Lecture 3:
Requirements

CS 5150, Spring 2026

Administrative Reminders

e Submit project pitch (everyone must submit)

* New: Indicate if you need additional members; any specific skills you are
looking for

* Post on Ed; See Team Matching Survey

* Next:

* Course staff will review pitches and assign team members (by this week)
* First Project Deliverable: Project Plan (Due Feb 5, EOD) — In class activity!

e Assignment 1 is out (Counting Lines of Code) — Due Feb 10, EOD

Projects & Processes

... continued from Lecture 2

Previously...

e Stakeholders
* Risk, Minimization

 Software Development Processes/Software Development Life Cycle
(SDLC)

e Waterfall

Modified Waterfall

lterative Refinement/Prototyping
Incremental Delivery

Agile Methods

COTS

Mixed Processes

The waterfall model

Feasibility study

N\
Requirements
AN
System design
N\
Program design
N\
Implementation (coding)
N\
Program testing
N\
Acceptance & release

AN

Operation & maintenance

Modified waterfall model

Feasibility study

Waterfall model with

feedback
A N\
Requirements
4 N
System design
A N
Program design
A N
Implementation (coding)
A AN
Program testing
N
Acceptance & release
I N
y y y y Operation & maintenance

iterative refinement: Prototyping

* Requirements are hard to elicit without an operational
system

* Especially for user interfaces

* Developers can learn a lot about the domain and
proposed design through prototyping

* Process:

Prototype

Create a prototype early on
Review prototype with clients; test prototype with users Refine Review

 Clarify requirements, improve design (revise documentation)
* Refine prototype iteratively

* Prototype is not a releasable product!

e Cannot evaluate non-functional requirements without final
system design

When does it work well?

Incremental delivery

* Deliver fully-tested increments with subset of functionality

e Start with a base system that matches final architecture, but with dummy
components/missing functionality

* Develop new components along with their test cases in isolation; when
functional, add to base system

e System is periodically built and tested to catch regressions

* Challenges:

* Requires base system with good design, automated testing infrastructure
(high startup overhead)

* Code structure can degrade over time (refactoring is not a new component)
* Increments have incomplete functionality (difficult to evaluate)

vehicles, electronics and avionics, and operational flight hardware
operations

e [1]: “... SpaceX followed an iterative design process, continually
improving prototypes in response to testing. Traditional product
management calls for a robust plan executed to completion, a recipe
for cost overruns ... “

* Government agencies: Vulcan rocket [2]

[1] https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-
serious-space-company
[2] https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/

https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://qz.com/281619/what-it-took-for-elon-musks-spacex-to-disrupt-boeing-leapfrog-nasa-and-become-a-serious-space-company
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/
https://spacenews.com/evolution-of-a-plan-ula-execs-spell-out-logic-behind-vulcan-design-choices/

Agile models

* What is Agile all about?

* Premise: the world is uncertain, and we must be flexible and
responsive to changes

» “Agile software development” is a general term for frameworks and
practices outlined in the Agile Manifesto

https://agilemanifesto.org/principles.html

https://agilemanifesto.org/principles.html

Agile Manifesto

* Individuals and interactions over

* Working software
* Customer collaboration
* Responding to change

over
over
over

processes and tools

contract negotiation
following a plan

WETRE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

P A -

= o
' 3 B -
\ .

www.dilbert.com scottadama®aol.com

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

© Scott Adams, Inc./Dist. by UFS, Inc.

26907 ©2007 Scott Adamas, Inc./Dist. by UFS, inc.

I'M GLAD THAT
IT HAS A WAS YOUR
NAME. TRAINING.

|

|
J
/
/

f
/
P
i |

M\ T
e

comprehensive documentation

12

Agile methods (eXtreme Programming)

* User stories * Pair programming
* Improves communication e Shifts left

* Incremental planning * Collective ownership

e Small releases * Continuous integration
* Improves visibility * Shifts left

e Simple design * On-site customer

* Test-first development * Improves communication
 Shifts left

* Periodic refactoring

Extreme Programming (XP)

* XP emphasizes how engineers should work — good practices taken to
an extreme

* Examples:
e Continuous testing and integration

10-minute build

Constant discussions with customers

Full flexibility to change requirements anytime
Pair programming

Test-driven development

Extreme Programming

Test Scenarios

Requirements

Stories

Customer approval

Release

XP Practice:

USER As a | persona
User Stories STORY | want to [action
TEMPLATE solcan benefit .

* Concise, user-focused descriptions of desired outcomes

* Helps understand “why” and breakdown large projects into
manageable tasks

e Different from “requirements.”

 Example: “As a project manager, | want to generate a project status
report so that | can share progress with stakeholders.”

15

XP Practice: Pair programming

* Pair programming — All production
software is developed by two people sitting
at the same machine.

