the

gamedesigninitiative
at cornell university
I
Lecture 4

Game Architecture
Revisited

Recall: The Game Loop

Receive player input
Process player actions
Process NPC actions

60 times/s

Interactions (e.g. physics)

16.7 ms Cull non-visible objects
Transform visible objects

Draw to backing buffer

Display backing buffer

Game Loop tghfamedesigninitiative

at cornell university

Recall: The Game Loop

Receive player input

Process player actions
Process NPC actions
Interactions (e.g. physics)

® Almost everything is in loop
® Except asynchronous actions

® [s enough for simple games

® How do we organize this loop?
® Do not want spaghetti code

® Distribute over programmers

Game Loop tghearnedesigninitiative

at cornell university

Model-View-Controller Pattern

Controller Calls the
* Updates model in methods of
response to events
/ ®* Updates view with
model changes
Model —
Defines/manages

the program data = <-----=---ocemo—-

Responds to the
controller requests

the . e e .
Architecture Revisited gamedes igninitiative

The Game Loop and MVC

® Model: The game state

® Value of game resources

® [.ocation of game objects

® View: The draw phase
® Rendering commands only
® Major computation in update

® Controller: The update phase

® Alters the game state
® Vast majority of your code

the . e e .
5 Architecture Revisited gamedemﬁ%ﬂfﬂtﬁﬁﬁ

- =

[EE— EE——

Structure of a CUGL Application

}

the . e e .
Architecture Revisited gamedes igninitiative

- =

Structure of a CUGL Application

N
Apphcatlon « Configuration
* Initialization

 Termination

PE— —
Architecture Revisited gamedeﬂgnml}tﬁlrzg
I

Structure of a CUGL Application

}

the . e e .
Architecture Revisited gamedes igninitiative

- =

Structure of a CUGL Application

| View I

the . e e .
Architecture Revisited gamedes igninitiative

- =

The Application Class

® CUGL and SDL3 do not use a main() function
® They register specific callbacks with SDL3

® This 1s better for asynchronous event support

® CUGL does this through the Application class

® The on-methods (onStartup, etc.) are the callbacks
® As are the method update() and draw()

® But you must register your Application subclass
® You do this through the CU_ROOTCLASS macro

® This creates a unique pointer and sends it to SDL3

10 Architecture Revisited gamedeﬂgmr}mat}‘,’e

11111111111111111111

The Application Class

® CUGL and SDL3 do not use a main() function
® They register specific callbacks with SDL3

® This 1s better for asynchronous event support

® CUGL does this through the Application class

® The on-methods (onStartup, etc.) are the callbacks
® As are the method update() and draw()

® But you must register your Application subclass

This happens at compile time, not runtime!

the . o ege g
11 Architecture Revisited gamedesigninitiative

The Application Lifestages

The Constructor onStartup()

® Effectively your main() ® After backend 1s mitialized
® (alled before anything else °
® The backend not initialized!

® (Cannot use SDL3 functions

Loads the game assets
® Attaches the asset loaders

® | oads immediate assets

® Detines the app settings ® Starts any global singletons

® The application name ¢ Example: AudioEngine
® The initial window size

, ® (reates any scenes
® Things SDL3 needs to start

® But does not launch yetr
® Nothing else! ® Waits for assets to load

the . o ege g
12 Architecture Revisited gamedesigninitiative

The Application Lifestages

update() draw()
® (Called each animation frame ® Called each animation frame
O Manages gameplay ® Delegates to Scene class
® Converts input to actions ® Scene draws the scene graph

Processes NPC behavior ® Activates the pipeline

o
® Resolves physics ® Sends data to the pipeline
o

Resolves other interactions
® Mostly done for you

® Updates the scene graph ® Scene has all this code
® Transforms nodes ® Only override if you need
® TEnables/disables nodes a custom graphics pipeline

the . N .
13 Architecture Revisited gamedesﬂi%giﬂﬂﬁﬂﬁf

The Application Lifestages

onShutdown() Anything Else?
® (alled when quitting ® Other on-methods exist
® Allows you to clean up ® onSuspend/onResume
® Delete all objects ® onLowMemory
® Deactivate all services ® onResize
® You must do this °

Default for them 1s okay
® Might leave zombie threads

® SDL3 will crash if don’t

® But might need to override
® Will see this later

® But generally easy ® See documentation for more

® Set shared pointers to null

the . o ege g
14 Architecture Revisited gamedesigninitiative

Problems With the Game Loop

® 16.7 ms not guaranteed!

® Even for optimized code
® Result of external factors

60 times/s

® Regularly see minor jitter

16.7 ms

® “In-between’ code
® Potential Vsync delay

® Occasional major jitter

® Dynamic library loading
® Cost of debugging tools

the . e ege 4.
15 Game Loop gamedesigninitiatiye

- =

Problems With the Game Loop

® 16.7 ms not guaranteed!

