
Lecture 2:
Projects & Processes

CS 5150, Spring 2026

1

Administrative Reminders

• Project Team Matching Survey

• Project Pitch

• Team-forming threads

• See internal project descriptions

• Firehose upfront
• Need to cover all the basics so you

can write your project plan

• Concepts are high-level, abstract;
try to correlate them with a
concrete example (like FAA AAS)

2

Project

• How do I pick a project?
• Consider this as an opportunity to learn something new (e.g., new language)
• Do not go into a project where you are not familiar with anything!

• How do I pick a team/teammates?
• Consider working style preferences, program,
• Identify complementary skill-set (front-end/backend, source/target language)

• See team matching survey responses:
https://docs.google.com/spreadsheets/d/1ySghKRdIm0UGQYlwlOJY
WPp53CiSUAP4zaVRWrRDlqI/edit?usp=sharing

3

https://docs.google.com/spreadsheets/d/1ySghKRdIm0UGQYlwlOJYWPp53CiSUAP4zaVRWrRDlqI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ySghKRdIm0UGQYlwlOJYWPp53CiSUAP4zaVRWrRDlqI/edit?usp=sharing

Project Options

• Internal projects + internal feature (Client: course staff)

• Internal projects + different feature (Client: course staff)

• Non-internal project + feature (Client: course staff)

• Pre-approved external project + feature (Client: fixed external client)
• See external-clients.txt (currently 3 projects)

• Other external project/client (E.g., if you know the project owner)

• All cases require approval from instructor/course staff!

4

Variety

Software is required to serve many
different purposes …

• Control systems (vehicles, industrial
processes)

• Embedded (appliances, medical
devices, remote monitoring)

• Operating systems & drivers

• Developer tools
(IDEs, frameworks, compilers)

• Data processing (billing, benefits)

• Information systems (databases,

digital libraries, search)

• Commerce (shopping, advertising)

• Science (weather forecasting, data
analysis)

• Engineering (CAD/CAM, FEA, EDA)

• Multimedia & entertainment (video
conferencing, games, VR/AR)

• Creativity (3D modeling,
photography)

• Productivity (spreadsheets, desktop
publishing)

5

Variety (cont.)

… in many different settings …

• Embedded firmware

• RTOS

• PC

• Smartphone

• Web browser

• Supercomputer

• Virtualized servers

• Cloud

… for many different people.

• Yourself

• Consumers

• Professionals

• B2B

• Employer/colleagues

• Government agencies

• Prime contractors

• General public

6

… requires versatility

Consequently, there is no “best” way to create software in all cases

• No best operating system

• No best programming language

• No best framework or architecture

• No best development environment/tools

• No best methodology/process

A software engineer must know a wide variety of methods & tools and
select appropriate ones for the project at hand

7

Project stakeholders

• First step in any project:
identify the stakeholders
• Who sets requirements?

• Who decides priorities?

• Who will use your software?

• Who is affected by your software?

• Who writes the check?

• Who takes the fall?

• Stakeholder interests are not always aligned

8

Stakeholders: Developers

• You are a stakeholder
• You have to work with the code

• You have to support the system

• Your reputation is on the line

• You are also an (expensive)
resource
• Biggest cost of software is salaries

of development team

• You have responsibilities
• Competence

• Confidentiality

• Legal compliance (e.g., FERPA)

• Acceptable use & misuse

9

Stakeholders: Client

• Provides resources in exchange
for having the software
developed

• Bears risk in event of project
failure

• Client sets requirements
• Though developers must elicit

them

• Client sets priorities

• Client satisfaction is primary
measure of project success

10

Example: business-to-business

Nikon contracts with Nik Software
to co-develop “Nikon Capture NX”,
a digital photo editor sold to users
of Nikon cameras

• Developer: Nik Software

• Client: Nikon (specifically, a
product manager in their
imaging business division)

11

Poll

Who is the client for general-purpose software products?

PollEv.com/cs5150sp26

12

Stakeholders: Customer, User, Society

• Customer: buys the software or selects it for use by an organization

• User: Actually uses (interfaces with) the software

• Society: may be affected by the software
• Often not represented when stakeholders are consulted

• Advisable to appoint an advocate for their interests
• Automated processes tend to become invisible

• Risks to society should be identified and acknowledged

• Example: Cornell’s Outlook Exchange Service

13

Activity: Stakeholders

1. Read FAA AAS case:
https://sebokwiki.org/wiki/Federal_Aviation_Administration_(FAA)_Adva
nced_Automation_System_(AAS)

2. Turn to your neighbor

3. Identify the stakeholders (developer, client, customer, user) for:
1. canvas.cornell.edu
2. FAA’s Advanced Automation System

4. Select a reporter to share results

(3 minutes)

14

https://sebokwiki.org/wiki/Federal_Aviation_Administration_(FAA)_Advanced_Automation_System_(AAS)
https://sebokwiki.org/wiki/Federal_Aviation_Administration_(FAA)_Advanced_Automation_System_(AAS)

Risk

• All projects require tradeoffs between function, cost, and time

• Many projects encounter difficulties:
• Does not work as expected (function)

• Over budget (cost/resources)

• Behind schedule (time)

• Who should set priorities when deciding tradeoffs?
• The client bears the cost of the project

• The client bears the risks of project failure

• The client should be given the information necessary to make an informed
decision based on their priorities

15

Consequences

• Failed projects have serious
consequences
• Can bankrupt companies

• Managers can lose their jobs

• Users and society may be harmed

• Example: Apple Maps 2012;
Maps chief fired

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower

16

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower

Minimizing risk – communication

• As much as half of delivered
software is never used
• Developers build the “wrong
software” – doesn’t meet client’s
needs

• Developer must work to
understand client, customer, and
user expectations

• Developer may add technical
insights, but client satisfaction is
the primary measure of success