* Pairs and roles (driver/navigator) are @
frequently changed.

: : Cs)
* Provides for continuous code development, =
collaboration, and review.

XP Practice: Test-driven development

e Start with requirements
* Write tests before code
* Develop code to make the tests pass
e Tests run early and often 3

Write

Refactor ‘ code to

ezl pass test

17

Extreme Programming

Plan Release

)

Select User
. Break Down
Stories for this
Stories to Task
Release

Evaluate Release
System Softwa re

Develop/
Integrate/
Test Software

)

18

Scrum implementation of Agile

* Provides management structure that accommodates XP/Agile

e Work scheduled as "time boxes" (sprints)
e 2-4 weeks

 Tasks selected from backlog
* Incomplete work is not automatically carried over

* Sprint product is released, production-quality code + docs
e Sprint planning defines an MVP

* Daily team meetings

Agile/scrum workflow

—

to be done

(Review work

Select
items

Plan
sprint

Product
backlog

Review
sprint

Sprint
backlog

Potentially
shippable
software

20
Software Engineering, Tenth Edition. Sommerville 2014

Agile/scrum

Benefits Challenges

Good visibility and
\Og communication

& Accommodates change,
o fuzzy requirements

Very popular today for small,
dynamic projects

21

Integration and configuration

* When system design is standardized, can better take advantage of
code reuse

* Providers collect lots of configurable components into commercial-
off-the-shelf (COTS) products

* E.g. Enterprise Resource Planning (ERP) platforms

* Developers integrate, configure components based on client
requirements

 Effectively skip system design and program development steps

Pros Cons
e Reduced cost and time e Reduced function

22

Mixed processes

Many projects mix elements of multiple methodologies

* If requirements are well-understood, might use Waterfall to define
requirements & system design, then implement using Incremental
Delivery performed in Scrum-like sprints

* If requirements are vague, might use lterative Refinement to clarify
requirements, followed by Modified Waterfall to build final version
(prototype is discarded)

 Might Integrate & Configure a COTS platform for prototype

* Might develop user interface with iterative refinement, but adopt
another process for data store

Phased development

* Decide at the outset to divide a project into multiple phases
* First phase product is quickly brought into (limited) production
e Subsequent phases based on experience from first phase

e Advantages
* Early benefit from initial investment
 Clarifies requirements for later phases
* Costs can be spread out (or subsequent phases can be cancelled)

Poll

What methodology was used for the FAA AAS?
Was this an appropriate choice?

PollEv.com/cs5150sp26

Summary

* Different development processes are appropriate for different projects
* Processes can evolve during a project
* Processes include common process steps
* Processes must accommodate revision of prior steps
* Beware buzzwords

* Purpose of process is to minimize risk. Risk-reduction practices include:
* Prototyping key components
* Frequent releases, or decomposition into phases
 Early and iterative testing with users/customers
* Promoting visibility

Summary

* Heavyweight: Discourages change; more effort upfront to be
confident in design choices
* Beneficial if system has many inter-related components
 Example use: Lockheed Martin

* Lightweight: Accommodates requirements uncertainty
* |teration can clarify requirements
* Agility can respond to novel markets
 Example use: Amazon

Requirements

Lecture goals

1. Understand and Document verifiable requirements
2. Elicit requirements from stakeholders

LIETLE

How the customer explained How the project leader How the analyst designed it How the programmer wrote What the beta testers How the business consultant
it understood it it received described it

How the project was What operations installed How the customer was billed How it was supported What marketing advertised What the customer really

documented needed
30

Requirements: Purpose

* What should a product do? * Risks of insufficient
« What should a product not do? requirements documentation
* Client dissatisfaction

* Late discovery/rework
* Take perspective * Poor design tradeoffs

* Meeting requirements should
provide meaningful visibility

* Not about design — "what", not
IlhOWII

* How is a product constrained?

e Code is not a specification

* How should a product be
tested?

Top reasons for project failure

Incomplete requirements 13.10% o Failure to understand the

Lack of user involvement 12.40% req uirements |ed developers to
Lack of resources 10.60% bUI|d the wrong System

Unrealistic expectations 9.90%

o/ . .
T — 030 ©* 70%: related to requirements

Changing requirements & specifications 8.80% d nd user interactions

Lack of planning 8.10%

System no longer needed 7.50%

The CHAOS Report (1994), The Standish Group

= XUConfluence spaces ~

&
&
N

|

(7o

-Gl

Example

* Also known as Product Requirements Document (PRD)

