
The CUGL Scene Graph (Version 4.0)

Introduction

CUGL is designed to be a data-driven game engine. All assets and other information needed to
display a scene to an end-user can be defined and should be defined in a JSON manifest (by
default a file named assets.json). This allows for the work of scene and level design to be
encapsulated and developed separately and allows for easy asset swapping. More importantly,
it allows for all of this without requiring anyone edit the actual codebase of a project or sit
through the build times associated with editing said code. If everything has been done correctly,
the only filename included in the code itself should be that of assets.json or other manifests that
can lead CUGL to everything else.

Aside from using this data-driven manifest to load fonts, images, and sounds, CUGL also uses it
to define the scene graph. A Scene Graph is a common data structure in many game engines
and graphics applications and serves as a hierarchical collection of “nodes” that defines the
display and (some) behaviour of the scene. The key is that each of these nodes can be
effectively treated as the root of a new scene graph. It can have child nodes that can have child
nodes and so on. From a UI perspective, these nodes can be classic widgets such as sprites,
buttons, sliders, progress bars, etc.. They can also be project-specific custom nodes that
represent an encapsulation of some project specific functionality and displayed information.

The 2D scene graph of CUGL also comes with multiple forms of automated layout managers
that allow for dynamic placement and resizing of nodes to account for the various screen sizes
and aspect ratios that come with cross-platform application development. One of these
managers, FigmaLayout, works in conjunction with the course plugin FigTree to allow students
to export figma projects as a JSON manifest that defines a Scene Graph. This requires following
the conventions described later in this tutorial and can dramatically speed up the iterative design
process.

Most importantly, because all of CUGL is exposed, it is both feasible and encouraged to add
additional asset loaders, node types, layout managers, and the like to suit the needs of
individual projects. The system is designed with extensibility in mind and if a desired piece of
functionality is not outlined within this document, the last sections provide guidance for adding
such new features in ways that can continue to leverage the scene graph and other data-driven
tools that CUGL provides.

The Many Pieces of assets.json
Each of the following represents a different top-level JSON object in assets.json and explains
what it holds. Many of these are optional and they do not have to be the only top-level
manifests included, but those provided here are almost always used in full-scale projects.

Fonts
All fonts are loaded into the AssetManager through a FontLoader. This loader allows for
allocating fonts from the associated TrueType (.ttf) files. At load time, the TrueType file and the
font size must both be specified. Because of this, it may be desirable to load a font asset
multiple times at different sizes. When doing this, it may be beneficial to adjust the character
set, as the size of the font atlas texture is determined by both the font size and the character
set.

When loading a font in JSON, it is defined via a JSON object with the following fields:

●​ “file” (string)

○​ “file” specifies the relative pathname to the desired font. This includes the file’s
full name and extension.

●​ “size” (int)

○​ “size” specifies the size for this font.

●​ “charset” (string)

○​ “charset” is a string containing every character to be included when loading the
font. If this is not included or is set to the empty string, the default character set
containing all of the ASCII characters will be used.

Multiple of these objects may be listed within the top-level “fonts” object in the JSON. Each of
them should be named uniquely. This will be the key by which the fonts are accessed from the
asset manager.

Jsons
The AssetManager can load JsonValue objects through a JsonLoader (effectively a wrapper to
JsonReader). This allows for uploading arbitrary JSON data and fetching it later from the
AssetManager.

When loading another JSON file in the scene graph JSON it is not defined in an object but
rather as a field within the top-level “jsons” object. Each field should be named uniquely as this
is how the JsonValue will be looked up from the AssetManager later. The value for this field is
the relative pathname to the .json file that should be loaded.

The JsonLoader is a good place to start when loading project specific data into CUGL and
serves as the best jumping-off point when adding custom loaders for this data.

Textures
All textures are loaded into the AssetManager by a TextureLoader. This loader allows for
loading any image file that is supported by SDL by default. A texture asset is identified by both
its source file and its texture parameters. Because of this, it may be necessary to load a texture
asset multiple times, though this is potentially wasteful of memory. Changing the parameters for
a texture asset will change the asset parameters in the loader as well.

When loading a texture in JSON, it is defined via a JSON object with the following fields:

●​ “file” (string)

○​ “file” specifies the relative pathname to the desired texture. This includes the
file’s full name and extension.

●​ “mipmaps” (boolean)

○​ “mipmaps” specifies whether to generate mipmaps for this texture. Mipmaps
allow for better texture filtering when resizing a texture below its actual size but
increase the size overhead of a texture in memory.

●​ “minfilter” (string) one of ‘nearest’ | ‘linear’ without mipmaps ​
​ ​ or one of one of ‘nearest-nearest’ | ‘linear-nearest’ | ‘nearest-liner’ ​
​ ​ | ‘linear-linear’ with mipmaps

○​ “minfilter” provides the minification filter when drawing the texture smaller than it
is loaded. The options for this filter change depending on whether mipmaps have
been generated. Without mipmaps, the options are ‘nearest’ or ‘linear’. With
mipmaps, the options are ‘nearest-nearest’, ‘linear-nearest’, ‘nearest-linear’, and
‘linear-linear’; The first half determines the rule within a mipmap, the second half
determines which mipmaps to use.

■​ Nearest uses the value of the texel that is nearest (in Manhattan distance)
to the center of the pixel being textured.

■​ Linear uses the weighted average of the four nearest texels to the center
of the pixel being textured.

■​ Nearest-Nearest chooses the mipmap that most closely matches the size
of the pixel being textured and uses the Nearest rule to produce a texture
value.

■​ Linear-Nearest chooses the mipmap that most closely matches the size
of the pixel being textured and uses the Linear rule to produce a texture
value.

■​ Nearest-Linear chooses the two mipmaps that most closely match the
size of the pixel being textured and uses the Nearest rule to produce a
texture value from each mipmap. The final texture value is a weighted
average of those two values.

■​ Linear-Linear chooses the two mipmaps that most closely match the size
of the pixel being textured and uses the Linear rule to produce a texture
value from each mipmap. The final texture value is a weighted average of
those two values“magfilter”: (string) one of ‘nearest’ | ‘linear’

○​ “magfilter” provides the magnification filter used when drawing the texture larger
than it is loaded. It may either be ‘nearest’ or ‘linear’.

■​ Nearest uses the value of the texel that is nearest (in Manhattan distance)
to the center of the pixel being textured.

■​ Linear uses a weighted average of the four texels that are closest to the
center of the pixel being textured.

●​ “wrapS”: (string) one of ‘clamp’ | ‘repeat’ | ‘mirrored’

○​ “wrapS” provides the s-coord wrap rule. This defines the behavior when
sampling from the texture outside of its bounds horizontally.

■​ Clamp causes the texture to use the pixel value at the outer edge of the
texture; use this when importing tiles from a tileset to avoid aliasing lines.

■​ Repeat causes the texture to sample from the other side of the texture in
a modular way; use this when you want to tile the same image over a
larger area continuously.

■​ Mirrored functions identically to Repeat except that every other time the
texture wraps it will be drawn backwards.

●​ “wrapT”: (string) one of ‘clamp’ | ‘repeat’ | ‘mirrored’

○​ “wrapT” provides the t-coord wrap rule. This defines the behavior when sampling
from the texture outside of its bounds vertically.

■​ Clamp causes the texture to use the pixel value at the outer edge of the
texture; use this when importing tiles from a tileset to avoid aliasing lines.

■​ Repeat causes the texture to sample from the other side of the texture in
a modular way; use this when you want to tile the same image over a
larger area continuously.

■​ Mirrored functions identically to Repeat except that every other time the
texture wraps it will be drawn backwards.

See https://www.khronos.org/registry/OpenGL-Refpages/es2.0/xhtml/glTexParameter.xml for
documentation on how these parameters translate to those used by OpenGL.

https://www.khronos.org/registry/OpenGL-Refpages/es2.0/xhtml/glTexParameter.xml

Sounds
All sound assets are loaded into the AssetManager through a SoundLoader. A full explanation
of which audio files are supported may be found here, but as a general rule, sound assets
should be WAV files as there is not benefit for compression. Sounds are loaded both with a
pathname to the source and a default volume at which to play the sound.

When loading a sound in JSON, it is defined via a JSON object with the following fields:

●​ “file” (string)

○​ “file” specifies the relative pathname to the desired sound. This includes the
file’s full name and extension.

●​ “volume” (float)

○​ “volume” specifies the default volume for this sound when played.

http://www.cs.cornell.edu/courses/cs4152/2019sp/materials/api/classcugl_1_1_sound.html

Scenes (2-D)
The actual scene graph is loaded into CUGL through the hierarchical objects that live within the
top-level JSON object “scene2s.” These scenes are loaded in a preorder fashion through the
Scene2Loader. As UI widgets typically require fonts, images, or other data to be loaded
already, scenes should always be the last elements loaded in a loading phase.

