design will lead to better software with acceptable cost.
This is a classic return on investment concern: Will the benefits of investing in new
technology outweigh the costs? These doubts were expressed by a project manager
to a test manager at a large financial services company, the Federal Home Loan
Mortgage Corporation (FHLMC), commonly known as Freddie Mac. In response,
the test manager proposed to partner with a researcher at a university to choose
appropriate test criteria, build support test automation tools, and compare the results
of applying test criteria with the results of Freddie Mac’s standard test process
(manual requirements-based testing). The research question has three simple parts:
(1) Can input space partitioning and semi-automated requirements modeling succeed
in a real industrial setting with real testers? (2) Can such an approach result in more
fault detection during testing, and therefore better software? (3) Can real testers
accept this approach for practical use?

Results from the resulting industrial study on four separate software systems are
reported here. The project has been very successful. In all four systems, the criteria-
based approach yielded fewer tests that found more defects. All four systems have
reported zero defects since release. Additionally, the test managers reported that the
testing cycle was reduced from five human days to 0.5.

This paper reports what we choose to call an “industrial study,” rather than a
controlled experiment. The study was carried out at an industrial site and we had to
play by industrial rules. This is both a strength of the paper and a weakness. This
is a strength because this study shows that input space partitioning (ISP) (Ammann
and Offutt 2008; Grindal et al. 2005) can be used effectively, with a positive return
on investment, in a realistic setting as opposed to a laboratory. But the context also
creates a weakness because we were not able to do all the things we would have
liked to do. This is common in industrial studies, and we believe the field needs more
industrial studies, not fewer.

Financial services like banking, mortgage, and insurance contain subsystems
that involve complex calculations. Pricing loans, amortizing loans, asset valuations,
accounting rules, interest calculations, pension calculations, and generating insurance
quotes are common calculations used by these applications. Calculations embedded
into these systems differ in their calculation algorithms. In a particular application,
different calculators may need to perform multiple calculations to achieve the
business’s objective. These calculators together are called the calculation engine. In
most cases, several calculations need to be performed in sequence or in parallel to get
the final output. The logic for these calculations usually resides deep in the business
layer of software, which means that system-level inputs must travel through several
layers of software and numerous intermediate computations before reaching the
financial calculations being tested. This makes it difficult for system testers to control
the values of the inputs to the actual financial calculations, that is, controllability
(Freedman 1991) is low. Likewise, the results of the financial calculations are
processed through several layers of software, making it difficult to see the direct

@ Springer

560 Empir Software Eng (2014) 19:558-581

results of the individual financial calculations. That is, observability (Freedman 1991)
is also low. Software that exhibits low controllability and observability is notoriously
hard to effectively evaluate during system testing (Freedman 1991). (These concepts
are defined more carefully in the next subsection.)

Financial models are a common form of calculation engine. Financial modeling
is the process by which an organization constructs a financial representation of
some or all of its financial aspects. The model is built by calculations, and then
recommendations are made by using the model. The model may also summarize
particular events for the user and provide direction regarding possible actions
or alternatives.

Financial models can be constructed by computer software or with a pen and
paper. What is most important, however, is not the kind of technology used, but the
underlying logic that encompasses the model. A model, for example, can summarize
investment management returns, such as the Sortino ratio (Sortino and Price 1994),
or it may help estimate market direction, such as the Federal Reserve model (Lander
et al. 1997).

It is essential to test financial models thoroughly as they are business critical
and may cause enormous harm to the business if wrong. The common system test
strategy is to derive test requirements from black box testing techniques such as
boundary value analysis, and error guessing. Unfortunately, these are not always
effective. Effective test methods need to be used to overcome the calculations’ low
observability and controllability.

This paper presents an industrial study. Input space partitioning was used to
test several major pieces of functionality in large financial calculation engines at a
major financial services company (Freddie Mac). As far as we know, this is the first
industrial study using input space partitioning. The first author is a test manager
in charge of testing these calculation engines and performed this study under the
direction of the second author. Section 2 describes some of the key ideas for how
calculation engines work. Section 3 describes the testing approaches that were used
in this study. Section 4 presents the software systems that were tested and Section 5
gives the testing results. Section 6 provides conclusions and recommendations.

2 Characteristics of Calculation Engines

Calculation logic is implemented in the business layer of multi-layer software systems
(usually deployed on local web servers). All calculations are performed on the server;
the client is abstracted from the processing. Therefore the user does not observe
any processing behind the graphical user interface. For example, a user supplies
inputs for an insurance quote and the application generates the insurance quote
by performing various calculations on the server. Then the user enters different
characteristics of the borrower and the application generates the interest rate by
applying different rules on the server. The application takes different inputs from
taxpayers and generates the tax owed by performing other calculations on the server.
Calculation engines feature some characteristics of component-based applications,
reducing their testability.

In general terms, testability refers to how hard it is to test a software compo-
nent (Ammann and Offutt 2008; Freedman 1991; Voas 1992). Testability is largely
influenced by two aspects of software, controllability and observability. Ammann

@ Springer

Empir Software Eng (2014) 19:558-581 561

and Offutt (2008) define software observability and controllability as follows. Soft-
ware observability is how easy it is to observe the behavior of a program in terms of its
outputs, effects on the environment, and other hardware and software components.
Software controllability is how easy it is to provide a program with the needed inputs
in terms of values, operations, and behaviors. Because calculations are performed
on the server, many inputs are taken from other software components as shared
through persistent data on disk or in-memory objects, and calculations often depend
on the time of the day or day of the month, both observability and controllability
are quite low for this software. Problems with observability and controllability are
usually addressed by test interfaces or test drivers, which let testers assign specific
values to variables during execution, and view values at intermediate steps. Freddie
Mac had never used test interfaces before this project.

2.1 Specification Formats for Calculation Engines

Requirements for calculation engines are specified in various forms and in combi-
nations of plain English, use cases, mathematical expressions, logical expressions,
business rules, procedural design, and mathematical formulas. These requirements
are very complicated for both developers and testers.

Defects in calculation engines not only lead to interruptions, but also can result
in legal battles and large financial liabilities. These incidents create headlines in
newspapers, causing severe damage to the corporations’ reputations. Therefore,
strict I'T controls are put into place around these applications, and they are subjected
to regular auditing.

Although users most commonly see results of financial calculation engines with
two digits of decimal precision (dollars and pennies in the USA), most calculations
are performed with floating point arithmetic for greater precision. This brings up the
possibility of errors in truncation and rounding. Many applications maintain constant
word size through the basic arithmetic operations. Multiplication is the biggest
concern as multiplying two N-bit data items yields a 2N-bit product, so truncation
limits must be defined in the specifications. Therefore tests must be designed to
evaluate precision, truncation, and rounding of the calculated values.

2.2 Characteristics of Design and Implementation of Calculation Engines

Calculation engines have several unusual characteristics that complicate test design,
test automation, and test execution. Values such as interest rates, S&P index,
NYMEX index, etc. change constantly during a business day depending on market
factors. The calculations use some of these values in their computations. These values
are updated constantly into tables called pricing grids. Calculation systems then pull
the current values when needed. When designing tests, this factor can be abstracted
or discounted, as this need not be tested every time.

Attributes for calculations are often received from external systems (upstream).
The systems under test process the calculations and may send the data to external
(downstream) systems that consume the outcomes. For example, Asset valuation
calculations receive inputs from Sourcing systems and pass the data to the Subledger
and General Ledger downstream systems, where accounting calculations (principles)
are applied and the final result will be reflected in financial reports at the end of

@ Springer

562 Empir Software Eng (2014) 19:558-581

the period. A common problem is that the requirements may not clearly specify the
source of the data for calculations. Thus, understanding the technical specifications
is essential-especially in determining the preconditions and designing prefix values
(values needed to put the software into the correct state to run the test values).

