
gamedesigninitiative
at cornell university

the

Game Architecture
Revisited

Lecture 4

gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop2

Recall: The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions60 times/s

=
16.7 ms

gamedesigninitiative
at cornell university

the

Game Loop3

Recall: The Game Loop

Update

Draw

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

� Almost everything is in loop
� Except asynchronous actions
� Is enough for simple games

� How do we organize this loop?
� Do not want spaghetti code
� Distribute over programmers

gamedesigninitiative
at cornell university

the

Model
• Defines/manages
 the program data
• Responds to the

controller requests

View
• Displays model
 to the user/player
• Provides interface

for the controller

Controller
• Updates model in

response to events
• Updates view with

model changes

Architecture Revisited4

Model-View-Controller Pattern

Calls the
methods of

gamedesigninitiative
at cornell university

the

Update

Draw

The Game Loop and MVC

� Model: The game state
� Value of game resources
� Location of game objects

� View: The draw phase
� Rendering commands only
� Major computation in update

� Controller: The update phase
� Alters the game state
� Vast majority of your code

Architecture Revisited5

gamedesigninitiative
at cornell university

the

Architecture Revisited6

Structure of a CUGL Application

Application

Scene

Root NodeModels

Scene

Root NodeModels

gamedesigninitiative
at cornell university

the

Architecture Revisited7

Structure of a CUGL Application

Application

Scene

Root NodeModels

Scene

Root NodeModels

• Configuration
• Initialization
• Termination

gamedesigninitiative
at cornell university

the

Architecture Revisited8

Structure of a CUGL Application

Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant

gamedesigninitiative
at cornell university

the

Architecture Revisited9

Structure of a CUGL Application

Application

Scene

Root NodeModels

Scene

Root NodeModels

View

Controller(s)

gamedesigninitiative
at cornell university

the

The Application Class

� CUGL and SDL3 do not use a main() function
� They register specific callbacks with SDL3
� This is better for asynchronous event support

� CUGL does this through the Application class
� The on-methods (onStartup, etc.) are the callbacks
� As are the method update() and draw()

� But you must register your Application subclass
� You do this through the CU_ROOTCLASS macro
� This creates a unique pointer and sends it to SDL3

Architecture Revisited10

gamedesigninitiative
at cornell university

the

The Application Class

� CUGL and SDL3 do not use a main() function
� They register specific callbacks with SDL3
� This is better for asynchronous event support

� CUGL does this through the Application class
� The on-methods (onStartup, etc.) are the callbacks
� As are the method update() and draw()

� But you must register your Application subclass
� You do this through the CU_ROOTCLASS macro
� This creates a unique pointer and sends it to SDL3

Architecture Revisited11

This happens at compile time, not runtime!

gamedesigninitiative
at cornell university

the

The Constructor

� Effectively your main()
� Called before anything else
� The backend not initialized!
� Cannot use SDL3 functions

� Defines the app settings
� The application name
� The initial window size
� Things SDL3 needs to start

� Nothing else!

Architecture Revisited12

The Application Lifestages

onStartup()

� After backend is initialized

� Loads the game assets
� Attaches the asset loaders
� Loads immediate assets

� Starts any global singletons
� Example: AudioEngine

� Creates any scenes
� But does not launch yet
� Waits for assets to load

gamedesigninitiative
at cornell university

the

update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes

Architecture Revisited13

The Application Lifestages

draw()

� Called each animation frame

� Delegates to Scene class

� Scene draws the scene graph
� Activates the pipeline
� Sends data to the pipeline

� Mostly done for you
� Scene has all this code
� Only override if you need

a custom graphics pipeline

gamedesigninitiative
at cornell university

the

onShutdown()

� Called when quitting
� Allows you to clean up
� Delete all objects
� Deactivate all services

� You must do this
� Might leave zombie threads
� SDL3 will crash if don’t

� But generally easy
� Set shared pointers to null

Architecture Revisited14

The Application Lifestages

Anything Else?