When loading a node from JSON, it is defined as a JSON object with the following fields:

●​ “type” (string)

○​ “type” specifies the node type (a Node or any subclass thereof). These nodes
are documented thoroughly in the next section, but a list of values for “type” is
provided here with a brief overview.

“None” The base Node type

“Image” An image (PolygonNode) type

“Polygon” A (complex) PolygonNode type

“Path” A PathNode type

“Wireframe” A WireNode type

“Sprite” An animation node type

“Mesh” A mesh node

“Order” An ordered node

“Ninepatch” A nine-patch type

“Label” A Text label (uneditable) type

“Button” A button type

“Buttongroup” A button group type

“Progress” A progress bar type

“Slider” A slider type

“Scroll” A single-line text field type

“Textfield” A single-line text field type

​ ​
If a custom node type has been added, then a value to indicate that type could
also be added here.

●​ “data” (json)

○​ “data” is a json object that provides all additional data (images, labels, etc.) that
define the widget. This object has a format specific to the node type defined in
“type”.

●​ “format” (json)

○​ “format” is a json object that defines the layout manager to use for this node.
This layout manager will apply to all of this node’s children. If left out, the default
layout manager using absolute position is assumed. Additional fields within
“format” beyond its internal “type” are all layout manager dependent.

●​ “layout” (json)

○​ “layout” is a json object that specifies how a node should be placed within its
parent’s layout manager. This layout change is applied after parsing “data” and
will override any settings there. The fields of “layout” are dependent on the type
of layout manager specified by its parent.

●​ “children” (json)

○​ “children” is a json object that defines additional nodes for each child of this node.
Each child is provided as its own named attribute within “children”. The nodes
defined here will be loaded hierarchically along with all of their children and then
added as children to the node defined here. This is where the “graph” part of the
scene graph comes from.

The next two sections “Nodes Elaborated by Type” and “Using Layouts” describe the
type-specific attributes of the “data”, “format”, and “layout” blocks.

Nodes Elaborated By Type

SceneNode

Overview

From the CUGL 4.0 documentation:

A base node is a rectangular space that can contain other (transformed) nodes. Each
SceneNode forms its own coordinate space. All rendering takes place inside of this
coordinate space. By default, a Node does not render anything, but it does provide
rendering support for subclasses via the draw() method.

What this means in larger detail:

SceneNodes form what those familiar with computer graphics or the inner workings of
other game engines would consider the 2d analog to a transform hierarchy. Nodes have
children, those nodes have children, etc., and each node within this hierarchy can apply
its transformation to all children recursively such that when we work with a single node
and its children, we can abstract away everything higher in the hierarchy as the current
node and instead treat it as a transformed root of our tree. More simply put, nodes give
us a way to arrange 2d regions of the scene with regard to specific parent objects.

A node’s coordinate space is determined through a combination of its position and its
anchor. The node’s anchor, represented as x and y floating point values between 0 and
1 , defines where this node’s anchor position belongs proportionate to its space. 0 1

represents the far left or bottom edge of the node and 1 represents the far right or top
edge of the node. This anchor is then lined up with the parent’s coordinate space such
that it is at the x,y coordinate defined by “position” in its parent’s space. Note that the
origin for a node is always in its lower left corner, no matter where the anchor is. All
scaling and rotating is done around the anchor point.

Figure 1: Here is an example of node anchors and positions in use. The values wb and hb are the
width and height of the blue box respectively while hy represents the height of the yellow box. This
example shows how the red box can be positioned with exact padding relative to the upper left
corner of the yellow box while the yellow box is positioned perfectly centered relative to its parent,
the blue box. Notice that we do not have to go through the complex process of determining where
the origin of the red box resides in the coordinates of the blue box or screen space in order to draw
it correctly. The anchors have been displayed here as black points for the convenience of the
reader.

1 There is nothing preventing anchors higher than [1,1] or lower than [0,0], but these anchors will
be outside the bounding box of the node.

Initializing from JSON with data

The “data” block of any Node accepts the following fields:

●​ “position”: (two-element number array) [x, y]

○​ “position” provides the coordinate location of this node’s anchor within the space
of its parent. It is x units left and y units up.

●​ “size”: (two-element number array) [x, y]

○​ “size” defines the dimensions of the node. This affects how the anchor points of
children resolve.

●​ “anchor”: (two-element number array representing an anchor point) [x, y] ​
​ (0 to 1 for inside bounds)

○​ “anchor” defines where this node’s anchor is placed within its bounds. This is the
point that will be lined up with the coordinates defined by position. Anchors are
represented similarly to texture coordinates in that they represent a fractional
distance across the node rather than a pixel-coordinate location. [0,0] is the
bottom-left, [1,1] is the top-right, [0.5, 0.5] is the horizontal and vertical center,
and so on. Anchors with values outside of the [0,1] range can be used to align
nodes based on a point outside of its bounds.

●​ “scale”: (either a two-element number array) [sx, sy] ​
 OR (a single number) s

○​ “scale” defines the amount to scale the node (and all of its children) in the
hierarchy. This can be a uniform scale in both directions or be a different scale
for the two dimensions. Nodes are scaled outwards from the anchor.

●​ “angle”: (a number in degrees) q

○​ “angle” defines the number of degrees counter-clockwise to rotate this node
about its anchor.

●​ “visible” (boolean) true | false

○​ “Visible” determines whether or not this node and its children are drawn when
traversing the hierarchy.

●​ “color” (a string referring to a color hex code: #ffffff)

○​ The color to tint the node. By default, all nodes are tinted white.

●​ “priority” (number)

○​ The rendering priority as a float used by OrderedNode.

The scene from Figure 1 may have been defined by a JSON similar to the following:

"blue_box": {
 "type": "Node",
 "data": {
 "size": [200, 300],
 "visible"” true
 }
 "children": {
 "yellow_box" : {
 "type": "Node",
 "data": {
 "anchor": [0.5, 0.5],
 "position": [100, 150],
 "size": [80, 80]
 "visible": true,
 },
 "children": {
 "red_box": {
 "type": "Node",
 "data": {
 "anchor": [0, 1],

"position": [5, 75],
 "size": [10, 10]
 "visible": true,
 }
 }
 }
 }
 }
}

Note that the base node type is not drawn to the screen, so in order to draw these boxes to the
screen with the correct color we would need to use another kind of node, such as the
TexturedNode. This snippet is only meant to serve as an example on how the coordinate
systems can be used in the hierarchy.

Also notice that not every attribute is used in every data block. Most fields that can be included
in the “data” block of a Node are not required.

Button

Overview

The Button node type represents a simple clickable button. It is either two nodes (one for up,
and one for down) that swap whenever the button is pressed, or it is a single node that changes
color on press. If a button tracks its own state (see the full CUGL documentation for a
description of how), it is classified as either a normal button or a toggle button. A normal button
is down only while it is pressed; a toggle button changes state when it is pressed and retains
that state until it is pressed again. The clickable region of a button can be defined as any
arbitrary polygon, allowing click response to match more complex images.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for Button also takes the following fields:

●​ “upnode”: (a string referring to a child node by name)

○​ “up” defines the scene graph node that is rendered when the button is in its up
state. This child is visible when the button is up, and not visible when it is down.
This attribute is required.

●​ “downnode”: (a string referring to a child node by name) ​
 OR (a 4-element integer array with values from 0..255) [r, g, b, a]

○​ “down” defines the scene graph node that is rendered when the button is in its
down state. This child is hidden when the button is up. Alternatively, this attribute
can be a color used to tint the up node to represent that the button is down.

●​ “pushable”: (An even array of polygon vertices) 2

○​ “pushable” defines the polygonal region in which the button can be pushed.
These vertices will be converted into a polygon using SimpleTriangulator.

●​ “toggle”: (boolean) true | false

○​ “Toggle” is a boolean that determines if the button changes state when pressed
down and retains that state until pressed again.

2 Polygon vertices are represented in the JSON as numbers.

https://www.cs.cornell.edu/courses/cs5152/2025sp/resources/engine/api/annotated.html
https://www.cs.cornell.edu/courses/cs5152/2025sp/resources/engine/api/annotated.html
http://www.cs.cornell.edu/courses/cs4152/2019sp/materials/api/classcugl_1_1_simple_triangulator.html

Buttongroup

Overview

A Buttongroup provides support for a simple group of buttons. It is made of a list of toggle
buttons, of which at most one can be selected at once. If a different button is selected, the
previously toggled button will be unselected. The button group has its own listener, and the
individual buttons can have their own as well if needed. Additionally, an initial button toggle can
be set in the group, or the group can be initialized with no buttons toggled. This node can be
useful for multiple choice quiz scenes or tabs.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for Buttongroup also takes the following
fields:

●​ “buttons”: (an array of strings referring to each button node in the group by name)

○​ This array identifies each of the button nodes to use for the button group by their
name. This field is required and must be of at least length 1.