Understanding the events and conditions that determine the flow in the calcu-
lations also helps design effective tests. For example, the Interest Rate type (Fixed,
ARM, or Balloon) determines which path to follow. Calculations take different paths
based on these inputs.

Algorithms for amortization, pricing, insurance quotations, asset valuations, and
accounting principles are standard. For example, amortization methods could be
based on the diminishing balance or flat rate over a preset duration. Knowing how
these algorithms work is necessary to determine the expected outputs for the tests.
For example, MS-Excel has standard amortization functions, which can be used as a
calculation simulator instead of building simulator programs.

In almost all the applications, most calculations are implemented either as a batch
process or an online transaction that occurs in the business layer. Understanding the
architecture helps isolate the testable requirements from non-testable requirements.

Even though the entities that participate in the calculations have many important
attributes, it is common for only a few to be involved in the calculations. For
example, the loan pricing calculation, Loan and Master Commitment, have 140 and 35
attributes that are available to the calculations, but only seven are actually used in the
calculations. Identifying the influential attributes, and their constraints, is necessary
to build effective tests. The acceptable values for each attribute and their constraints
are defined in the form of business rules. When tests are built, test inputs need to
include values for the remaining attributes to make a test case executable.

Calculation engines send and receive values between each other. In many cases,
debugging the incorrect output is tedious as it involves checking all intermediate
values in the flow. The same set of inputs may yield different outputs when the
calculations are performed at different times. The reasons could be: (a) input values
are interpreted differently, (b) interest values could be changed in different time
periods, (c) intermediate values could have changed, (d) business rules would have
changed in the due course, etc. The systems do not store the intermediate values, but
intermediate values are essential in diagnosing problems.

Applications that involve these calculations often need to be tested for different
business cycles; daily, monthly, quarterly, and annually. Therefore, the same tests
may need to be executed more than once.

3 Test Approach

As said in Section 1, calculation engines have low controllability and observability,
which makes it more difficult to design and automate complete tests. Depending on
the software, the level of testing, and the source of the tests, the tester may need
to supply other inputs to the software to affect controllability and observability.
Two common practical problems associated with software testing are how to provide
the right values to the software, and observing details of the software’s behavior.
Ammann and Offutt (2008) use these two ideas to refine the definition of a test
case as follows. A prefix value is any input necessary to put the software into the
appropriate state to receive the test case values (related to controllability). A postfix

@ Springer

Empir Software Eng (2014) 19:558-581 563

value is any input that is needed after the test case values to terminate the program
or see the output (related to observability).

A test case is the combination of all these components (test case values, prefix
values, and postfix values), plus expected results. This paper uses “test case” to refer
to both the complete test case and test case values.

This study tested the calculation engines using two different methods: input space
partitioning and requirements modeling. This was a project decision made by the test
manager at the beginning of the project.

3.1 Input Space Partitioning

Input space partitioning (ISP) divides an input space into different partitions and
each partition consists of different blocks (Ammann and Offutt 2008; Grindal et al.
2005). ISP can be viewed as defining ways to divide the input space according to
test requirements. The input domain is defined in terms of possible values that the
input parameters can have. The input domain is then partitioned into regions that
are assumed to contain equally useful values for testing.

Consider a partition g over a domain D. The partition q defines the set of
equivalence classes, called blocks B,. The blocks are pairwise disjoint, that is:

biﬂb/' = @, l;é], bi,b/’EBq

and together the blocks cover the domain D, that is:

Jpr =0

beB,

ISP started with the category partition method (Ostrand and Balcer 1988; Ostrand
et al. 1986). Category partition was defined to have six manual steps to identify input
space partitions and convert them to test cases.

1. Identify functionalities, called testable functions, which can be tested separately.

2. For each testable function, identify the explicit and implicit variables that can
affect its behavior.

3. For each testable function, identify characteristics or categories that, in the
judgment of the test engineer, are important factors to consider in testing the
function. This is the most creative step in this method whose result will vary
depending on the expertise of the test engineer.

4. Choose a partition, or set of blocks, for each characteristic. Each block represents
a set of values on which the test engineer expects the software to behave
similarly. Well-designed characteristics often lead to straightforward partitions.

5. Choose a ftest criterion and generate the test requirements. Each partition con-
tributes exactly one block to a given test requirement.

6. Refine each test requirement into a test case by choosing appropriate values for
the explicit and implicit variables.

This project uses several ISP criteria: base choice, multiple base choice,
and pairwise.

The base choice (BC) criterion emphasizes the most “important” values. A base
choice block is selected for each partition, and a base test is formed by using any
value from each base choice for each partition. Subsequent tests are chosen by

@ Springer

564 Empir Software Eng (2014) 19:558-581

holding all but one base choice constant and using each non-base choice in each other
parameter. All values in a block are treated identically, so the subsequent discussion
sometimes uses the term “block” to refer to the specific value from the block that is
used in tests.

For example, if there are three partitions with blocks [A, B], [1, 2, 3], and [x,
y], suppose base choice blocks are “A,” “1” and “x.” Then the base choice test is
(A, 1, x), and the following tests would be needed:

(B, 1,x)
(A,2,x)
(A, 3,x)
(A 1y)

A test suite that satisfies BC will have one base test, plus one test for each
remaining block for each partition. Base choice blocks can be the simplest, the
smallest, the first in some ordering, or the most likely from an end-user point of view.
Combining values from more than one invalid block is considered to be less useful
because the software often recognizes the value from one block and then negative
effects of the others are masked. Which blocks are chosen for the base choices
becomes a crucial test design decision. It is important to document the strategy that
was used so that further testing can reevaluate that decision.

Sometimes it is difficult to choose just one block as a base choice. The multiple
base choices (MBC) criterion requires at least one, but allows more than one, base
choice block for each partition. Base tests are formed by using each base choice
for each partition at least once. Subsequent tests are chosen by holding all but one
base choice constant for each base test and using each non-base choice in each
other parameter.

In the pairwise (PW) criterion, a value from every block for each partition must
be combined with a value from every block for every other partition.

For example, if the model has three partitions with blocks [A, B], [1, 2, 3], and
[x, y], then PW will need tests to cover the following combinations:

A D [B, {Ax
(A2) | (B,2) | (1y)
(A,3) | B,3) | (2,%)
(A,x) | (B,x) | (2,y)
(Ayy) | Byy) | (3,%)
(B.y)

Pairwise testing allows the same test case to cover more than one unique pair of
values. So the above combinations can be combined in several ways, including:

(A,1,x) | (B,1,y)
(A,2,x) | (B,2,y)
(A,3,%) | (B,3,y)
(A, ~y) | (B,~ %)
The tests with “~” mean that any block can be used. A test set that satisfies PW

testing is guaranteed to pair a value from each block with a value from each other
block. In general, pairwise testing does not subsume base choice testing.

@ Springer

Empir Software Eng (2014) 19:558-581 565

3.2 Requirements Modeling

In Freddie Mac’s standard testing process, testers develop tests from requirements
by informally considering the behavior of the software and guessing what might
go wrong. No test criterion is used, no model of the input space or the software is
constructed, and there is no notion of coverage. Most tests are not designed before
the software is tested; the testers read the requirements, then sit down in front of
the software and started running it. Beizer (1990) and Myers (1979) and others
extensively discussed this type of behavioral testing from requirements, which allows
domain knowledge to be directly used in test design.

