
Lecture 3:
Requirements

CS 5150, Spring 2026

1

Administrative Reminders

• Submit project pitch (everyone must submit)
• New: Indicate if you need additional members; any specific skills you are

looking for

• Post on Ed; See Team Matching Survey

• Next:
• Course staff will review pitches and assign team members (by this week)

• First Project Deliverable: Project Plan (Due Feb 5, EOD) – In class activity!

• Assignment 1 is out (Counting Lines of Code) – Due Feb 10, EOD

2

Projects & Processes
… continued from Lecture 2

3

Previously…

• Stakeholders

• Risk, Minimization

• Software Development Processes/Software Development Life Cycle
(SDLC)
• Waterfall
• Modified Waterfall
• Iterative Refinement/Prototyping
• Incremental Delivery
• Agile Methods
• COTS
• Mixed Processes

4

The waterfall model

 e uirement

 tem de i n

 ro r m te n

 er on m inten nce

 ro r m de i n

 m ement on codin

 cce t nce re e e

 e i i it tud

5

Modified waterfall model

 e uirement

 tem de i n

 ro r m te n

 er on m inten nce

 ro r m de i n

 m ement on codin

 cce t nce re e e

 e i i it tud
Waterfall model with
feedback

6

Iterative refinement: Prototyping

• Requirements are hard to elicit without an operational
system
• Especially for user interfaces

• Developers can learn a lot about the domain and
proposed design through prototyping

• Process:
• Create a prototype early on
• Review prototype with clients; test prototype with users
• Clarify requirements, improve design (revise documentation)
• Refine prototype iteratively

• Prototype is not a releasable product!
• Cannot evaluate non-functional requirements without final

system design

7
When does it work well?

Incremental delivery

• Deliver fully-tested increments with subset of functionality
• Start with a base system that matches final architecture, but with dummy

components/missing functionality

• Develop new components along with their test cases in isolation; when
functional, add to base system

• System is periodically built and tested to catch regressions

• Challenges:
• Requires base system with good design, automated testing infrastructure

(high startup overhead)

• Code structure can degrade over time (refactoring is not a new component)

• Increments have incomplete functionality (difficult to evaluate)

8

Examples in industry and govt

• SpaceX: Uses incremental development with spacecraft, launch
vehicles, electronics and avionics, and operational flight hardware
operations

• [1]: “ … SpaceX followed an iterative design process, continually
improving prototypes in response to testing. Traditional product
management calls for a robust plan executed to completion, a recipe
for cost overruns … “

• Government agencies: Vulcan rocket [2]

9

[1] https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-
serious-space-company
[2] https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/

https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/

Agile models

• What is Agile all about?

• Premise: the world is uncertain, and we must be flexible and
responsive to changes

• “ i e oftw re deve o ment” i ener term for fr mework nd
practices outlined in the Agile Manifesto

11

https://agilemanifesto.org/principles.html

https://agilemanifesto.org/principles.html

Agile Manifesto

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

12

Agile methods (eXtreme Programming)

• User stories
• Improves communication

• Incremental planning

• Small releases
• Improves visibility

• Simple design

• Test-first development
• Shifts left

• Periodic refactoring

• Pair programming
• Shifts left

• Collective ownership

• Continuous integration
• Shifts left

• On-site customer
• Improves communication

13

Extreme Programming (XP)

• XP emphasizes how engineers should work – good practices taken to
an extreme

• Examples:
• Continuous testing and integration

• 10-minute build

• Constant discussions with customers

• Full flexibility to change requirements anytime

• Pair programming

• Test-driven development

14

XP Practice:
User Stories

• Concise, user-focused descriptions of desired outcomes

• He under t nd “wh ” nd re kdown r e roject into
manageable tasks

• Different from “re uirement .”

• Ex m e: “ project manager, I want to generate a project status
report so that I can h re ro re with t keho der .”

15

XP Practice: Pair programming

• Pair programming – All production
software is developed by two people sitting
at the same machine.

• Pairs and roles (driver/navigator) are
frequently changed.

• Provides for continuous code development,
collaboration, and review.

16

XP Practice: Test-driven development

• Start with requirements

• Write tests before code

• Develop code to make the tests pass

• Tests run early and often

17

Extreme Programming

18

Scrum implementation of Agile

• Provides management structure that accommodates XP/Agile

• Work scheduled as "time boxes" (sprints)
• 2-4 weeks

• Tasks selected from backlog
• Incomplete work is not automatically carried over

• Sprint product is released, production-quality code + docs
• Sprint planning defines an MVP

• Daily team meetings

19

Agile/scrum workflow

Software Engineering, Tenth Edition. Sommerville 2014
20

Agile/scrum

Benefits

Good visibility and
communication

Accommodates change,
fuzzy requirements

Very popular today for small,
dynamic projects

Challenges

21

Tricky to scale to large organizations

Works best with highly-skilled,
autonomous devs

Hard to validate requirements

Lack of formal docs impedes
maintainence, handoff

Integration and configuration

• When system design is standardized, can better take advantage of
code reuse

• Providers collect lots of configurable components into commercial-
off-the-shelf (COTS) products
• E.g. Enterprise Resource Planning (ERP) platforms