●​ “initial” (number)

○​ “initial” specifies the button in the “buttons” array to be initialized as toggled. This
is done by setting “initial” to the index of the button that should be toggled. It is
required that “index” be between [-1, buttons.size()) where -1 means that no
button is initially toggled. If initial is not specified, it will be set to -1.

Label

Overview

A Label is a node representing a single line of text. By default, the content size of a label is set
to be just large enough to render the text that is given and will automatically resize if the text it
changed. If the size is set to be larger than what the text needs, it will be positioned within the
label based on the horizontal/vertical alignments and the text bounds. If the size is reset to be
smaller than what the text needs, it will also place it according to the alignment rules, but the
text may be cut off in rendering.

If the background color is not clear, then the label will have a colored backing rectangle
extending from the origin to the content size in the label’s node space.

To display the text, you need a Font. The rendering style of the font will depend on whether or
not it has an atlas. For performance reasons, it is highly recommended to use a font atlas
unless the project calls for a very small number of labels that never have their text changed at
all.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for Label also takes the following fields:

●​ “font”: (string)

○​ “font” provides the name of a loaded font asset to be used and is required.

●​ “text”: (string)

○​ “text” provides the initial label text.

●​ “foreground”: (4-element integer array) [r, g, b, a]

○​ “foreground” provides the color used to render the text itself.

●​ “background”: (4-element integer array) [r, g, b, a]

○​ “background” provides the color used to fill the node’s space behind the text.

●​ “padding”: (A two-element float array) [x, y]

○​ “padding” provides the amounts of horizontal and vertical padding by which to
move the text away from the alignment edge. For example, if the halign is set to
'left' then the x value is the amount of space that the label text is padded to the

right and if the halign is set to 'right’ then the x value is the amount of space that
the label text is padded to the left. The x value is ignored for 'center’ or 'hard
center’. The y value is the vertical equivalent of the x value and ignored for
'middle’ or 'true middle’.

●​ “halign”: (string) one of ‘left’ | ‘center’ | ‘right’ | ‘justify’ | ‘hard left’ | ‘true center’ | ‘hard
right’

○​ “halign” provides the horizontal alignment of the text. This effectively sets the
horizontal anchor of the text relative to the label. 'hard left’, 'true center’, and
'hard right’ ignore spaces on the outside of the text that would otherwise
influence alignment.

●​ “valign”: (string) one of ‘top’ | ‘middle’ | ‘bottom’ | ‘hard top’ | ‘true middle’ | ‘hard bottom’

○​ “valign” provides the vertical alignment of the text. This effectively sets the
vertical anchor of the text relative to the label. 'hard bottom’ ignores the font
descent and puts the lowest hanging character edge at the bottom of the label.
'hard top’ ignores the font ascent and puts the highest reaching character edge at
the top of the label. 'true middle’ ignores the font height and instead centers text
relative to the highest and lowest reaching character edges.

●​ “spacing” (number)

○​ Sets the spacing between lines of text. This value is multiplied by the font size to
determine the space between lines in the layout. So a value of 1 is single-spaced
text, while a value of 2 is double spaced. The value should be positive.

●​ “wrap” (boolean) true | false

○​ If "wrap" is enabled, the layout width is constrained to fit inside the content area,
accounting for left and right padding.

●​ “dropshadow” (boolean) true | false

○​ Whether to apply a shadow to the text.

●​ “dropoffset” (2-element float array) [x,y]

○​ “dropoffset” provides the horizontal and vertical offset of drop shadow to apply to
the text.

TextField

Overview

The TextField is a subclass of Label and represents a single line text field. When a text field is
“focused” (selected to receive keyboard events), the application user will be permitted to edit the
text with in the text field. When focused, it displays a blinking cursor with the current edit
position. Like a Button, a TextField can track its own focus state via the activate() method.

Initializing from JSON with data

In addition to all fields from Node and Label, the “data” block for TextField also takes the
following fields:

●​ “cursor”: (boolean) true | false

○​ Whether to show the cursor (as opposed to just tracking the position)

●​ .”cursorwidth”: (number)

○​ The width of the cursor rectangle

●​ “cursorcolor”: (a string referring to a color hex code: #ffffff) OR (a 4-element integer array
with values from 0..255) [r, g, b, a]

○​ Defines the current color of the cursor. The TextField will not be rendered if the
format of this field is incorrect.

http://www.cs.cornell.edu/courses/cs4152/2021sp/materials/api/classcugl_1_1_scene_2_1_text_field.html#a3b531604cf1a4110c0d7178536ed481c

OrderedNode

Overview

One of the drawbacks of a scene graph is that it must always render with a pre-order traversal.
This is the natural traversal for UI elements, but it is not convenient for character animation
(where child components may need to be layered differently). This node is introduced to solve
this problem. For the most part, this node operates just like SceneNode. However, it allows you
to resort to the render order of the descendents of this node by choosing any one of the Order
values available. These orders are applied to the Priority value of each node in the scene graph.

Any order other than a pre-order traversal comes at a cost, as we must cache the scene graph
transform and color context of each node (these values are computed naturally from the
recursive calls of a pre-order traversal). In addition, we must call std::sort (currently IntroSort) on
all of the descendants every single render pass. However, as long as the number of children of
this node is reasonably sized, this should not be an issue.

An OrderedNode is a render barrier. This means that if one OrderedNode (the first node) is a
descendant of another OrderedNode (the second node), the first node will be rendered as a unit
with the priority of that node. So it is impossible to interleave other descendants of the second
node with descendants of the first node. This is necessary as the two OrderedNodes may have
incompatible orderings.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for OrderedNode also takes the following
fields:

●​ “order”: (string) one of ‘pre-order’ | ‘post-order’ | ‘ascend’ | ‘descend’ | ‘pre-ascend’ |
‘pre-descend’ | ‘post-ascend’ | ‘post-descend’

○​ As a default value, the “order” will be set to ‘pre-order’ if nothing is specified. In a
pre-order traversal, the parent is rendered first and then the children. Children
are rendered in the order that they are stored in the node.

○​ In a post-order traversal, the children are rendered first and then the parent.
Children are rendered in the order that they are stored in the node.

○​ Ascend orders children such that children with lower priorities will appear at the
back of the scene. Ties are broken through pre-order traversal.

○​ Descend orders children such that children with higher priorities will appear at the
back of the scene. Ties are broken through pre-order traversal.

○​ Render the nodes in a pre-order traversal, sorted in ascending priority. This order
is still a pre-order traversal where the parent is rendered first and then the
children. However, children are sorted with respect to their priority. Children with
the lowest priority are drawn first.

○​ Render the nodes in a pre-order traversal, sorted in descending priority. This
order is still a pre-order traversal where the parent is rendered first and then the
children. However, children are sorted with respect to their priority. Children with
the highest priority are drawn first.

○​ Render the nodes in a post-order traversal, sorted in ascending priority. This
order is a post-order traversal where the children are rendered first and then the
parent. However, children are sorted with respect to their priority. Children with
the lowest priority are drawn first.

○​ Render the nodes in a post-order traversal, sorted in descending priority. This
order is still a pre-order traversal where the children are rendered first and then
the parent. However, children are sorted with respect to their priority. Children
with the highest priority are drawn first.

ScrollPane

Overview

A scroll pane is a node that contains a larger backing view. The scroll pane uses an implicit
scissor to guarantee that the user only sees what is in the content bounds of this node. This
allows you to create internal windows that only show a portion of the backing contents.

The contents of a scroll pane are its children. However, the scroll pane also has the concept of
an Interior, representing the dimension and location of the backing window. These bounds
should be large enough to contain all of the children, but this is not enforced. The significance of
the backing bounds is that the scroll pane will never go outside of these bounds unless
isConstrained is true. Panning and zooming will stop once it hits one of the boundary edges.
This allows you to prevent the user from going "out of bounds" when navigating the scroll pane.

Scroll panes support layout managers just like any other scene graph node. However, layout is
performed with respect to the interior bounds and not the content bounds.

Scroll panes typically have scroll bars that allow you to navigate their contents. While this makes
sense on a desktop computer, it does not make sense on a mobile device. On mobile devices,
scroll panes are navigated with gestures, such as panning, pinching, or rotating.
As a result, this class does not contain any visual features for navigating a scroll pane. It only
has methods for controlling the position and orientation of the backing window. If you need
visual interfaces like a scroll bar, you can attach them separately to the scene graph. Scroll bars
are just instances of Slider.

