Lecture 4:
Models

CS 5150, Spring 2026

Administrative reminders

* Project Pitches are being reviewed (Response: Latest by Jan 30)
* Approve/Refinement/Reject
* Team Assignments

* Next: Meet with your clients, work on Project Plan
* Feb 5: In class activity: Preparing requirements, milestones, etc.

e Course staff email: cs-5150-staff@cornell.edu
e But Ed preffered

e TA office hours: Wed 1-2 PM, 441 Statler Hall

mailto:cs-5150-staff@cornell.edu
mailto:cs-5150-staff@cornell.edu
mailto:cs-5150-staff@cornell.edu
mailto:cs-5150-staff@cornell.edu
mailto:cs-5150-staff@cornell.edu

Requirements

... continued from last lecture

Previously ...

* Agile models
* XP

* Requirements:
* Heavyweight v Lightweight
 Functional vs Non-Functional

Eliciting requirements

Interviews

 Difficult, but essential e Consider all stakeholders
* Tips: * Ask questions
* Allow plenty of time * "Why do you do things this way?"
* Prepare before meeting client * "Is this essential?"
* Keep full notes * Be wary —impact may not be
 Clarify what you do not) obvious , .
understand * "What are the alternatives?

* Define domain-specific terminology
* Repeat what you hear

e Relevant for all client meetings

Negotiation and Prioritization

e Conflicts, and difficulties * Incremental delivery (e.g., Agile
affecting cost and schedule, sprints) encourages regular
must be resolved with client prioritization

* Help client understand the
tradeoffs

* Be open to suggestions

Stories & scenarios

* Don’t start with formal
specifications
* Most clients can't relate to them
* Difficult to evaluate completeness

put devs, client on same
wavelength
* Describe actors and their goals
* High-level, "big picture"
 Lavish detail about context

* Helps crystalize alternative viewpoints

* Refocus by asking which details are
relevant

detail interactions with
system
* Agile user stories - narrative scenarios
with moderate detail
e QOften written on cards
* Devs break into tasks to estimate effort

* Prioritized by clients for inclusion in a
sprint

* Postponed stories may be revised with
minimal rework

 Structured scenarios provide more
detail

* Tool for clarifying requirements,
checking completeness

Usage scenarios (or Stories)

e |llustrates some interaction with * Must include:

a proposed system * Purpose
* Use specific examples from a * User or transaction being followed
user's point of view * Assumptions about equipment

. : Steps of scenario
e Clarifies many functional P

requirements * Should consider (corner cases)
* What could go wrong

* Concurrent activities

* Changes to system state

* Avoid system details that pertain
to design

 Especially good for analyzing off-
nominal behavior

Examples

 “As a user, | want a password reset page” — Incomplete

* “As a locked-out user, | want a secure way to reset my password, so
that | can regain access without contacting support”

 Security perspective: “As a security administrator, | want password
reset links to expire quickly, so that accounts are protected from
unauthorized access.”

* Edge cases: “If | upload oversized image (larger than 5MB), when |
upload it, then | should see a helpful error message”

 System state: “Password resets should be disallowed during system
upgrades”

Developing scenarios with clients

* Choose a viewpoint * Example: online exam system

* |dentify purpose,
actors, equipment, procedure

* Ask clarifying questions

Online exam system: Viewpoints?

Online exam system scenario: typical student

* Purpose: Describe how a typical student uses the system to take an
exam.

* User:
* Equipment:

* Steps:

Requirements Modeling

* Need to bridge « UML
and

* Leverage abstraction

* Exploit patterns
* |dentify invariants State charts

* Improve precision ¢

* Use cases
* Activity and flow diagrams

e Future lecture

Read lan Sommerville’s book: Chapter 4 and 5

Requirements steps

* Heavyweight

C e : * Document formal specification
1. Elicitation & Analysis before beginning design

* Lightweight
_ * Relevant requirements developed
2. Modeling during sprints

e But work out system-level
requirements upfront
o * Avoid specification unless
3. Sp@lelcaUOn necessary
* Models, prototypes clearer to client
* Sometimes details are important

Models

Lecture goals: Modeling

 Select appropriate models to improve communication during multiple
process steps (requirements, architecture, program design)

* Visualize models using UML (Unified Modeling Language)

Purpose of models

 Simplification of reality

 Facilitates communication
during process steps
* Requirements
* Architecture (system design)
* Program design

* Need multiple models
» Different perspectives

* Different levels of completeness,
formality

* Larger, more complex projects
benefit from more formality

* Most models are consumed by
humans

Representing models

 UML: Unified Modeling
Language
* Models consist of and

* Many different diagram types
 Particularly well suited to object-
oriented design
e Can serve many purposes
* Facilitate discussion
* Provide documentation
* Generate code

* Why not code?

