CS 5154: Software Testing

Dealing with Loops in Graph Coverage

Instructor: Owolabi Legunsen

Fall 2021
Handling Loops in Graph-Based Testing

• If a graph contains a loop, it has an infinite number of paths

• So, Complete Path Coverage is not feasible

• There have been very many attempts to “handle” loops:
 • 1970s : Execute cycles at least once
 • 1980s : Execute each loop, exactly once
 • 1990s : Execute loops 0 times, once, more than once
 • 2000s : Prime paths (touring, sidetrips, and detours)
A Prime Path is a Simple Path

- **Simple Path**: A path from node n_i to n_j is *simple* if no node appears more than once, except possibly the first and last nodes are the same.

- A simple path has no internal loops.

- A loop is a simple path.
Prime Paths defined

Prime Path: A *simple path that does not appear as a proper subpath of any other simple path*
Example on Simple Paths and Prime Path

Write down three simple paths and three prime paths for this graph

Simple Paths:

\[[1,2,4,1], [1,3,4,1], [2,4,1,2], [2,4,1,3], [3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4], [1,2,4], [1,3,4], [2,4,1], [3,4,1], [4,1,2], [4,1,3], [1,2], [1,3], [2,4], [3,4], [4,1], [1], [2], [3], [4] \]

Prime Paths:

\[[2,4,1,2], [2,4,1,3], [1,3,4,1], [1,2,4,1], [3,4,1,2], [4,1,3,4], [4,1,2,4], [3,4,1,3] \]
Prime Path Coverage (PPC)

Prime Path Coverage (PPC): TR contains each prime path in G.

- PPC requires **loops** to be executed as well as skipped

- Tests that satisfy PPC will tour all paths of length 0, 1, ...
 - That is, PPC **subsumes** node and edge coverage

- But does PPC subsume edge pair coverage?
Does PPC subsume Edge Pair Coverage?

EPC Test Requirements:
\[TR = \{ [1,2,3], [1,2,2], [2,2,3], [2,2,2] \} \]

PPC Test Requirements:
\[TR = \{ [1,2,3], [2,2] \} \]
PPC does not subsume Edge Pair Coverage

• If a node n has a self-edge, EPC requires ($[m, n, n]$ or $[n, n, m]$) and $[n, n, n]$

• $[n, n, m]$, $[m, n, n]$, and $[n, n, n]$ are not simple paths (not prime)

 • Do you see why these are not simple paths?
Finding Prime Paths in a Graph

How would you go about finding all the prime paths?

Prime Paths
[1, 2, 3, 4, 7]
[1, 2, 3, 5, 7]
[1, 2, 3, 5, 6]
[1, 3, 4, 7]
[1, 3, 5, 7]
[1, 3, 5, 6]
[6, 5, 7]
[6, 5, 6]
[5, 6, 5]
Observations about Prime Paths

Prime Paths
- [1, 2, 3, 4, 7]
- [1, 2, 3, 5, 7]
- [1, 2, 3, 5, 6]
- [1, 3, 4, 7]
- [1, 3, 5, 7]
- [1, 3, 5, 6]
- [6, 5, 7]
- [6, 5, 6]
- [5, 6, 5]

Execute loop 0 times
- Execute loop once
- Execute loop more than once
Illustrating an algorithm for finding Prime Paths

“!” Means “cannot be extended to a simple path”

Simple paths

Len 0
[1]
[2]
[3]
[4]
[5]
[6]
[7]!

Len 1
[1, 2]
[1, 3]
[2, 3]
[3, 4]
[3, 5]
[4, 7]!
[5, 7]!
[5, 6]
[6, 5]

Len 2
[1, 2, 3]
[1, 3, 4]
[1, 3, 5]
[2, 3, 4]
[2, 3, 5]
[3, 4, 7]!
[3, 5, 7]!
[3, 5, 6]!

Len 3
[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 3, 4, 7]!
[1, 3, 5, 7]!
[1, 3, 5, 6]!

Len 4
[1, 2, 3, 4, 7]!
[1, 2, 3, 5, 7]!
[1, 2, 3, 5, 6]!

‘*’ means path cycles

Prime Paths?
Any questions
More on prime path algorithm

• There is another example in the textbook (reading 3)

• Implementing this algorithm used to be a homework question
Tension: test paths vs prime paths

- **Tour**: A test path \(p \) tours subpath \(q \) if \(q \) is a subpath of \(p \)

Does the test path \([1, 2, 3, 4, 3, 5, 6]\) tour the prime path \([1, 2, 3, 5, 6]\) ?

We relax the definition of “tour” in two ways
Touring with Sidetrips

• **Tour With Sidetrips**: A test path \(p \) tours subpath \(q \) with sidetrips if and only if every edge in \(q \) is also in \(p \) in the same order.

• Tour can have a sidetrip if it comes back to the same node.

![Diagram showing touring with sidetrips](attachment:diagram.png)
Touring with Detours

- **Tour With Detours**: A test path p tours subpath q with detours if and only if every node in q is also in p in the same order.

- Tour can have a detour from node n_i, if it returns to the prime path at a successor of n_i.
How to handle infeasible test requirements?

• Drop infeasible \(tr \) from TR

• Replace infeasible \(tr \) with less stringent TR

• Thoughts?
Are sidetrips and detours useful for testing?

• Without sidetrips, there are many more infeasible test requirements

• But allowing sidetrips “weakens” the criteria 😞

• So, what should be do?
Best Effort Touring

• First, satisfy as many test requirements as possible without sidetrips

• Then, allow sidetrips to try to satisfy remaining test requirements

• (It is not clear yet if detours help as much.)
Subsumption among Graph coverage criteria

- Node Coverage (NC)
- Edge Coverage (EC)
- Edge-Pair Coverage (EPC)
- Prime Path Coverage (PPC)
- Complete Path Coverage (CPC)
What we have seen so far

• Prime Paths as one way to deal with loops in Graph-based MDTD

• An algorithm for computing the prime paths in a graph

• Best effort touring for dealing infeasible test requirements

• We worked entirely at the “design abstraction level”
Next

• Applying Graph-Based MDTD to source code