The trickiest feature of the scroll pane is rotation (spinning). Because the backing bounds are a
rectangle, and the pane does not show anything outside of these bounds, the edges can catch
on the visible bounds and block the rotation. If this is a problem you should either ignore spin
input in your application or set setConstrained to false. However, the latter will mean that the
user can navigate outside of the backing area.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for ScrollPane also takes the following fields:

●​ “interior” (number array of either 2 OR 4 elements) [width, height] OR [x, y, width, height]

○​ “interior” represents the interior rectangle defining the internal content bounds. If
not included, the interior will be set to the size of the entire node.

●​ “constrain” (boolean) true | false

○​ Whether the node is constrained, forcing the interior within bounds. This is set to
true as default.

●​ “mask” (boolean) true | false

○​ Whether to mask contents outside of node bounds. This is set to false as default.

●​ “zoom min” (number)

○​ A float representing the minimum supported cumulative zoom. This is set to 0.1
as default.

●​ “zoom max” (number)

○​ A float representing the maximum supported cumulative zoom. This is set to 5 as
default.

●​ “zoom” (number)

○​ The initial zoom value of the scroll pane. If the value provided for “zoom” is
outside the bounds of “min zoom” or “max zoom” it will be clamped. This is set to
1 as default.

●​ “pan” (number array of 2 elements) [x,y]

○​ A two-element number array, representing the initial pan offset. This is set to [0,0]
as default.

●​ “spin” (number in radians)

○​ A float representing the initial spin angle in radians. This is set to 0 as default.

NinePatch

Overview

The NinePatch node type displays a ninepatch (sometimes also referred to as a nineslice)
image. Ninepatch images are commonly used for resizable UI elements because they preserve
the aspect of the four corners while allowing the central regions to stretch. In practice the
resized portion of the ninepatch texture is left monochromatic along the stretched axis to
minimize the visual effects of stretching these regions.

If the rectangle used for the interior is left undefined, it assumes a degenerate ninepatch with a
one-pixel middle at the center of the image.

Figure 2: Here is an example of a NinePatch in use. Notice that the four corners (blue) are not
stretched at all, the central top and bottom regions (yellow) are only stretched horizontally, the
middle left and right regions (green) have been squashed vertically, and the central region (red) has
been resized along both axes.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for NinePatch also takes the following fields:

●​ “texture” (string)

○​ “texture” provides the name of a previously loaded texture asset to be used by
this NinePatch.

●​ “interior” (4-element array of numbers) [x, y, width, height]

○​ “interior” provides the bounds of the interior of the NinePatch as specified by pixel
coordinates. is the lower-left corner of the interior region with (𝑥, 𝑦)

 being the upper-right corner. (𝑥 + 𝑤𝑖𝑑𝑡ℎ, 𝑦 + ℎ𝑒𝑖𝑔ℎ𝑡)

ProgressBar

Overview

The ProgressBar node represents an (animating) progress bar. This particular node has
undergone the greatest changes in CUGL 4.0. In previous versions of CUGL, a progress bar
was composed of both a background and a foreground. Now it is only the bar itself.

A progress bar is a rectangle that fills in over time. In its simplest form, it is an image that
progressively loads left to right. So if the progress bar is at 50%, the progress bar will draw the
left half of the pixels in image, filling the left half of this node.

It is possible to specify “end caps”, allowing for progress bars that are not purely rectangular.
The effect is similar to a ninepatch, except that the image is composed of three parts
(left-middle-right) and not nine. The left and right sides of the image do not change, but the
middle is adjusted to match the progress.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for ProgressBar also takes the following
fields:

●​ “texture” (string)

○​ “texture” provides the name of a previously loaded texture asset to be used for
the progress bar reveal.

●​ “interior” (2-element array of numbers) [left, right]

○​ “interior” provides the bounds of the interior of the ProgressBar as specified by
pixel coordinates. The value left is the end of the left endcap, while right is the
start of the right endcap. The pixels in-between left and right are stretched like a
NinePatch.

Slider

Overview

The Slider node represents a slider. It allows the user to drag a knob to select a value. The
knob is dragged along a line, which can be horizontal, vertical, or even at an angle.

The most important attribute for a slider is the bounds attribute; this rectangle defines the line
along which the slider can be dragged. The rectangle is specified as [x,y,w,h]. The line will start
at position (x,y) in the slider coordinate space and go to the opposite corner in the rectangle.
Hence [10,50,80,0] would create a horizontal line 80 units long starting at position (10,50) in the
slider node. This way of specifying the slider path allows for complex path nodes with tick marks
and other features that would prevent the slider from being centered in the node. It also allows
sliders to be defined with any orientation.

The slider should have some form of visual representation. These are defined by the “knob” (a
Button node) and a path (an arbitrary scene node). The knob is the element that is dragged and
represents the current position. The path is a visual representation of the bounds and should
align with it (though this is not enforced). If these elements are not specified, the class
constructs a simple slider with a circle on a line.

A tick interval can also be set to snap the slider to predefined values. The class will not
automatically display tick marks. To display tick marks, add them to the path node.
Like Button, the Slider can track its own state via the activate() method.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for Slider also takes the following fields:

●​ “bounds”: (A 4-element array of numbers) [x, y, width, height]

○​ “bounds” defines the rectangular bounds of the slidable element. This is the
region within which the knob can be slid.

●​ “range”: (A 2-element array of numbers) [min, max]

○​ “range” defines the minimum and maximum values for this slider.

●​ “value”: (a number)

○​ “value” defines the initial value of the slider.

http://www.cs.cornell.edu/courses/cs4152/2019sp/materials/api/classcugl_1_1_text_field.html#a3b531604cf1a4110c0d7178536ed481c

●​ “tick” (a number > 0)

○​ “tick” provides the tick period of the slider. The slider will only snap to these ticks
if the “snap” attribute has also been set.

●​ “snap” (boolean) true | false

○​ “snap” determines whether or not to snap to the nearest tick.

●​ “knob” (a string referring to a child node by name)

○​ “knob” defines the scene graph node that corresponds to the slider position. It
should be a child of this slider, and will always snap to the correct location
(according to this anchor). The child does not have to be a button. If it is not, the
initializer will remove the child from this slider, wrap in a button, and add it back.

●​ “path” (a string referring to a child node by name)

○​ “knob” defines the scene graph node that corresponds to the slider track. It
should align with the bounds of this slider. However, there is no way to enforce
this, so it is up to the user to ensure they align.

TexturedNode

Overview

TexturedNode is an abstract scene graph node representing any textured shape. Rather than
instantiate one directly, any TexturedNode must instead be instantiated as a PolygonNode,
PathNode, or WireNode (or any subclass of one of these). Some things are the same for all
textured nodes:

1)​ The node shape is stored as a polygon. Polygons are specified in image coordinates
(origin at the bottom left, each pixel is one unit). A polygon with vertices (0,0), (width,0),
(width,height), and (0,height) would be identical to a sprite node; however, a polygon
with vertices (0,0), (2*width,0), (2*width,2*height), and (0,2*height) would tile the sprite
(given the wrap settings) twice, both horizontally and vertically.

2)​ The content size of a textured node is defined by the size (but not the offset) of the
bounding box. The anchor point is relative to this content size. The default anchor point
in TexturedNode is (0.5, 0.5). This means that a uniform translation of the polygon (in
contrast to the node itself) will not move the shape on the screen, but rather change the
part of the texture it uses.

You can disable either of these features in code by setting the attribute “absolute” to true. This
will place polygon vertices in their absolute positions in node space and ignore the anchor,
treating it instead as [0,0]. This allows for drawing vertices directly into the coordinate space.

Initializing from JSON with data

In addition to all fields from Node, the “data” block for TexturedNode also takes the following
fields:

●​ “texture” (string)

○​ “texture” provides the name of a previously loaded texture asset to be used by
this node.

●​ “gradient” (string representing the name of a pre-defined gradient) OR a JSON block
with the following attributes:

○​ "type" One of ‘linear’ | 'radial' | or ‘box’.

○​ "inner" The inner gradient color (string or 4-element array 0..255).

○​ "outer" The outer gradient color (string or 4-element array 0..255).

○​ "center" A two-element array representing the gradient center.

○​ "extent" A two-element array representing the gradient extent in the horizontal
and vertical direction.

○​ "radius" A number representing the radius of the inner color (radial and box
gradients only).

○​ "feather" A number representing the feather value (box gradients only).

■​ The feather value acts like the inner and outer radius of a radial gradient.
If a line is drawn from the center of the round rectangle to a corner,
consider two segments. The first starts at the corner and moves towards
the center of the rectangle half-feather in distance. The end of this
segment is the end of the inner color. The second second starts at the
corner and moves in the opposite direction the same amount. The end of
this segment is the other color. In between, the colors are smoothly
interpolated. So, if feather is 0, there is no gradient and the shift from
inner color to outer color is immediate. On the other hand, if feather is
larger than the width and height of the rectangle, the inner color
immediately transitions to the outer color.

