The following are modified versions of the publicly-available slides for Chapter 7 in the Ammann and Offutt Book, “Introduction to Software Testing” (http://www.cs.gmu.edu/~offutt/softwaretest)
Graph Coverage

Four Structures for Modeling Software

Input Space
Graphs
Logic
Syntax

Applied to

Source
Specs

Design
Use cases

Applied to

Source
FSMs
Specs
DNF

Applied to

Source
Models
Integ
Input
Covering Graphs

- Graphs are the most **commonly** used structure for testing

- Graphs can come from **many sources**
 - Control flow graphs
 - Design structure
 - FSMs and statecharts
 - Use cases

- Tests usually are intended to “**cover**” the graph somehow
Why Graph Coverage?

• Some of the most widely-used coverage criteria

• The “R” in the RIPR model
 – Graph coverage criteria help create tests that reach different parts of software
The next two classes

• Today:
 – Review of graph concepts
 – Coverage criteria defined over generic graphs

• Next class (depending on progress today):
 – Apply concepts learned in today’s class to source code

• Not in CS 5154
 – Applying graph coverage criteria to design, specs, and use cases
Definition of a Graph

- A set N of nodes, N is not empty
- A set N_0 of initial nodes, N_0 is not empty
- A set N_f of final nodes, N_f is not empty
- A set E of edges, each edge from one node to another
 - (n_i, n_j), i is predecessor, j is successor

Is this a graph?

$N_0 = \{1\}$

$N_f = \{1\}$

$E = \{\}$

Yes
Write down the initial and final nodes, and the edges

Example Graphs

- Starting node set: \(N_0 = \{ 1 \} \)
 - Final node set: \(N_f = \{ 4 \} \)
 - Edge set: \(E = \{ (1,2), (1,3), (2,4), (3,4) \} \)

- Starting node set: \(N_0 = \{ 1, 2, 3 \} \)
 - Final node set: \(N_f = \{ 8, 9, 10 \} \)
 - Edge set: \(E = \{ (1,4), (1,5), (2,5), (3,6), (3,7), (4,8), (5,8), (5,9), (6,2), (6,10), (7,10) (9,6) \} \)

- Starting node set: \(N_0 = \{ \} \)
 - Final node set: \(N_f = \{ 4 \} \)
 - Edge set: \(E = \{ (1,2), (1,3), (2,4), (3,4) \} \)

Not a valid graph.
Paths in Graphs

• **Path**: A sequence, \(p \), of nodes \([n_1, n_2, \ldots, n_M]\) s.t. there is an edge between each pair of nodes in \(p \)

• **Length of a path**: The number of edges in \(p \)
 – A single node is a path of length 0

• **Subpath**: A subsequence of nodes in \(p \) is a subpath of \(p \)

A Few Paths

\[
\begin{align*}
[1, 4, 8] \\
[2, 5, 9, 6, 2] \\
[3, 7, 10]
\end{align*}
\]
Test Paths and SESE graphs

- **Test Path**: A path that starts at an initial node and ends at a final node
- **Test paths represent execution of test cases**
 - Some test paths can be executed by many tests
 - Some test paths cannot be executed by any tests
- **SESE graphs**: All test paths start at a single node and end at another node
 - Single-entry, single-exit
 - N_0 and N_f have exactly one node

Double-diamond graph

Four test paths

- $[1, 2, 4, 5, 7]$
- $[1, 2, 4, 6, 7]$
- $[1, 3, 4, 5, 7]$
- $[1, 3, 4, 6, 7]$
Visiting and Touring

- **Visit**: A test path p *visits* node n if n is in p

 A test path p *visits* edge e if e is in p

- **Tour**: A test path p *tours* subpath q if q is a subpath of p

Test path $[1, 2, 4, 5, 7]$

Visits nodes? 1, 2, 4, 5, 7

Visits edges? (1,2), (2,4), (4,5), (5,7)

Tours subpaths? [1,2,4], [2,4,5], [4,5,7], [1,2,4,5], [2,4,5,7], [1,2,4,5,7]

(Also, each edge is technically a subpath)
Tests and Test Paths

• path \((t)\) : The test path executed by test \(t\)

• path \((T)\) : The set of test paths executed by set of tests \(T\)

• Each test executes one and only one test path

 – Complete execution from a start node to a final node

Is the last bullet true?