• Developers integrate, configure components based on client
requirements
• Effectively skip system design and program development steps

Pros
• Reduced cost and time

Cons
• Reduced function

22

Mixed processes

Many projects mix elements of multiple methodologies

• If requirements are well-understood, might use Waterfall to define
requirements & system design, then implement using Incremental
Delivery performed in Scrum-like sprints

• If requirements are vague, might use Iterative Refinement to clarify
requirements, followed by Modified Waterfall to build final version
(prototype is discarded)
• Might Integrate & Configure a COTS platform for prototype

• Might develop user interface with iterative refinement, but adopt
another process for data store

23

Phased development

• Decide at the outset to divide a project into multiple phases
• First phase product is quickly brought into (limited) production

• Subsequent phases based on experience from first phase

• Advantages
• Early benefit from initial investment

• Clarifies requirements for later phases

• Costs can be spread out (or subsequent phases can be cancelled)

24

Poll

What methodology was used for the FAA AAS?

Was this an appropriate choice?

PollEv.com/cs5150sp26

25

Summary

• Different development processes are appropriate for different projects
• Processes can evolve during a project

• Processes include common process steps

• Processes must accommodate revision of prior steps

• Beware buzzwords

• Purpose of process is to minimize risk. Risk-reduction practices include:
• Prototyping key components

• Frequent releases, or decomposition into phases

• Early and iterative testing with users/customers

• Promoting visibility

26

Summary

• Heavyweight: Discourages change; more effort upfront to be
confident in design choices
• Beneficial if system has many inter-related components

• Example use: Lockheed Martin

• Lightweight: Accommodates requirements uncertainty
• Iteration can clarify requirements

• Agility can respond to novel markets

• Example use: Amazon

27

Requirements

28

Lecture goals

1. Understand and Document verifiable requirements

2. Elicit requirements from stakeholders

29

30

Requirements: Purpose

• What should a product do?

• What should a product not do?

• How is a product constrained?

• Take client's perspective
• Meeting requirements should

provide meaningful visibility

• Not about design – "what", not
"how"

• How should a product be
tested?

• Risks of insufficient
requirements documentation
• Client dissatisfaction

• Late discovery/rework

• Poor design tradeoffs

• Code is not a specification

31

Top reasons for project failure

Incomplete requirements 13.10%

Lack of user involvement 12.40%

Lack of resources 10.60%

Unrealistic expectations 9.90%

Lack of executive support 9.30%

Changing requirements & specifications 8.80%

Lack of planning 8.10%

System no longer needed 7.50%

• Failure to understand the
requirements led developers to
build the wrong system

• 70%: related to requirements
and user interactions

The CHAOS Report (1994), The Standish Group
32

Example

• Also known as Product Requirements Document (PRD)

33
https://www.atlassian.com/agile/product-management/requirements

https://www.atlassian.com/agile/product-management/requirements
https://www.atlassian.com/agile/product-management/requirements
https://www.atlassian.com/agile/product-management/requirements

Example

• nc ude wh t ou re “not
doin ” we

34

Subphases

1. Analysis: Establish functionality in consultation with stakeholders

2. Modeling: Organize requirements systematically

3. Definition/Specification: Record and communicate precise
requirements

35

Heavyweight vs. Lightweight

Heavyweight

• Gather most requirements
upfront

• Document requirements
formally

Lightweight

• Start with system-level
requirements

• Expand and refine requirements
iteratively (e.g., for each sprint)
• Continual client interaction

Requirement still exist and should
still be documented

36

Types of Requirements

• Functional
• What a product should do

• What a product should not do

• Can be verified locally

• Non-functional
• Aka "quality requirements"

• Property of system as a whole

• Constraints
• Limits how the system can be built

• Examples:
• "When a document link is visited,

it shall display the document only
if the user is authorized to read it;
otherwise, it shall display a
permissions error."

• "Visual feedback from tapping a
control shall be displayed within
100ms of contact."

• "Records of queries issued by
users shall be stored in an Oracle
database."

37

38

Exercise: Refining informal requirements

• "Customers should be able to enjoy the game on their laptop"

How to refine these requirements?

- Games for Kids vs Teens
- Operating System/Device constraints
- Works well on trackpad
- Supporting multiple devices/resolutions (high

throughput/low latency – refresh rates/latency)
- Online vs offline – resource constraints

39

Exercise: Refining informal requirements

• "Customers should be able to enjoy the game on their laptop"

How to refine these requirements?

Power requirements (<= XY Watts)
GPU requirements (max 12GB GPU VRAM)
Different controllers
30fps

40

Validation & Verification

Validation

• "Are you building the right
thing?"
• Would a system satisfying all of

the requirements (and nothing
else) meet the business need?