●​ “blendmode” (string) one of ‘OPAQUE’ | ‘ADDITIVE’ | ‘ALPHA’ | ‘MAXIMUM’ |’MINIMUM’
| ‘PREMULT’ | ‘MULTIPLICATIVE’

○​ A string matching the blending mode to be used when drawing this node. By
default, this is set to “ALPHA”.

●​ “flip” (string) one of ‘horizontal’ | ‘vertical’ | ‘both’ | ‘none’

○​ “flip” will reflect the texture horizontally if set to ‘horizontal’ or ‘both’ and vertically
if set to ‘vertical’ or ‘both’. As a default, ‘flip’ is set to ‘none’.

All of these three attributes are optional, but it is recommended to at the very least either define
the texture.

Figure 3: This is an example of the same triangulation defined above used to represent a simple
quad. Traditionally, we order the indices that define a triangle such that they wind around the
outside in a counter-clockwise fashion.

PathNode

Overview

A PathNode represents a path with width.

At first glance, it would appear that this class is unnecessary. A path with width, produced by
PathExtruder, is a solid polygon. This polygon can, in turn, be used in conjunction with
PolygonNode. However, there are some subtle issues with this. In particular, mitres and joints
may mean that a PathNode and WireNode at the same position may not line up with one
another. This is undesirable. Hence, this is a special polygon node that takes into account that
it is an extruded path.

One of the side effects of this is that the content size of the node is defined by the wireframe
path, NOT the extruded path. In the code, getExtrudedContentBounds() provides the bounds of
the extruded path (relative to Node space). Additionally, the anchor point is relative to the
content size not the extruded size. This means that the extruded path may be to the left of the
origin even when the anchor is (0,0).

Because paths have width, it is natural to texture them; however, generally it is recommended to
create a path with the degenerate texture (to draw a solid, colored path). Because of this, none
of the static constructors for PathNode take a texture, but it is possible to update the texture
after node creation.

Initializing from JSON with data

In addition to all fields from both Node and TexturedNode, the “data” block for PathNode also
takes the following fields:

●​ “path”: (An even array of polygon vertices)

○​ “Path” defines the path of the node as an array of vertices. It is in the form of
[x0,y0,x1,y1,x2,y2,...].

●​ “stroke”: (number)

○​ “stroke” specifies the stroke width of the path.

●​ “joint”: (string) one of ‘mitre’ | ‘bevel’ | ‘round’

○​ “joint” defines the style of joint used: one of either ‘mitre’, ‘bevel’, or ‘round’. If left
off, it defaults to ‘none’. ‘none’ will make the path look like a sequence of links.
‘mitre’ will use a mitre joint, ideal for sharp corners. ‘bevel’ will use a bevel joint,
ideal for smoother paths. ‘round’ will use a round joint (best for smoothing out
paths with sharp corners).

●​ “endcap”: (string) one of ‘square’ | ‘round’

○​ “caps” specifies the style of cap used: either ‘square’ or ‘round’. If left off, it
defaults to ‘none’. None will lead to a path with no end cap, terminating at the
end vertices. ‘square’ is the same as no cap, but pads the end by the stroke
width. ‘round’ ends the path with half circles of radius equal to stroke width.

●​ “fringe”: (number)

○​ “fringe” specifies the size of the border fringe on the path

●​ “stencil”: (boolean) true | false

○​ If “stencil” is true, the path is drawn into the stencil buffer. When rendering
something else (like filling colors, detecting collisions, or highlighting), CUGL can
check whether it overlaps a stenciled region. Default is set to false.

PolygonNode

Overview

A PolygonNode represents a solid 2D polygon textured by a sprite. It is the simplest
implementation of TexturedNode and should be the default choice for most nodes that need to
display a texture. Importantly, polygons are defined in a counterclockwise manner and cannot
be self-intersecting.

Initializing from JSON with data

PolygonNodes are initialized from the scene graph JSON in the exact same way as
TexturedNodes with the exception of one additional field:

●​ “polygon”: (An even array of polygon vertices)

○​ “Polygon” defines the underlying polygon as an array of vertices in a
counterclockwise manner. It is in the form of [x0,y0,x1,y1,x2,y2,...].

●​ “fringe”: (number)

○​ “fringe” specifies the size of the border fringe along the polygon.

SpriteNode

Overview

A SpriteNode is a special PolygonNode that supports simple filmstrip animation. This class is
very similar to PolygonNode, but it treats the texture provided as a sprite sheet and therefore
needs a number of rows and columns specified so that it can break up images.

The basic constructors for SpriteNode in the code always set this object as a rectangle the
same size as a single frame in the sprite sheet, but it is certainly possible to instead animate the
filmstrip over polygons. This can have undesirable effects if the polygon coordinates extend
beyond a single animation frame as the basic renderer does not allow wrapping a single frame
of a texture atlas (a filmstrip being a special case of a texture atlas). For example, with a
filmstrip where each frame has a given width and height, setting the polygon to a triangle with
vertices (0,0), (width/2, height), and (width,height) is okay, but the vertices (0,0), (width,
2*height), and (2*width, height) can cause other frames from the filmstrip to also be displayed
within the polygon.

It is assumed that frames are ordered left to right along rows with multiple rows ordered from top
to bottom.

Initializing from JSON with data

In addition to all fields from both Node and TexturedNode, the “data” block for SpriteNode also
takes the following fields:

●​ “count” (number)

○​ “span” indicates the number of frames in the filmstrip. If it is not defined, a
degenerate filmstrip of a single frame is assumed.

●​ “cols” (int)

○​ “cols” specifies the number of columns in the filmstrip. If it is not defined, it is
assumed that there is only one row (assumption that cols == span).

●​ “rows” (int)

○​ “rows” specifies the number of rows in the filmstrip. If it is not defined, it is
assumed that there is only one row.

●​ “frame” (int)

○​ “frame” specifies the index of the starting frame within the filmstrip. The
AnimationNode will display the sprite at this frame until the setFrame() method is
called with a new frame number.

WireNode

Overview

WireNode represents a wireframe. The wireframes are lines, but they can still be textured.
However, generally, it is best to create a wireframe with the degenerate texture (to draw a solid,
colored line). Because of this, none of the static constructors in the node take a texture, but it is
possible to update the texture after creation. The node shape is stored as a polygon, and the
wireframe shape is determined by the polygon traversal.

Initializing from JSON with data

In addition to all fields from both Node and TexturedNode, the “data” block for WireNode also
takes the following fields:

●​ “traversal” (string) one of either ‘open’ | ‘closed’ | ‘interior’

○​ “traversal” indicates the style of traversal used by the PolyFactory. ​
If ‘open’, the traversal is in order but does not close the ends.​
If ‘closed’, the traversal is in order and closes the ends. ​
If ‘interior’, the traverse will outline the default triangulation. ​
The default traversal is ‘closed’.

●​ “wireframe” (number array of length equal to the number of vertices in “polygon”)

○​ “wireframe” describes how to connect the vertices in the polygon to form the
wireframe. As a default, lines will connect the vertices defined in the polygon in
order. Specifying a “wireframe” states the order of vertices and therefore the lines
to be drawn between vertices.

MeshNode

Overview

MeshNode represents a node containing an arbitrary SpriteMesh object. A SpriteMesh is a
flexible data format that can represent a textured solid, a path, or a wireframe. So this class is
essentially a PolygonNode, PathNode, and WireNode all rolled into one.

With that said, this type is not really intended to be specified from a JSON. Of all the scene
graph nodes, this one is meant to be defined programmatically. With that said, it is possible to
initialize it with a JSON.

Initializing from JSON with data

In addition to all fields from both Node and TexturedNode, the “data” block for WireNode also
takes a single field: “mesh”. This field can be an even array of polygon vertices. If that is the
case, then this field is interpreted just like the “polygon” entry in PolygonNode. However, it is
also possible for the “mesh” entry to be a JSON object with its own fields. In that case, the fields
are as follows:

●​ “vertices”: (An array of JSON objects)

○​ “vertices” is an array of JSON objects. The individual objects define the individual
vertices (and are discussed below).

●​ “indices”: (And array of integers)

○​ “indices” specifies the indices that make up the mesh geometry. See ​
https://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/.

●​ “command” (string) one of either ‘points’ | ‘lines’ | ‘triangles’

○​ “command” indicates how to interpret the indices. If ‘points’, each index is a
single point. If ‘lines’ each adjacent pair of indices is a line. If “triangles”, each
three points define a triangle. This value is ignored if “indices” is not present.

