
gamedesigninitiative
at cornell university

the

Game Architecture
Revisited

Lecture 4



gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop2 

Recall: The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions60 times/s

=
16.7 ms
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Game Loop3 

Recall: The Game Loop

Update

Draw

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

� Almost everything is in loop
� Except asynchronous actions
� Is enough for simple games

� How do we organize this loop?
� Do not want spaghetti code
� Distribute over programmers



gamedesigninitiative
at cornell university

the

Model
• Defines/manages 
 the program data
• Responds to the 

controller requests

View
• Displays model 
 to the user/player
• Provides interface 

for the controller

Controller
• Updates model in 

response to events
• Updates view with 

model changes 
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Model-View-Controller Pattern

Calls the 
methods of
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Update

Draw

The Game Loop and MVC

� Model: The game state
� Value of game resources
� Location of game objects

� View: The draw phase
� Rendering commands only
� Major computation in update

� Controller: The update phase
� Alters the game state
� Vast majority of your code

Architecture Revisited5
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Structure of a CUGL Application

Application

Scene

Root NodeModels

Scene

Root NodeModels
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Structure of a CUGL Application

Application

Scene

Root NodeModels

Scene

Root NodeModels

•  Configuration
•  Initialization 
•  Termination
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Structure of a CUGL Application

Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant
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Structure of a CUGL Application

Application

Scene

Root NodeModels

Scene

Root NodeModels

View

Controller(s)
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The Application Class

� CUGL and SDL3 do not use a main() function
� They register specific callbacks with SDL3
� This is better for asynchronous event support

� CUGL does this through the Application class
� The on-methods (onStartup, etc.) are the callbacks
� As are the method update() and draw()

� But you must register your Application subclass
� You do this through the CU_ROOTCLASS macro
� This creates a unique pointer and sends it to SDL3

Architecture Revisited10
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The Application Class

� CUGL and SDL3 do not use a main() function
� They register specific callbacks with SDL3
� This is better for asynchronous event support

� CUGL does this through the Application class
� The on-methods (onStartup, etc.) are the callbacks
� As are the method update() and draw()

� But you must register your Application subclass
� You do this through the CU_ROOTCLASS macro
� This creates a unique pointer and sends it to SDL3
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This happens at compile time, not runtime!
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The Constructor

� Effectively your main()
� Called before anything else
� The backend not initialized!
� Cannot use SDL3 functions

� Defines the app settings
� The application name
� The initial window size
� Things SDL3 needs to start

� Nothing else!

Architecture Revisited12

The Application Lifestages

onStartup()

� After backend is initialized

� Loads the game assets
� Attaches the asset loaders
� Loads immediate assets

� Starts any global singletons
� Example: AudioEngine

� Creates any scenes
� But does not launch yet
� Waits for assets to load
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update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes
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The Application Lifestages

draw()

� Called each animation frame

� Delegates to Scene class

� Scene draws the scene graph
� Activates the pipeline
� Sends data to the pipeline

� Mostly done for you
� Scene has all this code
� Only override if you need 

a custom graphics pipeline
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onShutdown()

� Called when quitting
� Allows you to clean up
� Delete all objects
� Deactivate all services

� You must do this
� Might leave zombie threads
� SDL3 will crash if don’t

� But generally easy
� Set shared pointers to null

Architecture Revisited14

The Application Lifestages

Anything Else?

� Other on-methods exist
� onSuspend/onResume
� onLowMemory
� onResize

� Default for them is okay
� But might need to override
� Will see this later

� See documentation for more
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� 16.7 ms not guaranteed!
� Even for optimized code
� Result of external factors

� Regularly see minor jitter
� “In-between” code
� Potential Vsync delay

� Occasional major jitter
� Dynamic library loading
� Cost of debugging tools

Game Loop15 

Problems With the Game Loop

Update

Draw

60 times/s
=

16.7 ms
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� 16.7 ms not guaranteed!
� Even for optimized code
� Result of external factors

� Regularly see minor jitter
� “In-between” code
� Potential Vsync delay

� Occasional major jitter
� Dynamic library loading
� Cost of debugging tools

Game Loop16 

Problems With the Game Loop

Update

Draw

60 times/s
=

16.7 ms Variations mean simulations 

are not deterministic!
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Physics and Non-Determinism

??
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How To Guarantee Determinism?

� Need to decouple simulation from other code
� Cannot be delayed by drawing
� Cannot be affected by OS externalities

� Put this on a separate thread?
� Thread management still has some overhead
� Have to synchronize with input/drawing thread (bad!)