As part of this project, we developed a special purpose automated tool called
the Fusion Test Modeler (FTM), which helped use the requirements for calculation
engines to create a model for generating tests case (a test model). FTM also provided
traceability from the functional requirements to the test requirements to the tests.

The requirements of the calculation engines are expressed in a mixture of event
sequences, action sequences, business rules, use cases, plain text in English, logical
expressions, and mathematical expressions. For example, pricing a loan or a contract
occurs when some events occur, such as creating the loan, changing the time period,
changing the interest rates, and/or changing the fee rates. Amortization calculations
depend on the time period of the loan and characteristics of the loan, such as ARM or
fixed. Asset valuation triggers a different set of calculations based on the Asset type,
e.g., whole loans, swaps, or bonds. Some specifications are defined in the form of
pseudo-code and procedural design, especially for financial models, which are often
bought as third-party tools and integrated into the Freddie Mac systems. For others,
complex calculations are embedded in the sequence of steps in use cases.

The calculation requirements are naturally hierarchical, starting with the overall
result needed at the top, then subcalculations, down through individual values at
lower levels in the hierarchy. Thus the calculation requirements were modeled for
testing as a tree. The test models were extended and decomposed to trace different
paths in the models. A typical test requirement is met by visiting a particular node or
edge or by touring a particular path. These decomposed paths simplify the complex
or obscure behaviors of the calculation engines. Each path in the test models can be
refined to a unique test case mapping to the test requirements.

Figure 1 shows the high level process used to test the calculation engines using the
modeling technique. The first and second steps were crucial in this process to model
the requirements. The Fusion Test Modeler helped model the requirements. The
second step derived the test scenarios from the model. FTM automatically generated
these test scenarios. Steps 4, 5, and 8 were automated with the help of other tools.

The test modeling process followed 10 steps, as adapted from Beizer (1990).

1. Identify the testable functions (by hand).

2. Examine the requirements and analyze them for operationally satisfactory
completeness and self-consistency (by hand).

3. Confirm that the specification correctly reflects the requirements, and correct

the specification if it does not (by hand).

Rewrite the specification as a sequence of short sentences (using FTM).

Model the specifications using FTM.

Verify the test model (by hand).

Select the test paths (automated by FTM).

Newnk

@ Springer

566 Empir Software Eng (2014) 19:558-581

Use the tool to Apbl
Identify develop a test cov‘;[:ay e
testable function odel from the erag
. criteria
requirements
1.
2. Generate
test requirements
4. Simulate calculation 3. Generate 6. Input tests data
engine and input test («— .test data > to system under
data to simulator development
5. Collect 8. Compare 7. Collect actual
l— actual & expected
expected results results results

9. Document results
pass or fail

Fig. 1 Modeling process to test calculation engines

8. Sensitize the selected test paths; that is, design input values to cause the software
to do the equivalent of traversing the selected paths (by hand).
9. Record the expected outcome for each test. Expected results are specified
in FTM.
10. Confirm the path (automated by FTM). The prime path coverage criterion
(Ammann et al. 2003) is applied to traverse the model’s paths.

The algorithms in calculation engines are specified in a variety of formats. Re-
quirements are translated into semi-formal functional specifications. Specifications
can be described as finite state machines, state-transition diagrams, control flows,
process models, data flows, etc. Financial models are sometimes in the form of the
source code, usually when systems are to be built to replicate existing financial mod-
els, so the source code becomes the specifications. Sometimes algorithms defined in
Visual Basic may be re-implemented in Java, so the Visual Basic version is used as
the specification. They are also expressed in logical expressions, use cases, program
structures, sequence of events, and sequence of actions.

The tree structure was also used to model logical expressions for testing, as
extracted from if and case statements, and for and while loops. Multiple-clause
predicates were mapped onto a tree structure so that FTM could be used.

UML use cases are also used to express and clarify software requirements. They
describe sequences of actions that software performs by expressing the workflow
of a computer application. They are often created early and are then used to start
test design early. Use cases are usually described textually, but can be expressed
as graphs. In this project we expressed use cases as graphs, then selected paths to

@ Springer

Empir Software Eng (2014) 19:558-581 567

embed in trees for use by FTM. These graphs can be viewed as transaction flows
(Beizer 1990). Activity diagrams can also be used to express transaction flows. FTM
can be used to model a variety of things, including state behavior, returning values,
and computations.

3.3 The Fusion Test Modeler
FTM was developed to meet seven essential needs.

1. It provides traceability from the requirements to the test models to the tests.

2. It helps testers satisfy internal audit requirements. The testing process must

be transparent, the test cases must be well documented, and changes should

be applied in a controlled manner. FTM allows test analysts to keep track of
changes, and also captures who executed the tests and when they were executed.

Models are saved in XML files that are under configuration management.

It allows multiple test specification formats.

4. Tt must be easy to learn with a minimum of training. The modeling technique
chosen is simple so that the business community, testers, and analysts from non-
engineering backgrounds can learn and model the requirements quickly. They
can also analyze the requirements with the help of models.

5. FTM must preserve the mental models used to create the test requirements.
Testers often build mental models and then destroy them once they understand
the requirements. FTM allows users to build rough drafts of the test models and
preserve them for future analysis. The tool helps the users evolve their analysis
into a model that captures the testable requirements. It also supports impact
analysis when changes need to be made to the software, and helps transition
knowledge when new team members arrive.

6. It must complement existing tools used to manage testing.

7. FTM must satisfy graph-based coverage criteria (in this case, all paths in
the tree).

w

FTM stores test requirements in a spreadsheet, and uses Java utilities to read
and generate the base choice and multiple base choice test requirements from the
spreadsheet. The pairwise test requirements were generated by a PERL program
(Bach 2005). Values were obtained from upstream software components and by
hand. A simulator, written as Excel functions, was used to generate the expected
results. A disadvantage of simulators is that it is difficult to judge whether the output
of the simulator or the output of the system-under-test is correct. Differences must be
resolved by a domain expert. A second disadvantage is of the same error appearing
in both the simulator and the system-under-test.

Rational TestManager stores test data in data pools. A data-driven testing tech-
nique was applied to automatically enter the test data into the system by the tool.
Logic validation was not added to the automation scripts to maximize the processing
time of the data entry. Automation scripts were just simulated to enter the data
and were scheduled on different machines to enter data in parallel. When the
test data was input to the system, calculation-triggering events were identified and
automation scripts trigger the calculations. Events to trigger the calculations were
also incorporated into the script, so that every time the event triggers, the calculation

@ Springer

568 Empir Software Eng (2014) 19:558-581

engine was activated and performs calculations at the business layer, storing the
results in the database.

All actual results were stored in a database. In general, the final state of the actual
results generated by the calculation engines were stored in the database, and internal
states may be logged into execution logs for later debugging. It may be required to
refer to the execution logs for the internal states and values of the actual results
if they deviate from the expected results. One of our application study used nine
calculators and each calculator received the inputs from one or more of the other
calculators. We suggested to the programmers that they generate the execution logs
with the intermediate values of the calculation variables to help debug incorrect
expected output. A Java utility was written to search all the intermediate states of
calculation variables. The program scanned 10 MB of the execution logs in about 10
seconds and wrote the expected intermediate outputs into an Excel spreadsheet.