� Other on-methods exist
� onSuspend/onResume
� onLowMemory
� onResize

� Default for them is okay
� But might need to override
� Will see this later

� See documentation for more

gamedesigninitiative
at cornell university

the

� 16.7 ms not guaranteed!
� Even for optimized code
� Result of external factors

� Regularly see minor jitter
� “In-between” code
� Potential Vsync delay

� Occasional major jitter
� Dynamic library loading
� Cost of debugging tools

Game Loop15

Problems With the Game Loop

Update

Draw

60 times/s
=

16.7 ms

gamedesigninitiative
at cornell university

the

� 16.7 ms not guaranteed!
� Even for optimized code
� Result of external factors

� Regularly see minor jitter
� “In-between” code
� Potential Vsync delay

� Occasional major jitter
� Dynamic library loading
� Cost of debugging tools

Game Loop16

Problems With the Game Loop

Update

Draw

60 times/s
=

16.7 ms Variations mean simulations

are not deterministic!

gamedesigninitiative
at cornell university

the

Architecture Revisited17

Physics and Non-Determinism

??

gamedesigninitiative
at cornell university

the

How To Guarantee Determinism?

� Need to decouple simulation from other code
� Cannot be delayed by drawing
� Cannot be affected by OS externalities

� Put this on a separate thread?
� Thread management still has some overhead
� Have to synchronize with input/drawing thread (bad!)

� Create a separate logical loop?
� Simulation loop runs at its own fixed rate
� Draw method simply draws what it has so far

Architecture Revisited18

gamedesigninitiative
at cornell university

the

Game Loop19

The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)

gamedesigninitiative
at cornell university

the

Game Loop20

The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)
dt

secs called only when step
seconds have passed

gamedesigninitiative
at cornell university

the

Game Loop21

These Are All Possible

preUpdate

Draw

fixedUpdate

postUpdate

preUpdate

postUpdate

fixedUpdate

fixedUpdate

Draw

preUpdate

Draw

postUpdate

gamedesigninitiative
at cornell university

the

Architecture Revisited22

Problem: Jerky Motion

Each Image is a result of fixedUpdate

Draw Draw

Draw

Draw Draw

Draw

Draw Draw

gamedesigninitiative
at cornell university

the

Game Loop23

The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)

Interpolate drawing position

left
over

gamedesigninitiative
at cornell university

the

Architecture Revisited24

CUGL Supports Both Loops

Update

Draw

preUpdate

Draw

fixedUpdate

postUpdate

setDeterministic(false) setDeterministic(true)

gamedesigninitiative
at cornell university

the

Scene Structure

Architecture Revisited25

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Ownership

Collaboration

gamedesigninitiative
at cornell university

the

Scene Structure

Architecture Revisited26

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Collaboration

� Collaboration
� Must import class/interface
� Instantiates an object OR
� Calls the objects methods

� Ownership
� Instantiated the object
� Responsible for disposal
� Superset of collaboration

Ownership

gamedesigninitiative
at cornell university

the

Architecture Revisited27

Avoid Cyclic Collaboration

Y X

collaborates with Y X

Z

collaborates
with

Controller

collaborates with

gamedesigninitiative
at cornell university

the

Scene Structure

Architecture Revisited28

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

?

gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited29

Root Node

Scene

Node Node

Node Node Node Node

Model

Model

gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited30

Root Node

Scene

Node Node

Node Node Node Node

Model

Model

gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited31

Root Node

Scene

Node Node

Node Node Node Node

Model

Model

Topic for Another Lecture

gamedesigninitiative
at cornell university

the

Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

� Implements object logic
� Complex actions on model
� May affect multiple models
� Example: attack, collide

Architecture Revisited32

Model-Controller Separation (Standard)

Controller

� Process user input
� Determine action for input
� Example: mouse, gamepad
� Call action in the model

Traditional controllers
are “lightweight”

gamedesigninitiative
at cornell university

the

Classic Software Problem: Extensibility

� Given: Class with some base functionality
� Might be provided in the language API
� Might be provided in 3rd party software

� Goal: Object with additional functionality
� Classic solution is to subclass original class first
� Example: Extending GUI widgets (e.g. Swing)

� But subclassing does not always work…
� How do you extend a Singleton object?