� Create a separate logical loop?
� Simulation loop runs at its own fixed rate
� Draw method simply draws what it has so far

Architecture Revisited18
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The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)
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The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)
dt

secs called only when step 
seconds have passed
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These Are All Possible

preUpdate

Draw

fixedUpdate

postUpdate

preUpdate

postUpdate

fixedUpdate

fixedUpdate

Draw

preUpdate

Draw

postUpdate



gamedesigninitiative
at cornell university

the

Architecture Revisited22

Problem: Jerky Motion

Each Image is a result of fixedUpdate

Draw Draw

Draw

Draw Draw

Draw

Draw Draw
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The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)

Interpolate drawing position

left
over
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CUGL Supports Both Loops

Update

Draw

preUpdate

Draw

fixedUpdate

postUpdate

setDeterministic(false) setDeterministic(true)
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Scene Structure

Architecture Revisited25

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Ownership

Collaboration
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Scene Structure
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Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Collaboration

� Collaboration
� Must import class/interface
� Instantiates an object OR
� Calls the objects methods

� Ownership
� Instantiated the object
� Responsible for disposal
� Superset of collaboration

Ownership
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Avoid Cyclic Collaboration

Y X

collaborates with Y X

Z

collaborates
with

Controller

collaborates with
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Scene Structure

Architecture Revisited28

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

?
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CUGL Views: Scene Graphs

Architecture Revisited29

Root Node

Scene

Node Node

Node Node Node Node

Model

Model
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CUGL Views: Scene Graphs
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Root Node

Scene

Node Node

Node Node Node Node

Model

Model
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CUGL Views: Scene Graphs
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Root Node

Scene

Node Node

Node Node Node Node

Model

Model

Topic for Another Lecture
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Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

� Implements object logic
� Complex actions on model
� May affect multiple models
� Example: attack, collide

Architecture Revisited32

Model-Controller Separation (Standard)

Controller

� Process user input
� Determine action for input
� Example: mouse, gamepad
� Call action in the model

Traditional controllers 
are “lightweight”
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Classic Software Problem: Extensibility

� Given: Class with some base functionality
� Might be provided in the language API
� Might be provided in 3rd party software

� Goal: Object with additional functionality
� Classic solution is to subclass original class first
� Example: Extending GUI widgets (e.g. Swing)

� But subclassing does not always work…
� How do you extend a Singleton object?

Architecture Revisited33
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� Games have lots of classes
� Each game entity is different
� Needs its own functionality 

(e.g. object methods)

� Want to avoid redundancies
� Makes code hard to change
� Common source of bugs

� Might be tempted to subclass
� Common behavior in parents
� Specific behavior in children

Architecture Revisited34

Problem with Subclassing

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior



gamedesigninitiative
at cornell university

the

� Games have lots of classes
� Each game entity is different
� Needs its own functionality 

(e.g. object methods)

� Want to avoid redundancies
� Makes code hard to change
� Common source of bugs

� Might be tempted to subclass
� Common behavior in parents
� Specific behavior in children
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Problem with Subclassing

Human
Warrior

Orc
Warrior

Human
Archer

Orc
Archer

ArcherWarrior

NPC

Redundant Behavior

No Help
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Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

� Implements object logic
� Complex actions on model
� May affect multiple models
� Example: attack, collide
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Model-Controller Separation (Standard)

Redundant Behavior

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC
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Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object
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Model-Controller Separation (Alternate)

Controller

� Process game actions
� Determine from input or AI
� Find all objects effected
� Apply action to objects

� Process interactions
� Look at current game state
� Look for “triggering” event
� Apply interaction outcome

In this case, models 
are lightweight
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Entity-Component Model

� Keep models as pure data
� Essentially C-structs with no methods
� Allows you to store as cache-friendly arrays

� Components provide the model methods
� Designed as separate controller classes/modules
� Models can mix-and-match components

� Problem: very different way of architecting code
� Pays off in tight behavior loops (cache-optimal)
� Less pay-off otherwise

Architecture Revisited38
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Classes/Types are Nouns

� Methods have verb names

� Method calls are sentences
� subject.verb(object)
� subject.verb()

� Classes related by is-a
� Indicates class a subclass of
� Example: String is-a Object

� Objects are class instances

Architecture Revisited39

What is the Problem We Want to Solve?

Actions are Verbs

� Capability of a game object

� Often just a simple function
� damage(object)
� collide(object1,object1)

� Relates to objects via can-do
� Example: Orc can-do attack
� Not necessarily tied to class
� Example: swapping items
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Reference to
base object

New
Functionality
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Possible Solution: Decorator Pattern

Original
Object

Decorator
Object

Request Original
Functionality
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Java I/O Example

InputStream input = System.in;

Reader reader = new InputStreamReader(input);

BufferedReader buffer = new BufferedReader(reader);

Architecture Revisited41

Built-in console input

Make characters easy to read

Read whole line at a time
Most of java.io 
works this way
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Reference to
delegate

Architecture Revisited42

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern
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Reference to
delegate
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Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern

Delegate
Object 2



gamedesigninitiative
at cornell university

the

Decoration

� Pattern applies to decorator
� Given the original object
� Requests through decorator

� Monolithic solution
� Decorator has all methods
� “Layer” for more methods

(e.g. Java I/O classes)

� Works on any object/class

Architecture Revisited44

Comparison of Approaches

Delegation

� Applies to original object
� You designed object class
� All requests through object

� Modular solution
� Each method can have own 

delegate implementation
� Like higher-order functions

� Limited to classes you make
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The Subclass Problem Revisited

Warrior

Archer

Orc

Human
Slot

Slot

Slot

NPC

Delegates?

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior
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Summary

� Games naturally fit a specialized MVC pattern
� Want lightweight models (mainly for serialization)
� Want heavyweight controllers for the game loop
� View is specialized rendering with few widgets

� CUGL view is handled in scene graphs

� Proper design leads to unusual OO patterns
� Subclass hierarchies are unmanageable
� Component-based design better models actions

Architecture Revisited46