Financial calculations often produce hundreds of outputs that need to be com-
pared frequently, thus an automated comparison tool was developed to examine and
compare the backend results with the spreadsheet. The comparator compares the
results, showing the differences for failures and successes for passes. The comparator
compares the left-hand side and right-hand side of the results in different forms:
spreadsheet to spreadsheet, spreadsheet to database, and spreadsheet to text file.

Sometimes the actual results (intermediate) are obtained from the program
execution logs. These logs store values for intermediate results and final results are
stored in the database. The comparator searches for the desired text in the execution
logs and required fields in the database. The comparator tool discards unneeded
text strings before making comparisons of the output results. Actual and expected
results may not always be exactly the same due to roundoff, so the expected outputs
include tolerance limits. For example, a variation of at most one dollar in a million is
acceptable if the variation is caused due to drifts in floating point accuracy.

4 Software Systems Studied

This paper presents results from testing four separate industrial systems. They are
described here, and results for each are given in the next section. All are complicated
financial calculation engines that perform operations that may not be familiar to
the readers. More details are in Alluri’s MS thesis (Alluri 2008). The test criteria
were not applied in a comparative manner, but in a complementary manner, so
for example, pairwise testing was used for particularly complicated subsystems and
to handle conflicts between partitions. The specific test criteria used depended on
characteristics of the systems. This paper shows details of the test designs for the first
software system, but omits those details for the other systems to save space. We have
not been able to find other industrial studies using input space partitioning.

4.1 Contract Pricing

Contract pricing prices contracts when contracts are created in the Loan Purchase
Contract (LPC) subsystem and reprices the contracts when contracts are modified
or upon user requests. Two types of contracts are cash contracts and swap contracts.
This system tested swap contracts. The requirements for the pricing calculations of

@ Springer

Empir Software Eng (2014) 19:558-581 569

swap contracts are specified in the form of use cases. This use case calculates the swap
GPFee, Buyup max, Buydown max, Total adjusted G Fee for fixed rate, Guarantor, and
Multilender ARM swap contracts.

This project tested the software in two stages. The first stage tested the larger
import contracts feature. The second stage tested a smaller number of contract
attributes that were isolated to test just the contract pricing feature. Freddie Mac’s
selling system consists of different subsystems: LPC, NCM, TPA, Pooling, Pricing,
and OIM. Each subsystem contains multiple features and is designed to abstract their
functionalities from the others. The contract pricing feature (stage 2) receives inputs
from the import contracts feature (stage 1) of the LPC subsystem that facilitates
importing the contracts. The import contracts feature had almost 200 business rules,
and stage 1 testing resulted in 92 base choice and 207 pairwise tests.! The stage 2
testing resulted in 15 base choice, 30 multiple base choice, 23 pairwise tests, and 27
requirements modeling tests. For space reasons, this paper gives more test details for
the stage 2 testing than stage 1.

In the first stage (important contracts), 29 attributes were identified and used to
create 29 partitions for input space partitioning. The blocks for each partition were
based on the system specifications and are shown in Table 1. Tests were designed
using the base choice coverage criterion and constraints among the partitions were
validated using the pairwise coverage criterion.

In the second stage (contract pricing), partitions required for just the contract
pricing calculations were separated and then the base choice, multiple base choice,
and pairwise criteria were applied. Problem analysis showed that of the inputs
defined earlier, only seven inputs, Rate option, GFee, Remittance option type, GFee
grid remittance, LLGFee eligibility, BUBD eligibility, and Max Buyup, control the
calculations. Therefore, the other partitions were not considered. The partitions and
blocks for contract pricing are shown in Table 2. Base choices are highlighted in bold.

Base Choice Tests The base choice tests are shown in Table 3. There is one base
choice test (test #1), and then one test for each non-base block (14). In the non-base
choice tests, the non-base choice values are italicized.

Multiple Base Choice Tests Multiple base choice (MBC) was also used in the
second stage for contract pricing. Table 4 shows these tests. The first base choice
test is the same as with BC, but a second base choice test was added (test #16). With
MBC and two base choice tests, exactly twice as many tests are needed.

Pairwise Tests Pairwise testing was used to test constraints among the parameters.
This resulted in 23 tests, as shown in Table 5. The “~” means that the indicated value
cannot be used.

Requirements Modeling The testable function for contract pricing was modeled
using the FTM tool. The contract pricing calculation simulator was built in Java. This

IWe used Bach’s PERL program to generate pairwise test requirements (Bach 2005). This is
probably more tests than necessary and more modern tools, such as NIST’s ACTS (Kacker and
Kuhn 2008), would probably create far fewer tests.

@ Springer

570

Empir Software Eng (2014) 19:558-581

Table 1 Contract partitions and blocks

Partition Partition name Blocks
1 Execution option GU, ML, NULL_EO, *EO
2 Rate option FI, AR,NULL_RO, *RO
3 Master commitment 9CHAR, 10CHAR, 8SCHAR, NULL_MC, TBD
4 Security product NUMBER, NULL_SP, *SP
5 Security amount DOLLAR_ROUND, *DOLLAR_FRACTION,
*>100B, NULL_SA
6 Contract name CHAR (26), CHAR (25), CHAR (1),
NULL_CONT
7 Settlement date MMDDYYYY, *SD, NULL_SD
8 Settlement cycle days 1,3,4,5,%6,*2, NULL_SCD
9 Security coupon XX XXX, XXX. XX, NULL_SC, 26.000
10 Servicing option RE, CT, *SO, NULL_SO
11 Designated servicer number NULL_DS, DS, *DS
12 Minimum required servicing XX XXX, NULL_MRSS, XXX.XX
spread
13 Minimum servicing spread XX. XXX, NULL_MSSC, XXX.XX
coupon
14 Minimum servicing spread XX. XXX, NULL_MSSM, XXX.XX
margin
15 Minimum servicing spread XX XXX, NULL_MSSLC, XXX.XX
lifetime ceiling
16 Remittance option AR, SU, FT, GO, *RT, NULL_RT
17 Super ARC remittance due day 0,1,2,14,15,16,30, NULL_SARD
18 Required Spread GFee NULL_RSG, *RSG, RSG
19 BUBD program type CL,NL, LL, *BUBD_PT, NULL
20 BUBD request type NULL_BUBD_RT, BO, BU, BD, NO,
*BUBD_RT
21 Contract level Buyup/Buydown NULL_CL_BUBD, *CL_BUBD, BU, BD, NO
22 BUBD grid type NULL_BUBD_GT, *BUBD_GT, A, A-minus,
negotiated 1 grid
23 BU max amount 0,1,*BU_MAX_AMT, NULL_BU_MAX_AMT,
XXX XXX
24 BD max amount 0,1,*BD_MAX_AMT, NULL_BD_MAX_AMT,
XXX.XXX
25 Pool number NULL_PNO, PNO, *PNO
26 Index look back period NULL_ILP, *ILP, ILP
27 Fee type FT, *FT,NULL_FT
28 Fee payment method Delivery fee, GFee add on, *FTM, NULL_FTM
29 Prepayment penalty indicator Y,N

simulator program reads inputs from the spreadsheet, performs the calculations, and
then outputs the results into another spreadsheet. This resulted in 27 tests, as shown

in Table 6.