Architecture Revisited33

gamedesigninitiative
at cornell university

the

� Games have lots of classes
� Each game entity is different
� Needs its own functionality

(e.g. object methods)

� Want to avoid redundancies
� Makes code hard to change
� Common source of bugs

� Might be tempted to subclass
� Common behavior in parents
� Specific behavior in children

Architecture Revisited34

Problem with Subclassing

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

� Games have lots of classes
� Each game entity is different
� Needs its own functionality

(e.g. object methods)

� Want to avoid redundancies
� Makes code hard to change
� Common source of bugs

� Might be tempted to subclass
� Common behavior in parents
� Specific behavior in children

Architecture Revisited35

Problem with Subclassing

Human
Warrior

Orc
Warrior

Human
Archer

Orc
Archer

ArcherWarrior

NPC

Redundant Behavior

No Help

gamedesigninitiative
at cornell university

the

Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

� Implements object logic
� Complex actions on model
� May affect multiple models
� Example: attack, collide

Architecture Revisited36

Model-Controller Separation (Standard)

Redundant Behavior

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

gamedesigninitiative
at cornell university

the

Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

Architecture Revisited37

Model-Controller Separation (Alternate)

Controller

� Process game actions
� Determine from input or AI
� Find all objects effected
� Apply action to objects

� Process interactions
� Look at current game state
� Look for “triggering” event
� Apply interaction outcome

In this case, models
are lightweight

gamedesigninitiative
at cornell university

the

Entity-Component Model

� Keep models as pure data
� Essentially C-structs with no methods
� Allows you to store as cache-friendly arrays

� Components provide the model methods
� Designed as separate controller classes/modules
� Models can mix-and-match components

� Problem: very different way of architecting code
� Pays off in tight behavior loops (cache-optimal)
� Less pay-off otherwise

Architecture Revisited38

gamedesigninitiative
at cornell university

the

Classes/Types are Nouns

� Methods have verb names

� Method calls are sentences
� subject.verb(object)
� subject.verb()

� Classes related by is-a
� Indicates class a subclass of
� Example: String is-a Object

� Objects are class instances

Architecture Revisited39

What is the Problem We Want to Solve?

Actions are Verbs

� Capability of a game object

� Often just a simple function
� damage(object)
� collide(object1,object1)

� Relates to objects via can-do
� Example: Orc can-do attack
� Not necessarily tied to class
� Example: swapping items

gamedesigninitiative
at cornell university

the

Reference to
base object

New
Functionality

Architecture Revisited40

Possible Solution: Decorator Pattern

Original
Object

Decorator
Object

Request Original
Functionality

gamedesigninitiative
at cornell university

the

Java I/O Example

InputStream input = System.in;

Reader reader = new InputStreamReader(input);

BufferedReader buffer = new BufferedReader(reader);

Architecture Revisited41

Built-in console input

Make characters easy to read

Read whole line at a time
Most of java.io
works this way

gamedesigninitiative
at cornell university

the

Reference to
delegate

Architecture Revisited42

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern

gamedesigninitiative
at cornell university

the

Reference to
delegate

Architecture Revisited43

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern

Delegate
Object 2

gamedesigninitiative
at cornell university

the

Decoration

� Pattern applies to decorator
� Given the original object
� Requests through decorator

� Monolithic solution
� Decorator has all methods
� “Layer” for more methods

(e.g. Java I/O classes)

� Works on any object/class

Architecture Revisited44

Comparison of Approaches

Delegation

� Applies to original object
� You designed object class
� All requests through object

� Modular solution
� Each method can have own

delegate implementation
� Like higher-order functions

� Limited to classes you make

gamedesigninitiative
at cornell university

the

Architecture Revisited45

The Subclass Problem Revisited

Warrior

Archer

Orc

Human
Slot

Slot

Slot

NPC

Delegates?

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

Summary

� Games naturally fit a specialized MVC pattern
� Want lightweight models (mainly for serialization)
� Want heavyweight controllers for the game loop
� View is specialized rendering with few widgets

� CUGL view is handled in scene graphs

� Proper design leads to unusual OO patterns
� Subclass hierarchies are unmanageable
� Component-based design better models actions

Architecture Revisited46

