
Lecture 4:
Models

CS 5150, Spring 2026

Administrative reminders

• Project Pitches are being reviewed (Response: Latest by Jan 30)
• Approve/Refinement/Reject

• Team Assignments

• Next: Meet with your clients, work on Project Plan
• Feb 5: In class activity: Preparing requirements, milestones, etc.

• Course staff email: cs-5150-staff@cornell.edu
• But Ed preffered

• TA office hours: Wed 1-2 PM, 441 Statler Hall

mailto:cs-5150-staff@cornell.edu
mailto:cs-5150-staff@cornell.edu
mailto:cs-5150-staff@cornell.edu
mailto:cs-5150-staff@cornell.edu
mailto:cs-5150-staff@cornell.edu

Requirements
… continued from last lecture

Previously …

• Agile models

• XP

• Requirements:
• Heavyweight v Lightweight

• Functional vs Non-Functional

Eliciting requirements

5

Interviews

• Difficult, but essential

• Tips:
• Allow plenty of time

• Prepare before meeting client

• Keep full notes

• Clarify what you do not
understand
• Define domain-specific terminology

• Repeat what you hear

• Relevant for all client meetings

• Consider all stakeholders

• Ask questions
• "Why do you do things this way?"

• "Is this essential?"
• Be wary – impact may not be

obvious

• "What are the alternatives?"

6

Negotiation and Prioritization

• Conflicts, and difficulties
affecting cost and schedule,
must be resolved with client
• Help client understand the

tradeoffs

• Be open to suggestions

• Incremental delivery (e.g., Agile
sprints) encourages regular
prioritization

7

Stories & scenarios

• Don’t start with formal
specifications
• Most clients can't relate to them
• Difficult to evaluate completeness

• Stories put devs, client on same
wavelength
• Describe actors and their goals
• High-level, "big picture"
• Lavish detail about context

• Helps crystalize alternative viewpoints
• Refocus by asking which details are

relevant

• Scenarios detail interactions with
system
• Agile user stories - narrative scenarios

with moderate detail
• Often written on cards
• Devs break into tasks to estimate effort
• Prioritized by clients for inclusion in a

sprint
• Postponed stories may be revised with

minimal rework

• Structured scenarios provide more
detail
• Tool for clarifying requirements,

checking completeness

8

Usage scenarios (or Stories)

• Illustrates some interaction with
a proposed system

• Use specific examples from a
user's point of view

• Clarifies many functional
requirements

• Especially good for analyzing off-
nominal behavior

• Must include:
• Purpose
• User or transaction being followed
• Assumptions about equipment
• Steps of scenario

• Should consider (corner cases)
• What could go wrong
• Concurrent activities
• Changes to system state

• Avoid system details that pertain
to design

9

Examples

• “As a user, I want a password reset page” – Incomplete

• “As a locked-out user, I want a secure way to reset my password, so
that I can regain access without contacting support”

• Security perspective: “As a security administrator, I want password
reset links to expire quickly, so that accounts are protected from
unauthorized access.”

• Edge cases: “If I upload oversized image (larger than 5MB), when I
upload it, then I should see a helpful error message”

• System state: “Password resets should be disallowed during system
upgrades”

Developing scenarios with clients

• Choose a viewpoint

• Identify purpose,
actors, equipment, procedure

• Ask clarifying questions

• Example: online exam system

11

Online exam system: Viewpoints?

12

Online exam system scenario: typical student

• Purpose: Describe how a typical student uses the system to take an
exam.