- recursion
Tests and Test Paths (2)

• A location in a graph (node or edge) can be reached from another location if there is a sequence of edges from the first location to the second

 – *Syntactic* reach: A subpath exists in the graph

 – *Semantic* reach: A test exists that can execute that subpath

 – This distinction (semantic vs syntactic) is important when applied to source code
Tests and Test Paths (3)

Deterministic software: a test always execute same test path

Non-deterministic software: a test can execute >1 test paths
We use graphs in testing as follows:

- Develop a model of the software as a graph
- Require tests to visit/tour sets of nodes, edges or sub-paths
Testing and Covering Graphs (2)

- **Test Requirements (TR)**: Describe properties of test paths

- **Test Criterion**: Rules that define test requirements

- **Satisfaction**: Given a set TR of test requirements for a criterion C, a set of tests T satisfies C on a graph if and only if for every test requirement tr in TR, there is a test path in path(T) that meets the test requirement tr
Two kinds of graph coverage criteria

1. **Structural Coverage Criteria**: Defined on a graph just in terms of nodes and edges

2. **Data Flow Coverage Criteria**: Requires a graph to be annotated with references to variables
Node Coverage

• The first (and simplest) two criteria require that each node and edge in a graph be executed

Node Coverage (NC) : Test set T satisfies node coverage on graph G iff for every syntactically reachable node n in N, there is some path p in $\text{path}(T)$ such that p visits n.

• This statement is a bit cumbersome, so we abbreviate it in terms of the set of test requirements

Node Coverage (NC) : TR contains each reachable node in G.
Edge Coverage

- Edge coverage is slightly stronger than node coverage

Edge Coverage (EC): TR contains each reachable path of length up to 1, inclusive, in G.

- The phrase “length up to 1” allows for graphs with one node and no edges
Node and Edge Coverage

- NC and EC are only different when there is an edge and another subpath between a pair of nodes (as in an “if-else” statement)

Node Coverage: TR = \{ 1, 2, 3 \}
Test Path = [1, 2, 3]

Edge Coverage: TR = \{ (1, 2), (1, 3), (2, 3) \}
Test Paths = [1, 2, 3] √ [1, 3]
Paths of Length 1 and 0

• A graph with only one node will not have any edges

1

• It may seem trivial, but formally, Edge Coverage needs to require Node Coverage on this graph
• Else, Edge Coverage will not subsume Node Coverage
 – So, we define “length up to 1” instead of simply “length 1”

• We have the same issue with graphs that only have one edge – for Edge-Pair Coverage …
Covering Multiple Edges

• Edge-pair coverage requires **pairs of edges**, or subpaths of length 2

Edge-Pair Coverage (EPC) : TR contains each reachable path of length up to 2, inclusive, in G.

• The phrase “length up to 2” is used to include graphs that have less than 2 edges

Edge-Pair Coverage : ?

TR = { [1,4,5], [1,4,6], [2,4,5], [2,4,6], [3,4,5], [3,4,6] }

• A logical extension is to require covering all paths …
Covering Multiple Edges

Complete Path Coverage (CPC): TR contains all paths in G.

Unfortunately, this is **impossible** if the graph has a loop, so a weak compromise makes the tester decide which paths:

Specified Path Coverage (SPC): TR contains a set S of test paths, where S is supplied as a parameter.
Structural Coverage Example

Node Coverage
TR = \{ 1, 2, 3, 4, 5, 6, 7 \}
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 6, 5, 7]

Edge Coverage
TR = \{ (1,2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 7), (5, 6), (5, 7), (6, 5) \}
Test Paths: [1, 2, 3, 4, 7] [1, 3, 5, 6, 5, 7]

Edge-Pair Coverage
TR = \{ [1,2,3], [1,3,4], [1,3,5], [2,3,4], [2,3,5], [3,4,7],
[3,5,6], [3,5,7], [5,6,5], [6,5,6], [6,5,7] \}
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 7] [1, 3, 4, 7]
[1, 3, 5, 6, 5, 6, 5, 7]

Complete Path Coverage
Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 7] [1, 2, 3, 5, 6, 5, 7]
[1, 2, 3, 5, 6, 5, 6, 5, 7] [1, 2, 3, 5, 6, 5, 6, 5, 7] …
Handling Loops in Graphs