• Are assumptions in models
consistent with reality?

• Involve client
• User testing
• Acceptance testing

Verification

• "Did you build it right?"
• Implementations should be

verified against requirements
• Design can be verified by analysis
• Process can be verified by audits

• Testing
• Can define pass/fail criteria based

on previous step

42

Requirements Definition

• Audience: Client AND developers

• CS 5150: Use future report/presentation to validate requirements
with client
• " ur under t ndin of our re uirement i th t …"

43

Writing good requirements

• Must be verifiable
• Can it be measured?

• Use proxy measurements if needed

• Are tolerances specified?

• Can you design a test?
• Include pass/fail criteria

• Is it feasible? (to implement AND
to verify)

• Must relate to client-relevant
behavior

• Use consistent wording
• "Shall"

• "Should" if there are exceptions

• Consistent names for
actors, interactions, events

• Use appropriate format
• Flow chart, decision table, ...

• Provide rationale
• Link to requirements being

derived from or depended on

44

Poll: Is this a good requirement?

When the timer expires, the software shall increment
16-bit integer variable `rollOverCount`.

PollEv.com/cs5150sp26

45

Improvement?

The system shall keep a count of how many timer
expirations have occurred, with the ability to tally at

least 15,000 expirations.

46

Realistic tolerances

"The game shall render 30 frames each second on a Nintendo Switch."

47

Poll: What kind of requirement is this?

• “We hou d mi r te our c oud-based backend services from Azure
to W ”

• A: Functional

• B: Efficiency Requirements

• C: Ethical Requirements

• D: Development Requirements

 PollEv.com/cs5150sp26

Tracking and tracing

Objective: facilitate verification, validation, revision

• Complete list

• Unique identifier

• Organized, cross-linked

• Linked to verification activities
• Separate document (e.g., verification matrix)

• Change review procedure

Runs/Tests T1 T2 T3 T4

R1 X X X

R2 X X

R3 X X

R4

49

Activity: Analysis

• Check for
• Completeness
• Consistency

• Example:
1. Telemetry shall be transmitted

every 30 minutes.
2. The radio amplifier shall be

powered off when <30% of battery
charge remains.

• Example:
1. When a calendar is marked

"private," its appointments shall
not be visible to other users.

2. When booking a meeting, the
interface shall suggest time slots
during which all invited attendees
are available.

50

Stakeholder & Viewpoint analysis

• Identify who is affected by the
system (Viewpoints)
• Client

• Customers

• Users (many categories)

• Administrators

• Maintainers

• Effort often not proportional to
utilization
• E.g., administrative capabilities are

often much larger than user
capabilities

51

Brainstorm: Viewpoints for university
admissions system

52

Brainstorm: Viewpoints for university
admissions system

53

Applicants
Admissions office
Financial aid office
Special (athletic, development) offices
Academic departments
Tech support
operations and maintenance

	Slide 1: Lecture 3: Requirements
	Slide 2: Administrative Reminders
	Slide 3: Projects & Processes
	Slide 4: Previously…
	Slide 5: The waterfall model
	Slide 6: Modified waterfall model
	Slide 7: Iterative refinement: Prototyping
	Slide 8: Incremental delivery
	Slide 9: Examples in industry and govt
	Slide 11: Agile models
	Slide 12: Agile Manifesto
	Slide 13: Agile methods (eXtreme Programming)
	Slide 14: Extreme Programming (XP)
	Slide 15: XP Practice: User Stories
	Slide 16: XP Practice: Pair programming
	Slide 17: XP Practice: Test-driven development
	Slide 18: Extreme Programming
	Slide 19: Scrum implementation of Agile
	Slide 20: Agile/scrum workflow
	Slide 21: Agile/scrum
	Slide 22: Integration and configuration
	Slide 23: Mixed processes
	Slide 24: Phased development
	Slide 25: Poll
	Slide 26: Summary
	Slide 27: Summary
	Slide 28: Requirements
	Slide 29: Lecture goals
	Slide 30
	Slide 31: Requirements: Purpose
	Slide 32: Top reasons for project failure
	Slide 33: Example
	Slide 34: Example
	Slide 35: Subphases
	Slide 36: Heavyweight vs. Lightweight
	Slide 37: Types of Requirements
	Slide 38
	Slide 39: Exercise: Refining informal requirements
	Slide 40: Exercise: Refining informal requirements
	Slide 42: Validation & Verification
	Slide 43: Requirements Definition
	Slide 44: Writing good requirements
	Slide 45: Poll: Is this a good requirement?
	Slide 46: Improvement?
	Slide 47: Realistic tolerances
	Slide 48: Poll: What kind of requirement is this?
	Slide 49: Tracking and tracing
	Slide 50: Activity: Analysis
	Slide 51: Stakeholder & Viewpoint analysis
	Slide 52: Brainstorm: Viewpoints for university admissions system
	Slide 53: Brainstorm: Viewpoints for university admissions system