Pages / Mobile Development Team / Product requirements

People Create

e ¥

Mobile Web Requirements

Created by Mitch Davis, last modified just a moment ago

Target release
Epic

Document status
Document owner
Designer
Developers

QA

1.0

[¥) MDT-18 - Mobile optimized web app TO DO
DRAFT

@ Cassie Owens

@ Harvey Jennings

@ Kevin Campbell

Requirements

User story title
1 Facebook Integration

Y JIRA| MDT-13

2 Activity Stream

W JRA| MDT-14

3 Post Updates

W JRA| MDT-15

4 API

Y JIRA| MDT-16

User story description

A user wants to sign up via Facebook

A user wants to view the latest updates via the
mobile dashboard so that they can get a better
understanding of what is in place

A user wants to be able to post status updates on the go

A developer wants to integrate with the mobile
app so that they can embed the activity stream
on their website

https://www.atlassian.com/agile/product-management/requirements

Priority

MUST HAVE

MUST HAVE

MUST HAVE

SHOULD HA...

Notes

« We will need to talk to Cassie Owens about this one.
« There has also been some research done on this (see
Facebook integration prototype)

The key things we will need to support:

« Text status updates

« Mentions

« Support for images

« Smart embedding for things like YouTube videos etc.

« We should chat to Team Dyno as they did something
similar.

33

https://www.atlassian.com/agile/product-management/requirements
https://www.atlassian.com/agile/product-management/requirements
https://www.atlassian.com/agile/product-management/requirements

Example

* Includes what you are “not
doing” as well

Goals

» Our goal is to create a mobile version of the website. Sometimes users click on a link in an ¢
notification using their mobile phone and need to be able to access our application from mot
Chrome or Safari.

« We want to meet feature parity with most functions - except we can skip creating events.

Background and strategic fit

We all know mobile is on the rise. A recent survey to customers showed that 85% of users use the
mobile on a daily basis. Most of our customers also use competitor apps, so this is something we r
to have. We will be able to measure our success through analytics and can use the website today
baseline.

Customer research

e Customer interview - Netflix
o Customer interview - Homeaway
e Customer interview - Bitbucket

User interaction and design

Description Login screen Activity stream

Mockup

9

Teams In Space

Questions

Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome
What about Google Apps « We think this is important, but not for version one.

« We can look at this at a later stage.

« It might be worth someone looking into a shared notification library to do this.
Are we supporting Blackberry? « Again, not for initial version - but we haven't had much demand for this.

Should we have an offline mode? « We've talked about the pros and cons. In brief:
@ Seamless experience for customers, they won't notice if there is a connection issue
€D Most of our competitors don't have this
B Could be expensive to build
@ Should we spike this at a later sprint?

Not Doing

« Google Apps Authentication - out of scope, see above for details
» Blackberry support - we won't look at doing this, if demand picks up we can look at it.
« Native app. We are starting with a mobile web view first and get back to a native app depending on feedback that we get.

@ Like Be the first to like this requirements | #

Subphases

1. Analysis: Establish functionality in consultation with
2. Modeling: Organize requirements systematically

3. Definition/Specification: Record and communicate precise
requirements

Heavyweight vs. Lightweight

Heavyweight
* Gather most requirements
upfront

* Document requirements
formally

Lightweight

 Start with system-level
requirements

* Expand and refine requirements
iteratively (e.g., for each sprint)
e Continual client interaction

Requirement still exist and should
still be documented

Types of Requirements

* Functional * Examples:
 What a product should do * "When a document link is visited,
 What a product should not do it shall display the document only

if the user is authorized to read it;

* Can be verified locall
Y otherwise, it shall display a

* Non-functional permissions error."
e Aka "quality requirements" * "Visual feedback from tapping a
* Property of system as a whole control shall be displayed within

100ms of contact."

* Constraints . o
. , * "Records of queries issued by
* Limits how the system can be built users shall be stored in an Oracle

database."

Non-Functional
Requirements

Product Organizational External
Requirements Requirements Requirements

Usability
Requirements
Performance Space
Requirements Requirements

Efficency Dependability Security Regulatory Ethical
Requirements Requirements Requirements Requirements Requirements

Environmental Operational Development Legislative
Requirements Requirements Requirements Requirements
Accounting Safety/Security
Requirements Requirements

38

Exercise: Refining informal requirements

* "Customers should be able to enjoy the game on their laptop"

How to refine these requirements?

- Games for Kids vs Teens

- Operating System/Device constraints

- Works well on trackpad

- Supporting multiple devices/resolutions (high
throughput/low latency — refresh rates/latency)

- Online vs offline — resource constraints

Exercise: Refining informal requirements

* "Customers should be able to enjoy the game on their laptop"

How to refine these requirements?