• If a graph contains a loop, it has an infinite number of paths

• Thus, Complete Path Coverage is not feasible

• SPC is not satisfactory because the results are subjective and vary with the tester

• Attempts to “deal with” loops:
 – 1970s: Execute cycles once ([5, 6, 5] in previous example, informal)
 – 1980s: Execute each loop, exactly once (formalized)
 – 1990s: Execute loops 0 times, once, more than once (informal description)
 – 2000s: Prime paths (touring, sidetrips, and detours)
Simple Paths and Prime Paths

- **Simple Path**: A path from node n_i to n_j is simple if no node appears more than once, except possibly the first and last nodes are the same
 - No internal loops
 - A loop is a simple path

- **Prime Path**: A simple path that does not appear as a proper subpath of any other simple path

Prime Path Coverage

- A simple, elegant and finite criterion that requires loops to be executed as well as skipped

Prime Path Coverage (PPC) : TR contains each prime path in G.

- Will tour all paths of length 0, 1, …
- That is, it subsumes node and edge coverage
- PPC almost, but not quite, subsumes EPC …

Why does PPC not subsume EPC?
PPC Does Not Subsume EPC

- If a node \(n \) has an edge to itself (self edge), EPC requires \([n, n, m]\) and \([m, n, n]\)
- Neither \([n, n, m]\) nor \([m, n, n]\) are simple paths (not prime)

EPC Requirements: ?
\(TR = \{ [1,2,3], [1,2,2], [2,2,3], [2,2,2] \} \)

PPC Requirements: ?
\(TR = \{ [1,2,3], [2,2] \} \)
Prime Path Example

• The previous example has 38 simple paths
• Only nine prime paths
Touring, Sidetrips, and Detours

• Prime paths have no internal loops ... test paths might

• Tour: A test path \(p \) tours subpath \(q \) if \(q \) is a subpath of \(p \)

• Tour With Sidetrips: A test path \(p \) tours subpath \(q \) with sidetrips iff every edge in \(q \) is also in \(p \) in the same order
 • Tour can have a sidetrip if it comes back to the same node

• Tour With Detours: A test path \(p \) tours subpath \(q \) with detours iff every node in \(q \) is also in \(p \) in the same order
 • Tour can have a detour from node \(n_i \), if it returns to the prime path at a successor of \(n_i \)
Sidetrips and Detours Example

Touring the prime path [1, 2, 3, 5, 6] without sidetrips or detours

Touring with a sidetrip

Touring with a detour
Dealing with Infeasible TRs

- An **infeasible** test requirement **cannot be satisfied**
 - Unreachable statement (dead code)
 - Subpath that can only be toured if a contradiction holds, e.g., if \((X > 0 \text{ and } X < 0)\)

- Most test **criteria** have some infeasible test requirements

- It is usually **undecidable** whether all test requirements are feasible
Infeasible TRs and Sidetrips

• When sidetrips are not allowed, many structural criteria have more infeasible test requirements.

• However, always allowing sidetrips weakens the test criteria.

Practical recommendation—Best Effort Touring

– First, satisfy as many test requirements as possible without sidetrips.
– Then, allow sidetrips to try to satisfy remaining test requirements.
Simple path & prime path example

Simple paths

Len 0
[1]
[2]
[3]
[4]
[5]
[6]
[7]!

Len 1
[1, 2]
[1, 3]
[2, 3]
[3, 4]
[3, 5]
[4, 7]!
[5, 7]!
[5, 6]
[6, 5]

Len 2
[1, 2, 3]
[1, 3, 4]
[1, 3, 5]
[2, 3, 4]
[2, 3, 5]
[3, 4, 7]!
[3, 5, 7]!
[3, 5, 6]!
[5, 6, 5]*
[6, 5, 7]!
[6, 5, 6]*

Len 3
[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 3, 4, 7]!
[1, 3, 5, 7]!
[1, 3, 5, 6]!
[2, 3, 4, 7]!
[2, 3, 5, 6]!
[2, 3, 5, 7]!

Len 4
[1, 2, 3, 4, 7]!
[1, 2, 3, 5, 7]!
[1, 2, 3, 5, 6]!