* Can have multiple models with
simplifications serving different
perspectives

* Code usually must pick a single
abstraction; can't manifestly show
correctness for other perspectives

e Code can introduce syntactic
distractions, platform details

 Sometimes, (pseudo)code is the
clearest specification

Modeling perspectives

* External e Structural
* Represent the (simplified) context * How are system components
of the system wrt environment organized?

* How is data represented?
E.g., Class Diagrams

* Interaction * Behavioral
* How do user and component * How system responds to
interactions proceed? events, changes over time
* E.g., Use Cases, Sequence * E.g., Data flow Diagram,

Diagrams State/Transtion Diagrams

Interaction models

* Modeling user interactions helps catalog functional requirements
diagrams

* Modeling inter-system interaction helps highlight potential
communication problems

diagrams

Use cases

* Discrete task involving external
interaction with the system

* Actor
o~ f <

e Beneficiary or instigator
* May be other systems peer

[] USe SpECifiC; nOt generiC names EXamTaker\

Pair with textual description

* Metadata * Name: Take exam
* Name of use case * Goal: Enables a student to take an
* Goal C(’f)use case exam online with a web browser
* Actor(s
.+ Trigger * Actor(s): ExamTaker
e Preconditions * Trigger: ExamTaker is notified that
* Postconditions the exam is ready to be taken
* Flow of events * Preconditions: ExamTaker is
e Basic flow registered for course; ExamTaker
e Alternate flows has authentication credentials
* Exceptions * Postconditions: Completed exam is

ready to be graded

Basic flow ("Take exam" use case)

1. ExamTaker connects to server via web browser

2. Server checks whether ExamTaker is already authenticated; if not,
triggers authentication process

3. ExamTaker selects an exam from list

4. ExamTaker repeatedly selects a question and either typesin a
new solution, edits an existing solution, or uploads a file with a
solution

5. ExamTaker either submits exam or saves current state

6. When exam is submitted, server checks that all questions have
been attempted and sends acknowledgement to ExamTaker

Discuss

 What could be some alternate or erroneous scenarios for the “Take
Exam” use case?

Alternative flows

Alternate flow

 Alternative path to successful
completion of use case

* Example: Take exam
* Resuming exam from saved state
 Solution file format not accepted
e Submission is incomplete

Exceptions
e Lead to failure of use case

* Example: Take exam
e Authentication failure

Relationships

<<extends>>

e Defer extra detail to other use
cases

e Useful for alternate flows and
exceptions

ExamTaker
<<<<<<<<<<<

Authentication failure

<<includes>>

* Include steps from another use

Ccase

* Useful when common procedure is
required in multiple contexts

T
l / I____<§.inc]_ud.es2>____|
Authenticate

ExamTaker\ r = = — =<<includes>> _ _ _ -
View feedback

Sequence Diagrams

* Show sequence of interactions wedicl receptionist

(Ord eringl Cd usal relatio nSh i pS) % P: Patientinfo D: Mentcare-DB AS: Authorization
between and objects - | | |
. Viewinfo (PID) report (Info, PID, | |
e Excellent for documenting ' uD) 1 :
communication protocols ipy e e
* Networking examples: ¢a_ut_hgﬁ3at_io_n_ﬂ
https://www.eventhelix.com/net [z) |
WO I’kl ng [authorization OK]) _Piti(_anf i?fg o :

|\ - - _ __ __ = B _|> |
[authorization fail] frror (no access) |
|

Sommerville, Software Engineering

https://www.eventhelix.com/networking
https://www.eventhelix.com/networking

Sequence Diagrams

A more complex example

e Can be used for code
generation

Medical Receptionist

P: PatientInfo

D: MHCPMS-DE

AS: Authorization

[Gendinfo]

Updatelnfo() _

UpdateSummary()

Update PRS (UID)

Message (OK)

Summarize (UID)

Update (PID)

Message (OK) |

(-

Authorize (TF, UID)