• User:

• Equipment:

• Steps:

13

Requirements Modeling

• Need to bridge requirements
and design
• Leverage abstraction

• Exploit patterns

• Identify invariants

• Improve precision

• UML

• Use cases

• Activity and flow diagrams

• State charts

• …

• Future lecture

Read Ian Sommerville’s book: Chapter 4 and 5

16

Requirements steps

1. Elicitation & Analysis

2. Modeling

3. Specification

• Heavyweight
• Document formal specification

before beginning design

• Lightweight
• Relevant requirements developed

during sprints
• But work out system-level

requirements upfront

• Avoid specification unless
necessary
• Models, prototypes clearer to client
• Sometimes details are important

17

Models

Lecture goals: Modeling

• Select appropriate models to improve communication during multiple
process steps (requirements, architecture, program design)

• Visualize models using UML (Unified Modeling Language)

Purpose of models

• Simplification of reality

• Facilitates communication
during process steps
• Requirements

• Architecture (system design)

• Program design

• Need multiple models
• Different perspectives

• Different levels of completeness,
formality

• Larger, more complex projects
benefit from more formality

• Most models are consumed by
humans

Representing models

• UML: Unified Modeling
Language
• Models consist of diagrams and

specifications
• Many different diagram types
• Particularly well suited to object-

oriented design

• Can serve many purposes
• Facilitate discussion
• Provide documentation
• Generate code

• Why not code?
• Can have multiple models with

simplifications serving different
perspectives

• Code usually must pick a single
abstraction; can't manifestly show
correctness for other perspectives

• Code can introduce syntactic
distractions, platform details

• Sometimes, (pseudo)code is the
clearest specification

Modeling perspectives

• External
• Represent the (simplified) context

of the system wrt environment

• Interaction
• How do user and component

interactions proceed?

• E.g., Use Cases, Sequence
Diagrams

• Structural
• How are system components

organized?

• How is data represented?
E.g., Class Diagrams

• Behavioral
• How system responds to

events, changes over time

• E.g., Data flow Diagram,
State/Transtion Diagrams

Interaction models

• Modeling user interactions helps catalog functional requirements
• Use case diagrams

• Modeling inter-system interaction helps highlight potential
communication problems
• Sequence diagrams

Use cases

• Discrete task involving external
interaction with the system

• Actor
• A role, not an individual

• Beneficiary or instigator

• May be other systems

• Use specific, not generic names

• Use case

Pair with textual description

• Metadata
• Name of use case
• Goal of use case
• Actor(s)
• Trigger
• Preconditions
• Postconditions

• Flow of events
• Basic flow
• Alternate flows
• Exceptions

• Name: Take exam

• Goal: Enables a student to take an
exam online with a web browser

• Actor(s): ExamTaker

• Trigger: ExamTaker is notified that
the exam is ready to be taken

• Preconditions: ExamTaker is
registered for course; ExamTaker
has authentication credentials

• Postconditions: Completed exam is
ready to be graded

Basic flow ("Take exam" use case)

1. ExamTaker connects to server via web browser

2. Server checks whether ExamTaker is already authenticated; if not,
triggers authentication process

3. ExamTaker selects an exam from list

4. ExamTaker repeatedly selects a question and either types in a
new solution, edits an existing solution, or uploads a file with a
solution

5. ExamTaker either submits exam or saves current state

6. When exam is submitted, server checks that all questions have
been attempted and sends acknowledgement to ExamTaker

Discuss

• What could be some alternate or erroneous scenarios for the “Take
Exam” use case?

Alternative flows

Alternate flow

• Alternative path to successful
completion of use case

• Example: Take exam
• Resuming exam from saved state

• Solution file format not accepted

• Submission is incomplete

Exceptions

• Lead to failure of use case

• Example: Take exam
• Authentication failure

Relationships

<<extends>>

• Defer extra detail to other use
cases
• Useful for alternate flows and

exceptions

<<includes>>

• Include steps from another use
case
• Useful when common procedure is

required in multiple contexts

Sequence Diagrams

• Show sequence of interactions
(ordering, causal relationships)
between actors and objects
• Excellent for documenting

communication protocols

• Networking examples:
https://www.eventhelix.com/net
working

Sommerville, Software Engineering

https://www.eventhelix.com/networking
https://www.eventhelix.com/networking

Sequence Diagrams

• A more complex example

• Can be used for code
generation

Behavioral Models

• Model dynamic behavior of
system during execution

• How does system process data
or respond to events?