® Even for optimized code

60 times/s

‘ _ ® (Occasional major jitter

® Dynamic library loading

® Cost of debugging tools

the . e ege e
16 Game Loop gamedesigninitiative

Physics and Non-Determinism

17

the . N .
Architecture Revisited gamedesigninitiative

at cornell university

How To Guarantee Determinism??

® Need to decouple simulation from other code

® (Cannot be delayed by drawing
® (Cannot be affected by OS externalities

® Put this on a separate thread?
® Thread management still has some overhead

® Have to synchronize with input/drawing thread (bad!)

® (Create a separate logical loop?
® Simulation loop runs at its own fixed rate

® Draw method simply draws what 1t has so far

the . P .
18 Architecture Revisited 8amede$§{§iﬂ}tﬁi¥§

The Game Loop Revisited

19

Receive player input
preUpdate Process player actions
Process NPC actions

fixedUpdate Interactions (e.g. physics)

postUpdate

the e
Game Loop gamede51§nm1t1at1ve

cornell university

The Game Loop Revisited

/‘

Receive player input
preUpdate Process player actions
Process NPC actions

fixedUpdate Interactions (e.g. physics)

\ called only when step

postUpdate seconds have passed

dt<

SCCS

Game Loop tghearnedesigninitiative

at cornell university

These Are All Possible

preUpdate
postUpdate

21

preUpdate

fixedUpdate

postUpdate

Game Loop

Problem: Jerky Motion

Each Image 1s a result of fixedUpdate

Draw Draw

Draw Draw Draw
Draw

Draw

Draw

the . o e g
22 Architecture Revisited gamedesigninitiative

The Game Loop Revisited

23

left
over

preUpdate

postUpdate

Game Loop

Receive player input

Process player actions
Process NPC actions

Interactions (e.g. physics)

Interpolate drawing position

the . e ey g
gamedesigninitiative

at cornell university

CUGL Supports Both Loops

preUpdate

fixedUpdate

postUpdate

setDeterministic(false) setDeterministic(true)

at cornell university

the . e el .
24 Architecture Revisited gamedesigninitiative

Scene Structure

Scene
Controller
[Ownership
Subcontroller ‘ Subcontroller \

Collaboration]

the . e el .
25 Architecture Revisited gamedesigninitiative

at cornell university

Scene Structure

Scene ® (Collaboration
Controller

. ® Must import class/interface
Ownership

® [nstantiates an object OR
® (alls the objects methods

Subcontroller ‘ Subcontroll ¢ Ownershlp

® [nstantiated the object

® Responsible for disposal

® Superset of collaboration

-

Collaboration

./

26 Architecture Revisited gamedesigninitiative

at cornell university

Avoid Cyclic Collaboration

Controller

collaborates with

collaborates
with

collaborates with

cornell university

. .. the . e
27 Architecture Revisited 8amed951§mmtlat“.’e

Scene Structure

Scene
Controller

Subcontroller ‘ Subcontroller \

at cornell university

the . e el .
28 Architecture Revisited gamedesigninitiative

CUGL Views: Scene Graphs

Architecture Revisited gamedeﬂgnml}tﬁlrzg
I

CUGL Views: Scene Graphs

Architecture Revisited gamedeﬂgnml}tﬁlrzg
I

CUGL Views: Scene Graphs

Architecture Revisited gamedes gninitiati oy

- =

Model-Controller Separation (Standard)

Model Controller
® Store/retrieve object data ® Process user input
® Limit access (getter/setter) ® Determine action for input
® Preserve any invariants ® Example: mouse, gamepad
® Only affects this object ® (all action in the model

® Implements object logic

32

® (Complex actions on model .
P Traditional controllers

® May affect multiple models 1 1 e
4 — are “lightweight

® Example: attack, collide

the . P .
Architecture Revisited 8amede$§{§iﬂ}tﬁi¥§

Classic Software Problem: Extensibility

® Given: Class with some base functionality
® Might be provided in the language API
® Might be provided in 3™ party software

® Goal: Object with additional functionality
® (lassic solution 1s to subclass original class first

® Example: Extending GUI widgets (e.g. Swing)

® But subclassing does not always work...

® How do you extend a Singleton object?