Running the Tests All tests, both ISP and requirements modeling tests, were given
to the calculation simulator. The calculation simulator performs the calculations and
generates expected results for each test input, then writes them into a spreadsheet.
All tests were input to the system-under-test using Rational’s robot tool (IBM
2011). The system has a feature called import contracts that allows all tests to be

@ Springer

Empir Software Eng (2014) 19:558-581 571

Table 2 Contract pricing

- Partition Partition name Blocks
partitions and blocks - -

1 Rate option Fixed, ARM

2 GFee NotNull, null

3 Remittance option type Gold, FirstTuesday,
ARC, SuperARC

4 GFEE grid remittance Gold, FirstTuesday,

option ARC, SuperARC

5 MC LLGFee eligibility Y,N

6 BUBD eligibility Prohibited, required,
optional

7 Max Buyup <12.5, =125, >12.5,
NULL

bundled into a flat file and imported at once. When the contract is created, the system
automatically prices the contracts and stores the pricing results in the database as the
actual results.

4.2 Loan Pricing

The Loan Pricing feature prices loans when they are newly created or after business
users request a reprice. Price recalculations for swap loans are triggered by data
corrections to one or more data elements used in the price calculation. These data
corrections can be one or both of the internal FM price definition terms (grid
data), or seller delivered loan/contract data for fields that affect the price. Either type
of data correction will trigger a total price recalculation of all price components that
apply to the loan, including GFEE/LLGFEE, BUBD and Delivery Fees. The price
recalculation can be approved either automatically or by hand. Any data change

Table 3 Contract pricing stage 2 base choice tests

Test# Rate GFee Remittance GFEE grid MC BUBD Max
option option type remittance LLGFee eligibility Buyup
option eligibility
1 ARM NotNull Gold Gold Y Prohibited <12.5
Base
2 Fixed Null Gold Gold Y Prohibited <12.5
3 Fixed NotNull FirstTuesday Gold Y Prohibited <12.5
4 Fixed NotNull ARC Gold Y Prohibited <12.5
5 Fixed NotNull SuperArc Gold Y Prohibited <12.5
6 Fixed NotNull Gold FirstTuesday Y Prohibited <12.5
7 Fixed NotNull Gold ARC Y Prohibited <12.5
8 Fixed NotNull ~ Gold SuperArc Y Prohibited <12.5
9 Fixed NotNull Gold Gold N Prohibited <12.5
10 Fixed NotNull Gold Gold Y Required <125
11 Fixed NotNull ~ Gold Gold Y Optional <125
12 Fixed NotNull Gold Gold Y Prohibited =12.5
13 Fixed NotNull Gold Gold Y Prohibited >12.5
14 Fixed NotNull Gold Gold Y Prohibited =~ NULL
15 Fixed NotNull Gold Gold Y Prohibited <12.5

@ Springer

572 Empir Software Eng (2014) 19:558-581

Table 4 Contract pricing stage 2 multiple base choice tests

Test# Rate GFee Remittance GFEE grid MC BUBD Max
option option type remittance LLGFee eligibility Buyup
option eligibility

1 Fixed NotNull Gold Gold Y Prohibited <12.5
Base

2 ARM NotNull Gold Gold Y Prohibited <12.5
3 Fixed Null Gold Gold Y Prohibited <12.5
4 Fixed NotNull FirstTuesday Gold Y Prohibited <12.5
5 Fixed NotNull ARC Gold Y Prohibited <12.5
6 Fixed NotNull SuperArc Gold Y Prohibited <125
7 Fixed NotNull Gold FirstTuesday Y Prohibited <12.5
8 Fixed NotNull Gold ARC Y Prohibited <12.5
9 Fixed NotNull Gold SuperArc Y Prohibited <125
10 Fixed NotNull Gold Gold N Prohibited <12.5
11 Fixed NotNull Gold Gold Y Required <12.5
12 Fixed NotNull Gold Gold Y Optional <125
13 Fixed NotNull Gold Gold Y Prohibited =12.5
14 Fixed NotNull Gold Gold Y Prohibited >12.5
15 Fixed NotNull Gold Gold Y Prohibited Null
16 ARM NotNull ~ SuperArc Gold N Prohibited =12.5
Base

17 Fixed NotNull SuperArc Gold N Prohibited =12.5
18 ARM Null SuperArc Gold N Prohibited =125
19 ARM NotNull Gold Gold N Prohibited =12.5
20 ARM NotNull FirstTuesday Gold N Prohibited =12.5
21 ARM NotNull ARC Gold N Prohibited =12.5
22 ARM NotNull SuperArc FirstTuesday N Prohibited =125
23 ARM NotNull SuperArc ARC N Prohibited =12.5
24 ARM NotNull ~ SuperArc SuperArc N Prohibited =125
25 ARM NotNull SuperArc Gold Y Prohibited =125
26 ARM NotNull SuperArc Gold N Required =125
27 ARM NotNull ~ SuperArc Gold N Optional =12.5
28 ARM NotNull ~ SuperArc Gold N Prohibited <I2.5
29 ARM NotNull ~ SuperArc Gold N Prohibited >12.5
30 ARM NotNull ~ SuperArc Gold N Prohibited ~ Null

to loan and/or delivery fee data will trigger a recalculation and reprice all price
component data that are effective at the time of settlement. This includes any changes
to BUBD or contract GFEE grid definition terms.

The mortgage loan entity has nearly 150 attributes, but only a few are relevant to
Loan Pricing. Twelve partitions were identified in this testable function. Two of the
12 are received from the price grids. These values are updated in the grids based on
the current market. Three others are intermediate parameters whose values are used
in the final calculations. Even though they participate in the calculations, their values
depend on the values of the other attributes that are inputs. (This is an example of
the controllability problem in these applications.)

Among the 12 partitions, only six influence the controllability of the pricing
calculations. The remaining six influence observability. Test cases were derived for
the base choice (26 tests), the multiple-base choice (52 tests), and the pairwise

@ Springer

Empir Software Eng (2014) 19:558-581 573

Table 5 Contract pricing stage 2 pairwise tests

Test# Rate GFee Remittance ~ GFEE grid MC BUBD Max
option option type remittance LLGFee eligibility Buyup
option eligibility

1 Fixed NotNull Gold Gold Y Prohibited <125
2 ARM Null FirstTuesday Gold N Required =125
3 Fixed Null FirstTuesday FirstTuesday Y Optional <125
4 ARM NotNull Gold FirstTuesday N Prohibited =125
5 Fixed NotNull ARC ARC N Required >12.5
6 ARM NotNull SuperArc ARC Y Optional Null

7 Fixed Null SuperArc SuperArc N Prohibited >12.5
8 ARM Null ARC SuperArc Y Required Null

9 ARM Null Gold ARC N Required <125
10 Fixed NotNull FirstTuesday SuperArc Y Optional =125
11 ARM ~Null Gold Gold Y Optional >12.5
12 Fixed ~NotNull FirstTuesday FirstTuesday N Prohibited Null

13 ~ARM ~NotNull ARC FirstTuesday N Optional >12.5
14 ~Fixed ~Null ARC ARC ~Y Prohibited =125
15 ~Fixed ~NotNull SuperArc Gold ~N Required Null

16 ~ARM ~NotNull SuperArc SuperArc ~N ~Prohibited <12.5
17 ~Fixed ~Null SuperArc FirstTuesday ~Y Required >12.5
18 ~Fixed ~Null Gold Gold ~N ~Optional Null

19 ~ARM ~NotNull ARC Gold ~Y ~Prohibited <12.5
20 ~ARM ~NotNull FirstTuesday ARC ~Y ~Required =125
21 ~Fixed ~Null Gold SuperArc ~N ~Optional =125
22 ~ARM ~Null FirstTuesday ~FirstTuesday ~Y ~Prohibited >12.5
23 ~ARM ~Null SuperArc ~ARC ~N ~QOptional =12.5

coverage criteria (72 tests). The requirements model approach was used to generate
131 tests, many of which were redundant because the same flow of information is
duplicated for Fixed, ARM and Balloon contracts. More details about the Loan
Pricing test designs can be found in Alluri’s MS thesis (Alluri 2008).