●​ “triangulator” (string) one of either ‘fan’ | ‘strip’ | ‘earclip’ | ‘delauny’

○​ “triangulator” indicates how to create the indices (and so is ignored if “indices” is
present in the JSON). If ‘fan’, it creates a triangle fan anchored on the first vertex.
If ‘strip’, it creates a triangle strip according to the vertex order. If it is either
‘earclip’ or ‘delauny’, it assumes the vertices define a counter-clockwise path and
then uses the appropriate triangulation algorithm to break this into triangles.​

https://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/

As mentioned above, the vertices should themselves be a JSON object. This object should have
the following fields:

●​ “position”: (A 2-element array of numbers) [x, y]

○​ “position” defines the position of the vertex on the screen.

●​ “color” (a string referring to a color hex code: #ffffff)

○​ This is the color to tint the vertex. By default, all vertex are tinted white.

●​ “texcoord”: (A 2-element array of numbers) [x, y]

○​ “texcoord” defines the texture coordinates of the vertex. This is used to attach a
texture to a mesh.

●​ “gradcoord”: (A 2-element array of numbers) [x, y]

○​ “gradcoord” defines the gradient coordinates of the vertex. This is used to attach
a gradient to a mesh.

Using Layouts
One of the worst problems that arises when setting node positions directly is the inability to
design interesting scene graphs that look good on devices of different shapes and sizes. For
console games that assume a TV and specific aspect ratio, a few different hard-coded options
may be sufficient, but for any successful mobile application resizable contents are a must.

For those looking to more dynamically define the size and position of nodes in the scene graph,
there are ways to define layout managers in the scene graph JSON that are associated with
certain nodes there.

When a layout manager is asked to layout a Node, it searches for those children that are
registered with the layout manager. For those children, it repositions and/or resizes them
according to the layout information.

Layout information is indexed by key. To look up the layout information of a scene graph node,
the name of the node is used as this key. This requires all nodes to have unique names. The
SceneLoader prefixes all child names by the parent name, so this is the case in any
well-defined JSON file.

There are multiple layout managers that all extend the Layout class. Each provides
implementations for the add, remove, and layout methods.

Several layout managers, such as AnchoredLayout and GridLayout make use of anchors;
therefore, support has been provided for them in the base class in order to consolidate code.

When specifying layouts in the JSON, two different objects are used. The “format” object is
used by the top level parent of a particular layout manager. This “format” block specifies
everything necessary to initialize the manager itself. In any child object of this top-level node,
the “layout” object is used to add the child to the layout manager after it has been initialized.
This “layout” block specifies any special data used by the manager to position the child. The
fields of “format” are documented as part of the allocWithData() or initWithData() methods of a
layout class, and the fields of “layout” are documented as part of the add() method of this same
class.

Layout managers may be nested in the same way as nodes. If a node has both a “format” block
and a “layout” block, the “layout” block will be used to add it to the parent layout manager while
the “format” block will be used to initialize a new layout manager for its children.

The 17 Layout Anchors

Unlike the anchors used to position nodes directly, the anchors used by layouts include
independent options for whether to fill horizontally and whether to fill vertically. This gives us 16
anchors instead of 9. It may be beneficial to think of these anchors as tools for stretching child
nodes as you would regions of a NinePatch. There are additional anchors meant just for figma
layouts that (they are slight alterations of the fill anchors) bring the total count to 23.

Anchor Result by Enumerator Name

BOTTOM_LEFT Anchors to the bottom left corner, or position (0,0) in Node coordinate
space.

MIDDLE_LEFT The left side, or position (0,height/2) in Node coordinate space.

TOP_LEFT The top left corner, or position (0,height) in Node coordinate space.

BOTTOM_CENTER The bottom side, or position (width/2,0) in Node coordinate space.

CENTER The middle region, or position (width/2,height/2) in Node coordinate
space.

TOP_CENTER The top side, or position (width/2,height) in Node coordinate space.

BOTTOM_RIGHT The bottom right corner, or position (width,0) in Node coordinate
space.

MIDDLE_RIGHT The right side, or position (width,height/2) in Node coordinate space.

TOP_RIGHT The top left corner, or position (width,height) in Node coordinate
space.

BOTTOM_FILL Anchors at y=0, but stretches the width to fill the parent. In Figma,
this is the same as locking the parent offset on the left and right sides.

MIDDLE_FILL Anchors at y=height/2, but stretches the width to fill the parent. In
Figma, this is the same as locking the parent offset on the left and
right sides.

TOP_FILL Anchors at y=height, but stretches the width to fill the parent. In
Figma, this is the same as locking the parent offset on the left and
right sides.

LEFT_FILL Anchors at x=0, but stretches the height to fill the parent. In Figma,
this is the same as locking the parent offset on the top and bottom
sides.

CENTER_FILL Anchors at x=width/2, but stretches the height to fill the parent. In
Figma, this is the same as locking the offset on the top and bottom
sides.

RIGHT_FILL Anchors at x=width, but stretches the height to fill the parent. In
Figma, this is the same as locking the parent offset on the top and
bottom sides.

TOTAL_FILL Stretches the width and height to fill the entire parent. In Figma, this is
the same as locking the parent offset on all sides.

NONE No anchor. The layout will not adjust this child.

Layouts Elaborated By Type

FloatLayout

Overview

FloatLayout provides a float layout manager.

Children in a float layout are arranged in order, according to the layout orientation
(horizontal or vertical). If there is not enough space in the Node for the children to all be
in the same row or column (depending on orientation), then the later children wrap
around to a new row or column. New rows are added downwards and new columns are
added to the right.

Any children that cannot fit (non-overlapping) into the Node are dropped. Once a child
is dropped, no further children will be placed. So an exceptionally large child can block
the rest of the layout.

Anchor Enumerator for FloatLayout

Anchor Result by Enumerator Name

BOTTOM_LEFT In horizontal orientation, this left justifies all of the individual lines. In
addition, all Nodes in a single line will be aligned by their bottom, and
the bottom line will be flush with the bottom of the Node.

In vertical orientation, this bottom justifies all of the individual
columns. In addition, all Nodes in a single column will be aligned by
their left, and the left column will be flush with the left of the Node.

MIDDLE_LEFT In horizontal orientation, this left justifies all of the individual lines. In
addition, all Nodes in a single line will be aligned by their middle, and
the layout will be centered in the Node.

In vertical orientation, this centers each of individual columns. In
addition, all Nodes in a single column will be aligned by their left, and
the left column will be flush with the left of the Node.

TOP_LEFT In horizontal orientation, this left justifies all of the individual lines. In
addition, all Nodes in a single line will be aligned by their top, and the
top line will be flush with the bottom of the Node.

In vertical orientation, this top justifies all of the individual columns. In
addition, all Nodes in a single column will be aligned by their left, and
the left column will be flush with the left of the Node.

BOTTOM_CENTER In horizontal orientation, this centers each of the individual lines. In
addition, all Nodes in a single line will be aligned by their bottom, and
the bottom line will be flush with the bottom of the Node.

In vertical orientation, this bottom justifies all of the individual
columns. In addition, all Nodes in a single column will be aligned by
their center, and the layout will be centered in the Node.

CENTER In horizontal orientation, this centers each of the individual lines. In
addition, all Nodes in a single line will be aligned by their center, and
the layout will be centered in the Node.

In vertical orientation, this centers each of the individual columns. In
addition, all Nodes in a single column will be aligned by their center,
and the layout will be centered in the Node.

Anchor Result by Enumerator Name Cont.

TOP_CENTER In horizontal orientation, this centers each of the individual lines. In
addition, all Nodes in a single line will be aligned by their top, and the
top line will be flush with the bottom of the Node.

In vertical orientation, this top justifies all of the individual columns. In
addition, all Nodes in a single column will be aligned by their center,
and the layout will be centered in the Node.

BOTTOM_RIGHT In horizontal orientation, this right justifies all of the individual lines. In
addition, all Nodes in a single line will be aligned by their bottom, and
the bottom line will be flush with the bottom of the Node.

In vertical orientation, this bottom justifies all of the individual
columns. In addition, all Nodes in a single column will be aligned by
their right, and the right column will be flush with the right of the Node.

MIDDLE_RIGHT In horizontal orientation, this right justifies all of the individual lines. In
addition, all Nodes in a single line will be aligned by their middle, and
the layout will be centered in the Node.

In vertical orientation, this centers each of the individual columns. In
addition, all Nodes in a single column will be aligned by their right,
and the right column will be flush with the right of the Node.

TOP_RIGHT In horizontal orientation, this right justifies all of the individual lines. In
addition, all Nodes in a single line will be aligned by their top, and the
top line will be flush with the bottom of the Node.

In vertical orientation, this top justifies all of the individual columns. In
addition, all Nodes in a single column will be aligned by their right,
and the right column will be flush with the right of the Node.