[EE— EE——

. L. the . e ege e
33 Architecture Revisited gamedesigninitiative

11111111111111111111

Problem with Subclassing

® (Games have lots of classes
® FEach game entity is different

® Needs its own functionality
(e.g. object methods)

® Want to avoid redundancies

® Makes code hard to change

® Common source of bugs Human § Human Orc Orc
Warrior Archer Warrior Archer
A A

® Might be tempted to subclass

® Common behavior in parents

® Specific behavior in children

34 Architecture Revisited

\

Redundant Behavior

the . o e g
gamedesigninitiative
at cornell university

Problem with Subclassing

® (Games have lots of classes
® FEach game entity is different

® Needs its own functionality
(e.g. object methods)

. . Warrior
® Want to avoid redundancies

® Makes code hard to change

® Common source of bugs Human Orc Human Orc
Warrior Warrior Archer Archer
A A

® Might be tempted to subclass

® Common behavior in parents

® Specific behavior in children

35 Architecture Revisited

\

Redundant Behavior

the . o e g
gamedesigninitiative
at cornell university

Model-Controller Separation (Standard)

Model

® Store/retrieve object data

® Limit access (getter/setter)

® Preserve any invariants

® Only affects this object

(Implements object logic \ Human [Human Orc Orc
Warrior Archer Warrior Archer

® Complex actions on model

® May affect multiple models

e Example: attack, collide P Redundant Behavior

the . e e .
36 Architecture Revisited gamedeSla%fEﬁtfvzﬁ(f

Model-Controller Separation (Alternate)

Model Controller
® Store/retrieve object data ® Process game actions
® Limit access (getter/setter) ® Determine from input or Al
® Preserve any invariants ® Find all objects effected
® Only affects this object ® Apply action to objects
® Process interactions
. o
In this cas e, Mo dels Look at current game state
are li ghtwei ght ® Look for “triggering” event

® Apply interaction outcome

the . P .
37 Architecture Revisited 8amede$§{§iﬂ}tﬁi¥§

Entity-Component Model

® Keep models as pure data

® Essentially C-structs with no methods

® Allows you to store as cache-friendly arrays

® Components provide the model methods
® Designed as separate controller classes/modules

® Models can mix-and-match components

® Problem: very different way of architecting code
® Pays off in tight behavior loops (cache-optimal)

® [ess pay-off otherwise

38 Architecture Revisited gamedeﬂgmr}mat}‘,’e

11111111111111111111

What is the Problem We Want to Solve?

Classes/Types are Nouns Actions are Verbs

® Methods have verb names ® (apability of a game object

® Method calls are sentences ® (Often just a simple function
® subject.verb(object) ® damage(object)
® gsubject.verb() ® collide(object1,object])

® (lasses related by is-a ® Relates to objects via can-do
® Indicates class a subclass of ® Example: Orc can-do attack
® Example: String is-a Object ® Not necessarily tied to class

| | . : L
® Objects are class instances Example: swapping items

the . P .
39 Architecture Revisited gamedesﬂ%{;;f;}t;itﬁf

Possible Solution; Decorator Pattern

Decorator . Originall. Original
Obj ect unctionality Obj ect

40

the . e el .
Architecture Revisited gamed%la%grlnl}tlatlve

nell university

Java |/O Example

InputStream input = System.in;
mconsole mput }

Reader reader = new InputStreamReader(input);

maers easy to read }

BufferedReader buffer = new BufferedReader(reader);

mle line at a time }
Most of java.io

works this way

41 Architecture Revisited gamedesigninitiative

11111111111111111111

Alternate Solution: Delegation Pattern

Original Reference to > Delegate
Object (KRG Object 1

Forward
Request

Inversion of the Decorator Pattern |

[EE— —

the . e ey g
42 Architecture Revisited gamedesigninitiative

ell university
s

Alternate Solution: Delegation Pattern

Original Reference to > Delegate
Object (KRG Object 2

Forward
Request

Inversion of the Decorator Pattern

[EE— —

the . e ey g
43 Architecture Revisited gamedesigninitiative

- ===

Comparison of Approaches

Decoration Delegation

® Pattern applies to decorator ~ ® Applies to original object

® (Given the original object ® You designed object class
® Requests through decorator ® All requests through object
® Monolithic solution ® Modular solution
® Decorator has all methods ® Each method can have own
® “Layer” for more methods delegate implementation
(e.g. Java I/O classes) ® Like higher-order functions
® Works on any object/class ® Limited to classes you make

the . e ege e
44 Architecture Revisited gamedesigninitiative

The Subclass Problem Revisited

Delegates?

Orc

Human

Warrior

Human Human Orc Orc
Warrior Archer Warrior Archer
A A

Y

Redundant Behavior

at cornell university

the . e el .
45 Architecture Revisited gamedesigninitiative

Summary

® Games naturally fit a specialized MV C pattern
® Want lightweight models (mainly for serialization)
® Want heavyweight controllers for the game loop

® View is specialized rendering with few widgets
® CUGL view 1s handled 1n scene graphs

® Proper design leads to unusual OO patterns
® Subclass hierarchies are unmanageable

® Component-based design better models actions

. L. the . e ege e
46 Architecture Revisited gamedesigninitiative

1111111 ell university
e