4.3 Amortization

The amortization calculator is a modular software component that calculates the
amortized cash flows for a given loan. Calculating the loan amortization requires
11 steps.

This system is an example of how different calculations will be triggered based
on preceding conditions. A total of 15 calculations follow one another in a sequence
and feed their outputs to the following calculator. Five are preliminary calculations.
The remaining 10 execute recursively until the end of the loan’s term. For example,
the ending balance of the loan changes from month to month, e.g., if the loan’s life
is 30 years, the loan will have 360 installments and when amortized it will have 360
records with varying ending balances for each month. For a given loan, the same
types of calculations occur 360 times. Therefore, when defining the scope of each
testable function, the loop is considered as one partition and critical characteristics
of loops are included as the blocks.

The system has 160 attributes, but only 14 contribute to the calculations. All 15
calculations were treated as testable functions. The total number of base choice

@ Springer

574 Empir Software Eng (2014) 19:558-581

Table 6 Contract pricing stage 2 requirements modeling tests

Test# Rate GFee Remittance GFEE grid MC BUBD Max
option option type remittance LLGFee eligibility Buyup
option eligibility

1 Fixed NotNull Gold Gold Y Prohibited >12.5
2 Fixed NotNull Gold Gold Y Prohibited <125
3 Fixed NotNull Gold Gold Y Prohibited >12.5
4 Fixed NotNull Gold Gold Y Prohibited <12.5
5 Fixed NotNull Gold SuperArc Y Prohibited >12.5
6 Fixed NotNull Gold SuperArc Y Prohibited >12.5
7 Fixed NotNull Gold FirstTuesday Y Prohibited <125
8 Fixed NotNull Gold ARC Y Prohibited <12.5
9 Fixed NotNull Gold FirstTuesday Y Prohibited <125
10 Fixed NotNull Gold FirstTuesday Y Prohibited >12.5
11 Fixed NotNull Gold ARC Y Prohibited <125
12 Fixed NotNull Gold FirstTuesday Y Prohibited <125
13 Fixed NotNull Gold Gold N Prohibited >12.5
14 Fixed NotNull Gold Gold N Prohibited <12.5
15 Fixed NotNull Gold SuperArc N Prohibited >12.5
16 Fixed NotNull Gold SuperArc N Prohibited <12.5
17 Fixed NotNull Gold SuperArc N Prohibited >12.5
18 Fixed NotNull Gold SuperArc N Prohibited <125
19 ARM NotNull FirstTuesday FirstTuesday Y Prohibited = >25
20 ARM NotNull FirstTuesday FirstTuesday Y Prohibited <25
21 ARM NotNull FirstTuesday = ARC Y Prohibited >25
22 ARM NotNull ~ FirstTuesday = ARC Y Prohibited <25
23 ARM NotNull FirstTuesday SuperArc Y Prohibited ~ >25
24 ARM NotNull FirstTuesday SuperArc Y Prohibited <25
25 ARM NotNull FirstTuesday FirstTuesday N Prohibited >12.5
26 ARM NotNull FirstTuesday = ARC N Prohibited =12.5
27 ARM NotNull FirstTuesday = ARC N Prohibited =125

tests is 74. The multiple base choice coverage criterion did not offer any additional
coverage, as the partitions are the same for all the instruments. Thus MBC was not
used for this system. The blocks had no constraints among them, so the pairwise
coverage criterion also did not offer any additional coverage, and was not used.
In addition, the FTM tool was not available when this system was tested, so the
modeling technique was not used in the Amortization system. More details about
the Loan Pricing test designs can be found in Alluri’s MS thesis (Alluri 2008).

4.4 Static Effective Yield

Specifications to calculate the Static Effective Yield (SEY) are described in the
form of use cases. This calculation is used in GO Amortization to calculate SEY
amortization for pools and in segments reporting to calculate SEY amortization for
cohorts of whole loans. Amortization calculation functions are recursive in nature.

The use case document had nine sections, but only the two with functional
requirements were used in this system. The testing team identified eight test-
able functions.

Applying the base choice coverage criterion yielded 64 tests. The multiple base
choice coverage criterion did not offer any additional coverage, so was not used for

@ Springer

Empir Software Eng (2014) 19:558-581 575

this system. The blocks had no constraints among them, so the pairwise coverage
criterion also did not offer any additional coverage, and was not used.

The requirements were classified into eight testable functions. For the modeling
technique, the requirements were grouped into three testable functions, producing 12
test cases. More details about the Loan Pricing test designs can be found in Alluri’s
MS thesis (Alluri 2008).

5 Results

The studies documented here only represent part of the complete set of software
systems on which this approach was applied, but the results were similar on other
software components. For example, the Contract Pricing and Loan Pricing systems
belong to the Selling System, which has about 1200 Java files.

This study measured two things; the ability of the tests to find faults, and coverage
of the tests. Results on these are described in the following subsections.

5.1 Fault Detection

All faults were naturally occurring and we did not know a priori how many total faults
were in the software. The programs’ correctness were determined by comparing the
outputs of the system-under-test and a simulator. Fault detection was not recorded
for the stage 1 tests, so only results from stage 2 tests are given. Faults found for all
tests on the four systems are shown in Table 7.

From these data, it is clear that the criteria-based tests found far more faults
than the requirements-based tests. Just considering the two systems that used
requirements-based tests, the criteria-based tests found 14, 17, and 23 faults, whereas
the RM tests only found 7. The specific faults found were all cumulative, that is, all
the faults found by RM were also found by BC, all the faults found by BC were
also found by MBC, and all the faults found by MBC were also found by PW. After
seeing these results, the program manager refused funding for further RM tests. This
was a business decision that we had to respect, even though we would prefer to have
more data.

Although we were not able to capture the human costs of creating these tests
(which are affected by so many factors that the results would hardly be generalizable
anyway), the managers reported that the testing cycle was reduced from five human
days to 0.5.

We can also take the number of tests as a rough measure of cost. A simple way
to estimate fest efficiency of set of tests is to divide the number of faults found by

Table 7 Faults found by all test sets, including stage 1 and stage 2

Software system BC Faults MBC Faults PW Faults RM Faults
tests found tests found tests found tests found

Contract pricing 15 6 30 7 230 12 27 3

Loan pricing 26 8 52 10 72 11 131 4

Amortization 74 18 N/A N/A N/A

Static effective yield 64 17 N/A N/A N/A

Total 179 49 82 17 302 23 158 7

@ Springer

576 Empir Software Eng (2014) 19:558-581

Table 8 Fault efficiency — all

. Criterion Tests Faults Efficiency
four studies
BC 179 49 0.27
MBC 82 17 0.21
PW 302 23 0.08
RM 158 7 0.04

the number of tests. Table 8 shows that all four criteria-based design techniques
were far more efficient than the requirements modeling approach. Recall that we
cannot compare the total numbers for BC with the other criteria because it was
applied to all four studies. These data are also not generalizable because of the small
sample sizes. Nevertheless, these data convinced management at Freddie Mac of the
positive return on investment for criteria-based testing and automation. We know of
no industry standard for the percentage of tests that are expected to find faults, but
the test managers at Freddie Mac were shocked at these numbers. Based on their
experience, they expected about 5 % of the tests to reveal a fault, and considered
10 % efficiency to be outstanding (or a sign of very poor software).