Power requirements (<= XY Watts)

GPU requirements (max 12GB GPU VRAM)
Different controllers

30fps

Validation & Verification

Validation
* "Are you building the right
thing?"
* Would a system satisfying all of

the requirements (and nothing
else) meet the business need?

e Are assumptions in models
consistent with reality?
* Involve

* User testing
* Acceptance testing

Verification
* "Did you build it right?"
* Implementations should be
verified against requirements
* Design can be verified by analysis

* Process can be verified by audits

* Testing

* Can define pass/fail criteria based
on previous step

Requirements Definition

* Audience: Client AND developers

e CS5150: Use future report/presentation to validate requirements
with client
e "Our understanding of your requirements is that ..."

Writing good requirements

* Must be verifiable e Use consistent wording
* Can it be measured? e "Shall"
* Use proxy measurements if needed e "Should" if there are exceptions
* Are tolerances specified? e Consistent names for
* Can you design a test? actors, interactions, events
* Include pass/fail criteria e Use appropriate format
* |s it feasible? (to implement AND -
to verify) * Flow chart, decision table, ...
* Must relate to client-relevant * Provide rationale
behavior * Link to requirements being

derived from or depended on

Poll: Is this a good requirement?

When the timer expires, the software shall increment
16-bit integer variable rollOverCount .

PollEv.com/cs5150sp26

45

Improvement?

The system shall keep a count of how many timer
expirations have occurred, with the ability to tally at
least 15,000 expirations.

Realistic tolerances

"The game shall render 30 frames each second on a Nintendo Switch."

Poll: What kind of requirement is this?

* “We should migrate all our cloud-based backend services from Azure
to AWS”

* A: Functional

* B: Efficiency Requirements

e C: Ethical Requirements

* D: Development Requirements

PollEv.com/cs5150sp26

Tracking and tracing

Objective: facilitate verification, validation, revision

’ Completellst Runs/Tests T1 T2 T3 T4

* Unique identifier R1 X X X
* Organized, cross-linked R —

R3 X X
 Linked to verification activities R4

e Separate document (e.g., verification matrix)

* Change review procedure

Activity: Analysis

* Check for

 Completeness
* Consistency

* Example:

1.

Telemetry shall be transmitted
every 30 minutes.

2. The radio amplifier shall be
powered off when <30% of battery
charge remains.

* Example:

1. When a calendar is marked
"private," its appointments shall
not be visible to other users.

2. When booking a meeting, the

interface shall suggest time slots
during which all invited attendees
are available.

Stakeholder & Viewpoint analysis

* |dentify who is affected by the e Effort often not proportional to

system (Viewpoints) utilization
* Client * E.g., administrative capabilities are
e Customers often much larger than user
capabilities

e Users (many categories)
* Administrators
* Maintainers

Brainstorm: Viewpoints for university
admissions system

Brainstorm: Viewpoints for university
admissions system

Applicants

Admissions office

Financial aid office

Special (athletic, development) offices
Academic departments

Tech support
operations and maintenance

	Slide 1: Lecture 3: Requirements
	Slide 2: Administrative Reminders
	Slide 3: Projects & Processes
	Slide 4: Previously…
	Slide 5: The waterfall model
	Slide 6: Modified waterfall model
	Slide 7: Iterative refinement: Prototyping
	Slide 8: Incremental delivery
	Slide 9: Examples in industry and govt
	Slide 11: Agile models
	Slide 12: Agile Manifesto
	Slide 13: Agile methods (eXtreme Programming)
	Slide 14: Extreme Programming (XP)
	Slide 15: XP Practice: User Stories
	Slide 16: XP Practice: Pair programming
	Slide 17: XP Practice: Test-driven development
	Slide 18: Extreme Programming
	Slide 19: Scrum implementation of Agile
	Slide 20: Agile/scrum workflow
	Slide 21: Agile/scrum
	Slide 22: Integration and configuration
	Slide 23: Mixed processes
	Slide 24: Phased development
	Slide 25: Poll
	Slide 26: Summary
	Slide 27: Summary
	Slide 28: Requirements
	Slide 29: Lecture goals
	Slide 30
	Slide 31: Requirements: Purpose
	Slide 32: Top reasons for project failure
	Slide 33: Example
	Slide 34: Example
	Slide 35: Subphases
	Slide 36: Heavyweight vs. Lightweight
	Slide 37: Types of Requirements
	Slide 38
	Slide 39: Exercise: Refining informal requirements
	Slide 40: Exercise: Refining informal requirements
	Slide 42: Validation & Verification
	Slide 43: Requirements Definition
	Slide 44: Writing good requirements
	Slide 45: Poll: Is this a good requirement?
	Slide 46: Improvement?
	Slide 47: Realistic tolerances
	Slide 48: Poll: What kind of requirement is this?
	Slide 49: Tracking and tracing
	Slide 50: Activity: Analysis
	Slide 51: Stakeholder & Viewpoint analysis
	Slide 52: Brainstorm: Viewpoints for university admissions system
	Slide 53: Brainstorm: Viewpoints for university admissions system