Initializing from JSON
In order to specify that a Layout is a FloatLayout. The Format object for the node must be
initialized in the json as type “Float”.

The “format” block for FloatLayout takes the following fields:

●​ “orientation” (string) one of ‘horizontal’ | ‘vertical’

○​ “orientation” specifies whether this is a horizontally or vertically oriented
FloatLayout.

●​ “x_alignment” (string) one of ‘left’ | ‘center’ | ‘right’

○​ “x_alignment”, along with “y_alignment”, specifies which type of anchor will be
used by this float layout.

●​ “y_alignment” (string) one of ‘bottom’ | ‘middle’ | ‘top’

○​ “y_alignment”, along with “x_alignment”, specifies which type of anchor will be
used by this float layout.

The “layout” block for a child within a FloatLayout takes the following fields:

●​ “priority” (int)

○​ “priority” indicates the placement priority of this child. Children with lower priority
go first.

Example JSON

"my_node": {
 "type": "Node",
 "format": {
 "type": "Float",
 "orientation": "horizontal",
 "x_alignment": "right",
 "y_alignment": "top"
 },
 "data": {
 ...
 },
 "children": {
 "child0": {
 ...
 "layout": {
 "priority": 0
 }
 },
 ...
 },
}

This example is taken from assets.json in the UIDemo.

GridLayout

Overview

GridLayout provides a grid layout manager.

A grid layout subdivides the node into equal sized grid regions. Each grid region may receive its
own child (and can receive more than one). A grid region behaves like an AnchoredLayout for
the rules of how to place the child.

Initializing from JSON

In order to specify that a Layout is a GridLayout. The Format object for the node must be
initialized in the json as type “Grid”.

The “format” block for GridLayout takes the following fields:

●​ “width” (int)

○​ “width” specifies the number of columns in the grid.

●​ “height” (int)

○​ “height”, specifies the number of rows in the grid.

Each grid cell behaves as an anchored layout manager that always assumes percentage
offsets. The “layout” block for a child within a GridLayout takes the following fields:

●​ “x_index” (int)

○​ “x_index” indicates the horizontal grid index of this child.

●​ “y_index” (int)

○​ “y_index” indicates the vertical grid index of this child.

●​ “x_anchor” (string) one of ‘left’ | ‘center’ | ‘right’ | ‘fill’

○​ “x_anchor”, along with “y_anchor”, specifies which type of anchor will be used for
this child within its grid cell.

●​ “y_anchor” (string) one of ‘bottom’ | ‘middle’ | ‘top’ | ‘fill’

○​ “y_anchor”, along with “x_anchor”, specifies which type of anchor will be used for
this child within its grid cell.

AnchoredLayout

Overview

AnchoredLayout provides an anchored layout manager.

An anchored layout attaches a child node to one of nine “anchors” in the parent (corners, sides,
or middle), together with a percentage (or absolute) offset. As the parent grows or shrinks, the
child will more according to its anchor. For example, nodes in the center will stay centered,
while nodes on the left side will move to keep the appropriate distance from the left side. In fact,
the stretching behavior is very similar to that of a NinePatch.

Initializing from JSON

In order to specify that a Layout is an AnchoredLayout. The Format object for the node must be
initialized in the json as type “Anchored”.

The “format” block for AnchoredLayout does not take any additional fields.

The “layout” block for a child within an AnchoredLayout takes the following fields:

●​ “x_anchor” (string) one of ‘left’ | ‘center’ | ‘right’ | ‘fill’

○​ “x_anchor”, along with “y_anchor”, specifies which type of anchor will be used for
this child within its parent.

●​ “y_anchor” (string) one of ‘bottom’ | ‘middle’ | ‘top’ | ‘fill’

○​ “y_anchor”, along with “x_anchor”, specifies which type of anchor will be used for
this child within its parent.

●​ “absolute” (boolean)

○​ If “absolute” is set to true, “x_offset” and “y_offset” will be treated as an absolute
offset in the parent’s coordinate space rather than percentage offsets.

●​ “x_offset” (number)

○​ “x_offset” specifies the horizontal offset from the anchor. If “absolute” is true,
this is the distance in coordinate space. Otherwise, it is a percentage of the
width.

●​ “y_offset” (number)

○​ “y_offset” specifies the vertical offset from the anchor. If “absolute” is true, this is
the distance in coordinate space. Otherwise, it is a percentage of the height.

Figure 4: Here is the same scene as shown in Figure 1 using anchored layouts instead of strictly
relying on node position and sizing. Notice that we no longer need the constants wb, hb, or hy to
determine the location of the Red Box. Additionally, this implementation will be aspect ratio and
screen size agnostic, a must for any successful mobile application.

FigmaLayout

Overview

FigmaLayout provides a figma layout manager.

A figma layout is essentially both the anchored and float layout in one for figma. It is a layout
with a few alterations made to perfectly map the design on Figma and in CUGL. For the most
part it is built on top of anchored layout and maps auto layouts to anchors as well. Just like
anchored, it attaches a child node to one of nine “anchors” in the parent with a percentage (or
absolute) offset. As the parent grows or shrinks, the child will move according to its anchor. For
example, nodes in the center will stay centered, while nodes on the left side will move to keep
the appropriate distance from the left side.

The main difference lies in the treatment of “fill” anchors. The figma layout contains extra offsets
to support non-symmetrical padding for children. Additionally, Figma utilizes an extra type of
anchor which locks the size of all padding individually (left, right, top, and bottom) without
requiring the child to be centered. This layout manager should only be used by the figtree plugin
in Figma and not manually.

Initializing from JSON

In order to specify that a Layout is a FigmaLayout. The Format object for the node must be
initialized in the json as type “Figma”.

The “format” block for FigmaLayout does not take any additional fields.

The “layout” block for a child within a FigmaLayout takes the following fields:

●​ “x_anchor” (string) one of ‘left’ | ‘center’ | ‘right’ | ‘left+right’’ | ‘scale’

○​ “x_anchor”, along with “y_anchor”, specifies which type of anchor will be used for
this child within its parent.

●​ “y_anchor” (string) one of ‘bottom’ | ‘middle’ | ‘top’ | ‘top+bottom’ | ‘scale’

○​ “y_anchor”, along with “x_anchor”, specifies which type of anchor will be used for
this child within its parent.

●​ “x_absolute” (boolean)

○​ If “absolute” is set to true, “x_offset” will be treated as an absolute offset in the
parent’s coordinate space rather than percentage offsets.

●​ “y_absolute” (boolean)

○​ If “absolute” is set to true, “y_offset” will be treated as an absolute offset in the
parent’s coordinate space rather than percentage offsets.

●​ “l_offset” (number)

○​ “l_offset” specifies the horizontal offset from the anchor on the left side. If
“absolute” is true, this is the distance in coordinate space. Otherwise, it is a
percentage of the width.

●​ “r_offset” (number)

○​ “r_offset” specifies the horizontal offset from the anchor on the right side. If
“absolute” is true, this is the distance in coordinate space. Otherwise, it is a
percentage of the width.

●​ “t_offset” (number)

○​ “t_offset” specifies the vertical offset from the anchor on the top side. If
“absolute” is true, this is the distance in coordinate space. Otherwise, it is a
percentage of the height.

●​ “b_offset” (number)

○​ “b_offset” specifies the vertical offset from the anchor on the bottom side. If
“absolute” is true, this is the distance in coordinate space. Otherwise, it is a
percentage of the height.

Using Widgets

What are Widgets?

Widgets are sections of the scene graph that have been written in other files than that used for
the main scene graph. These extra JSON files allow for pulling some of the boilerplate outside
of the main assets.json (or whatever other main file is being loaded) by exposing named
variables to be used in this main file that will then be mapped into internal variables of this now
child scene graph. Widgets can be particularly useful when trying to encapsulate certain pieces
of the scene graph into their own files, when using similar clusters of nodes in multiple places,
or when hoping to improve readability by collapsing the boilerplate of more complex nodes (like
buttons). Widgets can also contain other widgets and may be used to things as small as an
individual node or as large as an entire scene.

Creating a new Widget in JSON

To create a new widget for use in the main asset manifest, first create a new JSON file. This file
should have two top-level objects: “variables” and “contents”.

“variables” will define the named attributes that will be exposed by this widget to whatever scene
graph definition choses to use it. Each variable is its own attribute and holds the path to the
value that this variable should replace. These paths are encoded as string arrays. The
“variables” block for a widget defining a basic play button might be as follows:

"variables" : {
 "anchor" : ["data","anchor"],
 "scale" : ["data","scale"],
 "x_offset" : ["layout","x_offset"],
 "y_offset" : ["layout","y_offset"]
}

The “anchor” variable for this widget will be mapped to the “anchor” attribute within the “data”
block of the node encoded by this widget. Similarly, the “y_offset” variable will map to the
“y_offset” attribute within the “layout” block. All widget variables are optional; they override
existing default values.