Further analysis has revealed that the tool used to create pairwise tests was
somewhat inefficient. In fact, NIST’s ACTS pairwise tool (Kacker and Kuhn 2008)
created only 17 tests in stage 1 for the Contract Pricing system. This would change
the total number of tests from 230 to 40, and if those tests found the same number
of faults, the efficiency would be over 50 %. Of course, we are not able to run those
tests on the same software, so we cannot know whether a similar number of faults
would be found.

We also believe that the data from the MBC and PW tests emphasize that the
extra work will find more faults, but with higher cost. Thus the strategy we used
of bringing in the stronger criteria when the extra expense is deemed necessary,
was validated.

Perhaps the strongest result, however, came after the software was completed and
deployed. During the final system testing of these projects, 17,000 records were run
and zero defects were detected. This had never happened with any Freddie Mac
software before, and this was the first system to go into production with zero non-
conformances. In the years since this project finished (in 2008), ZERO faults have
been detected in the software tested.

This might be a little surprising in the systems where MBC and PW were not used,
since they found additional faults when they were used. But testing stopped with BC
when analysis of the input domain model (the partitions and blocks) indicated MBC
and PW would not improve testing. So we would not expect many additional faults
to be found by stronger criteria in those systems. On the other hand, these systems
could have faults that simply have not been revealed as failures yet.

5.2 Coverage Measurement

Two types of coverage measures were used to determine the effectiveness of testing:
functional coverage and structural coverage. In this paper, functional coverage is a
measure of the number of functional requirements executed, and structural coverage
is a measure of the code statements executed (LOC). We used the requirements
traceability matrix (RTM), which is the list of requirements and the tests that tested

@ Springer

Empir Software Eng (2014) 19:558-581 577

Table 9 Statement coverage results

Software system LOC BC Cover MBC Cover PW Cover RM Cover
(%) (%) (%) (%)
Contract pricing
SwapContractService 258 15 86 30 92 23 92 27 92
SwapContractCalculator 166 15 85 30 90 23 90 27 82
Loan pricing 882 26 86 52 89 72 92 131 97
Amortization 3254 74 100
Static effective yield 1574 56 100

each, to evaluate functional coverage and Parasoft’s jTest? to evaluate structural
coverage. jTest offers statistics for statement and method coverage (but not branch,
for example). Testers did not have access to the source code, so we relied on
developers to help us gather the structural coverage.

Table 9 shows the statement coverage for the stage 2 tests on all four systems,
broken into four separate sections for each system. The coverage on the two major
components of Contract Pricing are shown separately, although the same tests were
used on both.

Table 10 shows the functional requirements coverage for the stage 2 tests on all
four systems studied, broken into four separate sections for each system. All tests
achieved 100 % functional requirements coverage.

Contract Pricing had 89 requirements for business rules, 22 system-specific re-
quirements, and 92 requirements to generate error messages, for a total of 203
requirements. It had an additional 22 requirements for different combinations of
the attributes. The BC tests covered all 203 requirements and 8 of 22 combina-
tion requirements. The other combination requirements were covered by the pair-
wise tests.

The Loan Pricing requirements were captured in use cases that have one main
flow, one alternate flow, and three exception flows. The BC, MBC, and PW tests all
covered 100 % of the functional requirements.

5.3 Observations

After testing was completed, we asked the testers and managers informally about
their opinions of the process and the results. The testers all agreed that the PW
criterion is less useful when the characteristics have a large number of attributes
because it is difficult to map the PW tests to the requirements when traceability is
important. However, the pairwise criterion definitely helps reduce or eliminate the
duplicate pairs of inputs and hence is used to eliminate the constraints that do not
coexist. If the implementation is such that it will not allow these combinations to
be input, then almost all of the pairwise tests become infeasible. Grindal et al. (2007)
proposed a submodel strategy to handle constraints, which was later found to be more
useful for this problem than using PW directly as in this system. Newer tools such

Zhttp://www.parasoft.com/jsp/products/home.jsp?product=Jtest

@ Springer

http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

578 Empir Software Eng (2014) 19:558-581

Table 10 Functional requirements coverage results

Software system BC Cover MBC Cover PW Cover RM Cover

(%) (%) (%) (%)
Contract pricing 15 100 30 100 23 100 27 100
Loan pricing 26 100 52 100 72 100 131 100
Amortization 74 100

Static effective yield 56 100

as NIST’s ACTS (Kacker and Kuhn 2008) can include constraints during test data
generation, making PW even simpler to apply. Although the pairwise criteria was
able to cover the 16 requirements that MBC could not, it took a very long time to
filter the tests from all the PW tests.

The attributes for Loan Pricing had many constraints. The PW tests gave good
coverage, but with a lot of tests. As noted previously, this may be an artifact of the
tool used to compute pairwise. PW often has fewer tests than BC. Generally, the
number of tests needed for BC is proportional to the number of partitions, whereas
the number of tests needed for PW is only log the number of partitions (Ammann
and Offutt 2008; Grindal et al. 2005). To manually determine which PW tests filled
the gaps left by BC took very long time. Most of the requirements modeling tests
were redundant because the same information flow is duplicated for Fixed, ARM,
and Balloon loans. The requirements model generated 131 tests, many of which
were redundant because the same information flow was duplicated for three different
kinds of contracts.

Initially, 12 requirements tests were designed for the Static Effective Yield
study, but they were flawed in a way that would have made them very expensive
to automate.

5.4 Threats to Validity

A study like this has several threats to validity. Most obviously, the study was within
one company on a particular kind of software. Thus we cannot be sure that the
success would be duplicated in other settings. Another potential validity threat is
the FTM tool used in the study, which could have been flawed. Great care was taken
to test FTM and the models and resulting tests were spot-checked for accuracy. If
FTM was flawed, it seems likely the resulting tests would be less effective, thus this
would be a bias against the results presented in this paper. Also, at certain points
in the process (as described in Section 3) human testers had to make decisions. It
is possible that different testers would have different results. Taken together, these
threats mean that we cannot conclude that this type of testing will succeed in all
settings. Rather, we know that it is possible for this type of testing to improve testing
and lead to higher quality software in some settings.

6 Conclusions and Future Work

This paper shows how high-end, criteria-based, semi-automated test design and im-
plementation can have a strong positive impact on testing in industry. The company,

@ Springer

Empir Software Eng (2014) 19:558-581 579

Freddie Mac, depends on software for success in all aspects of its business and the
quality of its software is a primary factor in the success of the company. Problems
with the software can result in loss of very large amounts of money. After testing was
completed, we asked the testers and managers informally about their opinions of
the process and the results. All parties involved, including test management, testers,
developers, development managers, and upper management, agreed that this testing
process helped create tests that were more effective and with less cost. As a result
of this industrial study, these ideas are being infused into software development
and software testing is being improved throughout the company. As far as we
know, nobody has reported on the use of input space partitioning in an industrial
setting before.

As additional analysis, we analyzed post-testing defects in the previous eight
releases for the software used in systems 1 and 2. The analysis showed that the
testing approaches used in this study would have eliminated 75 % of the post-delivery
defects.

The overriding advantage of using ISP (a criterion-based) approach was not
surprising: we were able to generate fewer tests that were more effective, and do
it more efficiently. The ISP method does not require a strong background in math or
computer science, both of which are often short in software testing teams. The ISP
method also has a very clear, structured, process to follow, which the testers reported
being very comfortable with. We were pleased to find that the ISP tests gave good
coverage of both requirements and source code. It was also very convenient to have
a range of test criteria, allowing testers to “start small” (with BC) and move up to
stronger criteria (MBC and PW) when needed.