• Data-driven models
• Show sequence of processing

steps from input to output

• Event-driven models
• How does system respond to

events? (internal and external)

• Assumes finite number of
application states

• Great for embedded, real-time
systems

Data flow (activity) diagrams

• Example Task: Chain of Processing in insulin pump software

• Activity: rounded rectangle

• Data: rectangle or labeled edge

• Data source/sink: rectangle

• Beginning/end: circle

Sommerville, Software Engineering

Example: University Admissions

Refined example

Refined example, continued

How to specify logic?

• Data flow & sequence diagrams
show high-level flow; must be
augmented by specifications for
low-level behavior

• Decision table
• Process columns from left to right

• Rules are specific and testable

• Can be clearer to clients than code

Flowcharts and pseudocode

Flowchart

• Shows logic (not just flow)

• Used to specify computer
programs before modern
programming languages

Pseudocode

• Compact and precise

• Composable

• Easy to implement

• Harder to see flow
admin_decision (application)

if application.SAT == null then error (incomplete)
if application.SAT > S1 then accept(application)
else if application.GPA > G1 then accept(application)
else if application.SAT > S2 and application.GPA > G2

then accept(application)
else reject(application)

Mathematics

• Many systems are well-
described by mathematical
models
• Differential equations

• Probability distributions

• Integrals

• Filters

• Interpolation

• Curve fits

• Document progression of
approximations and domain
transformations
• Frequency vs. time domain

• Continuous vs. discrete
• Differential vs. difference equations

• Integration vs. quadrature

• Root solve vs. Iteration

• Higher-level specifications give
developers more flexibility, can
improve maintainability

State charts / Transition diagrams (Event
Driven Modeling)
• Model system as a finite set of

states

• A transition moves the system
from one state to another
• Triggered by a condition

• Mathematically, a function from
S⨯C → S

• Can be hierarchical

• Also useful for user interface
navigation

Sommerville, Software Engineering

Transition tables

• Specify state transitions in
textual form
• Useful when transitions are

"dense" (most conditions are
applicable in most states)

• Example: physical buttons on
embedded device

• Can visually check for
completeness

State Next State

Action> Half Power Full Power Timer Door Open Door
Close

Waiting Half Power Full Power

Full
Power

Half Power Set Time

Half
Power

Set Time

…

	Slide 1: Lecture 4: Models
	Slide 2: Administrative reminders
	Slide 3: Requirements
	Slide 4: Previously …
	Slide 5: Eliciting requirements
	Slide 6: Interviews
	Slide 7: Negotiation and Prioritization
	Slide 8: Stories & scenarios
	Slide 9: Usage scenarios (or Stories)
	Slide 10: Examples
	Slide 11: Developing scenarios with clients
	Slide 12: Online exam system: Viewpoints?
	Slide 13: Online exam system scenario: typical student
	Slide 16: Requirements Modeling
	Slide 17: Requirements steps
	Slide 20: Models
	Slide 21: Lecture goals: Modeling
	Slide 22: Purpose of models
	Slide 23: Representing models
	Slide 24: Modeling perspectives
	Slide 25: Interaction models
	Slide 26: Use cases
	Slide 27: Pair with textual description
	Slide 28: Basic flow ("Take exam" use case)
	Slide 29: Discuss
	Slide 30: Alternative flows
	Slide 31: Relationships
	Slide 32: Sequence Diagrams
	Slide 33: Sequence Diagrams
	Slide 34: Behavioral Models
	Slide 35: Data flow (activity) diagrams
	Slide 37: Example: University Admissions
	Slide 38: Refined example
	Slide 39: Refined example, continued
	Slide 40: How to specify logic?
	Slide 41: Flowcharts and pseudocode
	Slide 42: Mathematics
	Slide 43: State charts / Transition diagrams (Event Driven Modeling)
	Slide 44: Transition tables