Authorization

Update OK

= Summary

Update (PID) _

— 1

Behavioral Models

* Model dynamic behavior of e Data-driven models

system during execution « Show sequence of processing

* How does system process steps from input to output

or respond to ?
* Event-driven models

* How does system respond to
events? (internal and external)

e Assumes finite number of
application

* Great for embedded, real-time
systems

Data flow (activity) diagrams

 Example Task: Chain of Processing in insulin pump software

* Activity: rounded rectangle

* Data: rectangle or labeled edge

 Data source/sink: rectangle

* Beginning/end: circle Blood suger _> Sensor _) Blood suga
|

Calculate
insulin
delivery

: Calculate :
Insulin Control Pump control Insulin
pump pump commands pump requirement

commands

Sommerville, Software Engineering

Example: University Admissions

Acceptance
Application Completed

. form Assemble | application
Applicant O > Evaluate

application
J

Rejection

Refined example

Acknowledgment Acknowledgment
Application
form 7 Completed AND Evaluation
Q Receive] application Begin] request
Applicant documents) evaluation J
) AND
Supporting
documents
O ! .
Pending Applicant

database database

Refined example, continued

O

Rejection
Evaluation
request

O - Evaluation] Acceptance {Financial |0ffer :
J aid

V4

Applicant
database

Special
request

How to specity logic?

* Data flow & sequence diagrams
show high-level flow; must be
augmented by specifications for

SAT >S1

low-level behavior

GPA>G1

SAT between S1 and S2

GPA between G1 and G2

e Decision table

Accept

* Process columns from left to right

Reject

* Rules are specific and testable
 Can be clearer to clients than code

Flowcharts and pseudocode

Flowchart

* Shows logic (not just flow)

* Used to specify computer
programs before modern
programming languages

New
applicant?

Form F
received ‘

New database
record

Update

| database [T~

Notify
student

Application
complete?

Evaluate

Notify
student

Pseudocode
 Compact and precise

 Composable
e Easy to implement
* Harder to see flow

admin_decision (application)
if application.SAT == null then error (incomplete)
if application.SAT > S1 then accept(application)

else if application.GPA > G1 then accept(application)

else if application.SAT > S2 and application.GPA > G2
then accept(application)

else reject(application)

Mathematics

* Many systems are well- * Document progression of
described by mathematical approximations and domain
models transformations

 Differential equations * Frequency vs. time domain

* Probability distributions e Continuous vs. discrete

* Integrals » Differential vs. difference equations
e Filters * Integration vs. quadrature

* Root solve vs. Iteration

Interpolation
Curve fits * Higher-level specifications give

developers more flexibility, can
improve maintainability

State charts / Transition diagrams (Event
Driven Modeling)

* Model system as a finite set of s Rl poe
Sta tes do: ie;ggwer
* A transition moves the system .{g N L
do: displa 7 umber Operation
from one state to another j o e o
* Triggered by a condition - owr /' N
e Mathematically, a function from fmer | closed St c'\
Sx C % S Half power o Enabled 5::; Waiting ™\
———= do: set power Door | do: display do: c!isplay
e Can be hierarchical o T
. Disable @
* Also useful for user interface o o
"Waiting'

navigation

Sommerville, Software Engineering

Transition tables

 Specify state transitions in
textual form

e Useful when transitions are
"dense" (most conditions are
applicable in most states)

* Example: physical buttons on
embedded device

e Can visually check for
completeness

Action> Half Power Full Power Timer Door Open Door
Close

Waiting Half Power Full Power

Full Half Power Set Time

Power

Half Set Time

Power

	Slide 1: Lecture 4: Models
	Slide 2: Administrative reminders
	Slide 3: Requirements
	Slide 4: Previously …
	Slide 5: Eliciting requirements
	Slide 6: Interviews
	Slide 7: Negotiation and Prioritization
	Slide 8: Stories & scenarios
	Slide 9: Usage scenarios (or Stories)
	Slide 10: Examples
	Slide 11: Developing scenarios with clients
	Slide 12: Online exam system: Viewpoints?
	Slide 13: Online exam system scenario: typical student
	Slide 16: Requirements Modeling
	Slide 17: Requirements steps
	Slide 20: Models
	Slide 21: Lecture goals: Modeling
	Slide 22: Purpose of models
	Slide 23: Representing models
	Slide 24: Modeling perspectives
	Slide 25: Interaction models
	Slide 26: Use cases
	Slide 27: Pair with textual description
	Slide 28: Basic flow ("Take exam" use case)
	Slide 29: Discuss
	Slide 30: Alternative flows
	Slide 31: Relationships
	Slide 32: Sequence Diagrams
	Slide 33: Sequence Diagrams
	Slide 34: Behavioral Models
	Slide 35: Data flow (activity) diagrams
	Slide 37: Example: University Admissions
	Slide 38: Refined example
	Slide 39: Refined example, continued
	Slide 40: How to specify logic?
	Slide 41: Flowcharts and pseudocode
	Slide 42: Mathematics
	Slide 43: State charts / Transition diagrams (Event Driven Modeling)
	Slide 44: Transition tables