The strong documentation and automation of our tests also helped with a problem
called data aging. In financial calculations, tests during one reporting cycle (for
example, a month) have to change to be used in another reporting cycle. By designing
our tests in an abstract way, the same abstract tests could be reused in multiple
reporting cycles by instantiating them with new values. Not surprisingly, the same
characteristics of the tests made it easy to regenerate new tests when requirements
and design changed.

One disadvantage of input space partitioning is that the quality of the results
depended somewhat on how well the testable functions are identified and how
discrete they are. For example, system 3 initially considered all the calculators as
one single testable function. When the 11 separate calculations were considered
as individual testable functions, they become very simple and straightforward. ISP
also has the potential to generate a lot of tests, so is not effective without strong
automation. If not designed carefully, the pairwise criterion can lead to many invalid
tests. Both of these problems were present with the tool used in this study, but not
in more modern tools such as PICT (Czerwoka 2006) and ACTS (Kacker and Kuhn
2008).

Automating the requirements modeling approach provided many advantages,
starting with the fact that the tool allowed tests to be quickly generated from the
model. When modeled early, the requirements let the test analyst approximate
the number of tests needed. The FTM tool also provides clear traceability from
requirements to tests, as well as helping ensure tests are repeatable and detailed,
important audit requirements for the testing. We were also able to share the
requirements models, in their tree structure, with business analysts, programmers,

@ Springer

580 Empir Software Eng (2014) 19:558-581

and testers, which greatly improved understanding of the entire process. Having the
models available also made it very easy to adapt to changes in the requirements, and
identify relations or constraints among input attributes to the software.

A disadvantage of the modeling approach is that it put a burden on the testers.
To create the models, the test design team needs to understand software design
and construction to do things like analyze UML diagrams and anticipate potential
programming mistakes. In addition, the test team also needs to have substantial
domain knowledge. We found that few people have both kinds of knowledge, so
the teams must be well formed and have good communication. We also found that
different test designers modeled the same requirements differently. Some designers
wanted to refine the models continuously, seeking unachievable perfection, whereas
others were quicker but made mistakes such as omitting important requirements
or creating lots of redundant tests (as in system 2). Another problem encountered
is that different teams have different development processes, causing management
overhead in adapting the new testing ideas to each different process.

A problem we identified early is that Freddie Mac’s software exhibits both low
controllability and low observability. We interpret the high statement coverage to
mean that we were able to solve the controllability problem. We addressed the
observability problem by asking the programmers to log intermediate values; this
made it much easier to diagnose the differences in expected and actual results.

References

Alluri C (2008) Testing calculation engines using input space partitioning and automation. Master’s
thesis, Department of Information and Software Engineering, George Mason University, Fairfax
VA. Available on the web at: http://www.cs.gmu.edu/~offutt/

Ammann P, Offutt J (2008) Introduction to software testing. Cambridge University Press,
Cambridge, UK. ISBN 0-52188-038-1

Ammann P, Offutt J, Huang H (2003) Coverage criteria for logical expressions. In: Proceedings of the
14th international symposium on software reliability engineering, Denver, CO, IEEE Computer
Society Press, Los Alamitos, CA, pp 99-107

Bach J (2005) Allpairs test case generation tool. http://www.satisfice.com/tools.shtml. Accessed June
2012

Beizer B (1990) Software testing techniques, 2nd edn. Van Nostrand Reinhold, Inc, New York NY.
ISBN 0-442-20672-0

Czerwoka J (2006) Pairwise testing in real world: practical extensions to test case generators.
In: Proceedings of the 24th annual pacific Northwest software quality conference, Portland
OR, USA, pp 419-430

Freedman RS (1991) Testability of software components. IEEE Trans Softw Eng 17(6):553-564

Grindal M, Offutt J, Andler SF (2005) Combination testing strategies: a survey. Softw Test Verif
Reliab 15(2):97-133

Grindal M, Offutt J, Mellin J (2007) Conflict management when using combination strategies for
software testing. In: Australian Software Engineering Conference (ASWEC 2007), Melbourne,
Australia, pp 255-264

IBM (2011) Rational robot. Online http:/www-01.ibm.com/software/awdtools/tester/robot/.
Accessed July 2011

Kacker R, Kuhn R (2008) Automated combinatorial testing for software-beyond pairwise testing.
Online http://csre.nist.gov/groups/SNS/acts/. Accessed June 2009

Lander J, Orphanides A, Douvogiannis M (1997) Earnings, forecasts and the predictability of stock
returns: evidence from trading the s&p. J Portf Manage 23:24-35

Myers G (1979) The art of software testing. Wiley, New York, NY

@ Springer

http://www.cs.gmu.edu/~of/futt/
http://www.satisf/ice.com/tools.shtml
http://www-01.ibm.com/software/awdtools/tester/robot/
http://csrc.nist.gov/groups/SNS/acts/

Empir Software Eng (2014) 19:558-581 581

Ostrand TJ, Balcer MJ (1988) The category-partition method for specifying and generating
functional tests. Commun ACM 31(6):676-686

Ostrand TJ, Sigal R, Weyuker EJ (1986) Design for a tool to manage specification-based testing.
In: Proceedings of the workshop on software testing, Banff, Alberta. IEEE Computer Society
Press, Los Alamitos, CA, pp 41-50

Sortino F, Price L (1994) Performance measurement in a downside risk framework. J Invest 3
(3):59-64

Voas JM (1992) PIE: a dynamic failure-based technique. IEEE Trans Softw Eng 18(8):717-727

Jeff Offutt is Professor of Software Engineering in the Volgenau School of Information Technology
at George Mason University. He has part-time visiting faculty positions at the University of Skovde,
Sweden, and at Linkoping University, Sweden. His current research interests include software
testing, analysis and testing of web applications, software evolution, and usable security. He has
published over 145 refereed research papers in software engineering journals and conferences, and
invented numerous test techniques, many of which are in widespread industrial use. Offutt is co-
editor-in-chief of Wiley’s journal of Software Testing, Verification and Reliability, co-founded the
IEEE International Conference on Software Testing, Verification and Validation (ICST), was its
first steering committe echair, and was Program Chair for ICST 2009. He is on the editorial boards
for the Empirical Software Engineering Journal, the Journal of Software and Systems Modeling, and
the Software Quality Journal, and was on the IEEE Transactions on Software Engineering from 2001
to 2005. He is co-author of the book Introduction to Software Testing. He received the Best Teacher
Award from the Volgenau School in 2003 and was named a GMU Outstanding Faculty member
in 2008 and 2009. Offutt received a PhD degree in Computer Science from the Georgia Institute
of Technology, and is a member of the ACM and IEEE Computer Society. He has consulted with
numerous companies on issues pertaining to software testing, usability, and software patents.

Biography and photo was not available for Chandra Alluri.

@ Springer

	An industrial study of applying input space partitioning to test financial calculation engines
	Abstract
	Introduction
	Characteristics of Calculation Engines
	Specification Formats for Calculation Engines
	Characteristics of Design and Implementation of Calculation Engines

	Test Approach
	Input Space Partitioning
	Requirements Modeling
	The Fusion Test Modeler

	Software Systems Studied
	Contract Pricing
	Loan Pricing
	Amortization
	Static Effective Yield

	Results
	Fault Detection
	Coverage Measurement
	Observations
	Threats to Validity

	Conclusions and Future Work
	References