The other block, “contents” contains the full definition of the node produced by this widget. This
definition MUST include default values at all of the paths used in the “variables” section. Here is
the “contents” block for the play button that uses the variables above.

"contents" : {
 "type" : "Button",
 "data" : {
 "upnode" : "up",
 "pushable" : [0,100,29,171,100,200,171,171,200,100,171,29,100,0,29,29],
 "visible" : false,
 "pushsize" : true,
 "anchor" : [0.5,0.5],
 "scale" : 1.85
 },
 "children" : {
 "up" : {
 "type" : "Image",
 "data" : {
 "texture" : "play"
 }
 }
 },
 "layout" : {
 "x_anchor" : "center",
 "y_anchor" : "middle",
 "x_offset" : 0.035,
 "y_offset" : -0.175
 }
}

Notice that “contents” is a standard definition of a node as explained in the sections above.
When this widget is used within the definition of a scene graph, the end result is equivalent to
replacing the widget usage with this contents block. Note that the node defined here will not be
named “contents” but rather match the name of the node defined by this widget in the main
scene graph.

Using a Widget in the Scene Graph JSON

In order to use an externally defined widget in the scene graph, it must first be loaded as part of
the “jsons” block (see the prior section on loading JSON data for more info on this). For the play
button outlined above, that loading looks like this:

"jsons" : {
 ...
 "play" : "json/widgets/play.json",
 ...
}

Once the JSON that defines the desired widget has been loaded, it may be used to replace a
node by using a special “Widget” node type.

The “data” block for any node defined with the “Widget” type takes the following fields:

●​ “key” (string)
○​ “key” refers to the named JSON that has been imported earlier in this file.

●​ “variables” (JSON object)
○​ “variables” provides values for all of the variables that have been exposed by the

widget being used to replace this node. The fields of “variables” are entirely
dependent on the widget being used and are always optional.

A usage of the play button widget defined above is written as follows.

"play" : {
 "type" : "Widget",
 "data" : {
 "key": "play",
 "variables": {
 "anchor" : [0.5,0.5],
 "x_offset" : 0.035,
​ "y_offset" : -0.175,
​ "scale": 1.85
 }
 }
}

​
Changing one of the values passed in through the “variables” block will change the
corresponding variable in this usage of the widget once the scene graph has been parsed and
loaded. The values for these variables can be any JSON value of the object. For example, the
full “layout” block for the node within the widget might be replaceable as a variable.

Importing Custom Asset Types
Sometimes, the initial formats for imported data are not enough for the specificity required by a
project. Even more likely, there is a custom JSON schema that encodes some arbitrary level,
character, AI behavior tree, or other project specific type of object. For these cases, it may be
useful to add an additional type that can be loaded in asynchronously to the AssetManager
within CUGL. This section will walk through the basics of adding an additional loader for levels
through a special case JSON parser. It assumes that there exists a Level class that is being
loaded.

Step One - Add a new Loader Class
When adding a new asset loader, the first step is to create a new subclass of Loader<T> that is
typed to the objects that this loader will load. For example, a LevelLoader that publicly inherits
from Loader<Level>. Using the existing loaders as a guide, the key methods that this new
loader needs (beyond constructors and the like) are read() (overridden from the base loader)
and materialize(). This read() function will be called by the AssetManager when either
synchronously or asynchronously loading these objects. After as much as possible has been
done in a separate thread, the materialize() function will execute on the main thread to finish
loading the new asset. This function is where the asset will be placed inside of the
AssetManager to be accessed later by some key value.

Step Two - Attaching the Hook to the AssetManager
Now that the new loader exists, it is time to attach it to the AssetManager and have it handle
any files imported as “levels.” To do this, the following line needs to be added before any assets
of the associate type are loaded (note that this assumes a static alloc() method rather than a
typical constructor):

_assets->attach<Level>(LevelLoader::alloc()->getHook());

​
This will associate the new loader with the Level class in the asset manager.

Step Three - Adding a Category to the Manifest

Now that the Level class is associated with an appropriate loader in the AssetManager, it is time
to edit AssetManager::loadDirectory() and AssetManager::loadDirectoryAsync() to properly
consider a section within the manifest a collection of Levels to be loaded. To do this, the
following lines are added in keeping with the others already there:

[else] if (child->key() == "levels") {
 success = readCategory(typeid(Level).hash_code(),child) && success;
}

​
A similar block of code must be added to AssetManager::unloadDirectory() to ensure that the
files are also properly unloaded.

Note that scenes are checked for separately than everything else because they must be loaded
last. If adding a new type of asset that must load after other types, it should also be checked for
separately between the larger list of assets and scenes.

With this named category now checked for specifically in the AssetManager, a new top-level
object named “levels” can be added to assets.json (or another loaded manifest) and all levels
listed there will be loaded asynchronously along with all fonts, textures, and sounds.

Some may find it useful to leave the read() and materialize() methods from Step One as stubs
until completing Step Three to allow for debugging these type-specific methods.

Creating Custom Nodes
If the list of existing possible node types and widget options are insufficient for the needs of a
particular project, it is both feasible and encouraged to create custom node types as needed.
By creating a new subclass of Node, it is possible to override the default draw(), render(),
doLayout(), updateTransform(), or other methods to alter behaviour and achieve new results.

Reasons for Creating New Nodes

Teams frequently create new custom node types for the following reasons:

●​ Custom Shader Work
●​ Custom Input Handling
●​ Complex Model Encapsulation
●​ Multi-Texture Rendering

The last of these is most commonly used when a team decides that they have enough dynamic
objects being added and removed that it makes sense to have a part of their project simply
represent a large drawing canvas with camera controls and other drawing methods similar to
what they may be used to coming from other engines like LibGDX.

Adding Custom Node support to the SceneLoader

Aftering creating whichever custom nodes for the project, it is useful to add support for these
new nodes to the scene graph parser. This requires making modifications to CUGL in a few key
places.

1)​ Add a name related to the new node to the Widget enum in CUSceneLoader.h
2)​ Add a definition for this supported type with SceneLoader::init() in CUSceneLoader.cpp
3)​ Add a new case statement within SceneLoader::build() that calls allocWithData() for the

new node
After adding these three additional pieces of code, it will be possible to use the new custom
node “type” in the scene graph JSON with a “data” block passed into allocWithData() with any
custom variables that are necessary to initialize the custom node. The initWithData() method in
any custom node should first call the base Node::initWithData() to preserve functionality of the
default “data” attributes available to all nodes.

	The CUGL Scene Graph (Version 4.0)
	Introduction

	The Many Pieces of assets.json
	Fonts
	
	Jsons
	Textures
	
	Sounds
	
	Scenes (2-D)

	Nodes Elaborated By Type
	SceneNode
	Overview
	
	Initializing from JSON with data

	Button
	Overview
	Initializing from JSON with data

	
	Buttongroup
	Overview
	Initializing from JSON with data

	Label
	Overview
	Initializing from JSON with data

	
	TextField
	Overview
	Initializing from JSON with data

	
	OrderedNode
	Overview
	Initializing from JSON with data

	
	ScrollPane
	Overview
	Initializing from JSON with data

	
	NinePatch
	Overview

	
	Initializing from JSON with data

	
	ProgressBar
	Overview
	Initializing from JSON with data

	
	Slider
	Overview
	Initializing from JSON with data

	
	
	TexturedNode
	Overview
	Initializing from JSON with data

	
	PathNode
	Overview
	Initializing from JSON with data

	PolygonNode
	Overview
	Initializing from JSON with data

	SpriteNode
	Overview
	Initializing from JSON with data

	
	WireNode
	Overview
	Initializing from JSON with data

	
	MeshNode
	Overview
	Initializing from JSON with data

	Using Layouts
	
	The 17 Layout Anchors
	
	Layouts Elaborated By Type
	
	FloatLayout
	
	Anchor Enumerator for FloatLayout
	Initializing from JSON
	
	Example JSON

	GridLayout
	Overview
	Initializing from JSON

	AnchoredLayout
	Overview
	Initializing from JSON

	
	
	FigmaLayout
	Overview
	Initializing from JSON

	Using Widgets
	What are Widgets?
	Creating a new Widget in JSON
	
	Using a Widget in the Scene Graph JSON

	Importing Custom Asset Types
	Step One - Add a new Loader Class
	Step Two - Attaching the Hook to the AssetManager
	
	Step Three - Adding a Category to the Manifest

	
	Creating Custom Nodes
	Reasons for Creating New Nodes
	Adding Custom Node support to the SceneLoader