Prime Paths?

“!” Means “cannot be extended to a simple path”

‘*’ means path cycles
Round Trips

- **Round-Trip Path**: A prime path that starts and ends at the same node

Simple Round Trip Coverage (SRTC) : TR contains at least one round-trip path for each reachable node in G that begins and ends a round-trip path.

Complete Round Trip Coverage (CRTC) : TR contains all round-trip paths for each reachable node in G.

- The criteria omit nodes & edges that are not in round trips

- They do not subsume edge-pair, edge, or node coverage
Data Flow Criteria

Goal: Ensure that values are computed and used correctly

- **Definition** (def): A location where a value for a variable is stored into memory
- **Use**: A location where a variable’s value is accessed

Example

\[
\begin{align*}
X &= 42 \\
Z &= X \times 2 \\
Z &= X - 8
\end{align*}
\]

Defs: def (1) = \{ X \}
 def (5) = \{ Z \}
 def (6) = \{ Z \}

Uses: use (5) = \{ X \}
 use (6) = \{ X \}

The values given in **defs** should **reach** at least one, some, or all possible **uses**
DU Pairs and DU Paths

- **def (n) or def (e)**: The set of variables that are defined by node n or edge e
- **use (n) or use (e)**: The set of variables that are used by node n or edge e

- **DU pair**: A pair of locations \((l_i, l_j)\) such that a variable \(v\) is defined at \(l_i\) and used at \(l_j\)

- **Def-clear**: A path from \(l_i\) to \(l_j\) is *def-clear* with respect to variable \(v\) if \(v\) is not given another value on any of the nodes or edges in the path
- **Reach**: If there is a def-clear path from \(l_i\) to \(l_j\) with respect to \(v\), the def of \(v\) at \(l_i\) reaches the use at \(l_j\)

- **du-path**: A simple subpath that is def-clear with respect to \(v\) from a def of \(v\) to a use of \(v\)
- **du \((n_i, n_j, v)\)** – the set of du-paths from \(n_i\) to \(n_j\)
- **du \((n_i, v)\)** – the set of du-paths that start at \(n_i\)
Touring DU-Paths

- A test path p du-tours subpath d with respect to v if p tours d and d is def-clear with respect to v

- Sidetrips can be used, just as with previous touring

- Three criteria
 - Use every def
 - Get to every use
 - Follow all du-paths
Data Flow Test Criteria

• First, we make sure every def reaches a use

All-defs coverage (ADC) : For each set of du-paths $S = du(n, v), TR$ contains at least one path d in S.

• Then we make sure that every def reaches all possible uses

All-uses coverage (AUC) : For each set of du-paths to uses $S = du(n_i, n_j, v), TR$ contains at least one path d in S.

• Finally, we cover all the paths between defs and uses

All-du-paths coverage (ADUPC) : For each set $S = du(n_i, n_j, v), TR$ contains every path d in S.
Data Flow Testing Example

\[X = 42 \]
\[Z = X \times 2 \]
\[Z = X - 8 \]

<table>
<thead>
<tr>
<th>All-defs for X</th>
<th>All-uses for X</th>
<th>All-du-paths for X</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 2, 4, 5]</td>
<td>[1, 2, 4, 5]</td>
<td>[1, 2, 4, 5]</td>
</tr>
<tr>
<td></td>
<td>[1, 2, 4, 6]</td>
<td>[1, 3, 4, 6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1, 2, 4, 6]</td>
</tr>
</tbody>
</table>
Graph-based criteria subsumption

- Complete Path Coverage (CPC)
- Prime Path Coverage (PPC)
- Complete Round Trip Coverage (CRTC)
- Simple Round Trip Coverage (SRTC)
- Edge-Pair Coverage (EPC)
- Edge Coverage (EC)
- Node Coverage (NC)
- All-DU-Paths Coverage (ADUP)
- All-uses Coverage (AUC)
- All-defs Coverage (ADC)
Summary

• Graphs are a very powerful abstraction for designing tests
• The various criteria allow lots of cost / benefit tradeoffs
• These two sections are entirely at the “design abstraction level” from chapter 2
• Graphs appear in many situations in software
 – Next: we will apply these criteria to source code
 – Design, specs, and use cases are not covered in CS 5154