Minimize risk with communication

• Feasibility study

• Requirements and design
(separated)

• Milestones & releases

• User & acceptance testing

• Handover

17

Minimizing risk – visibility

• Those responsible for the project
(client, managers) must know
what is happening

• But most developers …
• Have trouble evaluating progress

• Tend to be overly optimistic

• Consider logging/reporting to be
unnecessary overhead

• Large projects are worse
• Dilution at every level of hierarchy

• In CS 5150, you will provide
visibility via regular progress
reports

• Working software provides good
visibility
• Promoted by Agile methods

• But be upfront about limitations

18

Improving visibility – short dev cycles

• Risk accumulates with time since last check-in

• Deliver working software frequently (weeks rather than months, or
even continuously)
• Clients, customers, & users can evaluate work

• Opportunity to adapt to new circumstances

• Promoted by Agile methods

19

Minimizing risk – management

• Project management
• Track progress against schedule
• Prioritize tasks

• Personnel management
• Allocate the right number of

developers with the right skills at
the right time

• Ensure that developers have a
productive work environment

• Compliance advising
• Understand legal, regulatory,

economic environment

• Development processes
• Enforce best practices to minimize

risk without excessive overhead
• Improve visibility
• Facilitate team productivity
• Ensure quality

20

The software development challenge

21

Problem Specification

???

Solution (product, app, …)

One solution: Code and fix

22

Specification
(maybe)

Deliver?
(maybe)

One solution: Code and fix

• Pros:
• Little to no overhead – just dive in and develop, see progress quickly

• Applicable sometimes for small projects, short-lived prototypes, and/or small
teams

• Cons:

23

One solution: Code and fix

• Pros:
• Little to no overhead – just dive in and develop, see progress quickly

• Applicable sometimes for small projects, short-lived prototypes, and/or small
teams

• Cons:
• No way to assess progress, quality, or risks

• Challenging to manage multiple developers – how synchronize your work

• Harder to accommodate changes w/o major design overhaul

• Unclear delivery of features (scope), timing, and support

24

Is a more structured process necessary?

It establishes an order – provides a model – of software project events

• Forces us to think of “big picture” and follow steps so that we reach it without
glaring deficiencies

• W/o it we may make decisions that are individually on target but collectively
misdirected

• Allows us to organize and coordinate work as as team

• Allows us to track progress and minimize risks, and adjust as necessary

25

Overview of development process steps

• Feasibility
• Define scope

• Catalog benefits, risks

• Evaluate technical feasibility

• Select development process

• Estimate cost, schedule, resource
availability

• Decide: go/no-go

• Requirements
• Define function of system from

client's viewpoint

• Establish constraints ("non-
functional requirements")

• Elicit from consultation with client,
customer, users
• Self-contained study or incremental

• Biggest cause of failed projects

28

Overview of development process steps
(cont.)
• System & interface design

• Select an architecture that
supports requirements

• User interfaces must be iteratively
evaluated with users

• Architectural integrity is key to
maintainable systems

• Program development
• May start with documenting

program design (class & function
definitions)

• Coding!
• What you already know how to do

• May incorporate testing

29

Overview of development process steps
(cont.)
• Acceptance & release

• Product is verified against
requirements by the client
• Ideally with selected customers &

users

• Complete system (with
documentation) delivered to client
• Deployed in production, marketed to

customers

• Operation & maintenance
• System is kept running smoothly

• Bugs discovered and fixed in
production

• New features proposed and
integrated (requirements change)

• May eventually be phased out

30

Key question: How to combine the stages and in what order?

Activity: FAA AAS Discuss

Which steps were handled poorly
for the FAA’s Advanced
Automation System?

(3 minutes)

Feasibility & planning

Requirements

System & interface design

Program development

Acceptance and release

Operations and maintenance

31

Software Methodologies

• Can organize sets of process
decisions by how they address
the common process steps
• Formal vs. informal

• Do steps have pre-defined outputs?

• Duration and ordering

• Heavyweight
• Fully complete (and document)

each step before moving on

• Avoid revisions to work done in
previous steps

• Lightweight
• Schedule work in “time boxes”

that include multiple process steps

• Avoid formal documentation to
more easily accommodate
changes

32

Heavyweight vs lightweight methodologies

Heavyweight

• Processes and tools

• Specifications

• Following a plan

• Client negotiation

Lightweight

• Individuals and interactions

• Working software

• Responding to change

• Client collaboration

Based on the Manifesto for Agile Software Development
http://agilemanifesto.org/33

http://agilemanifesto.org/

Waterfall model: Origins

• Based on traditional engineering
project management
• Long lead time for supplies; must

commit to large orders

• Extremely expensive to change
hardware once built, BoM once
ordered

• Extremely expensive to pause
manufacturing

• At this time in software history,
• Requirements well understood

(automating manual processes)

• Little variety in system design

• Coding was very tedious (no
modern languages/tools) –
benefits from detailed program
design

• Good match for a heavyweight
process

34

The waterfall model

 equirements

System design

 rogram tes ng

Opera on maintenance

 rogram design

 mplementa on (coding)

Acceptance release

Feasibility study

35

Cost of defects

Code Complete, 2nd Edition. McConnell 2004
36

Shift left

• QA is difficult without a working
system
• But working systems aren’t

available until the end of a
waterfall process

• Process decisions can effectively
shift QA left without requiring
formal deliverables after each
step

Better Embedded System Software. Koopman 2010
37

The waterfall model

Advantages

• Separation of tasks
• Aids personnel management

• Process visibility

• Quality control at each step

• Cost monitoring at each step

Disadvantages

• In practice, later stages improve
understanding of earlier stages,
necessitating revision

• Not flexible enough to react to
changing conditions

38

Question: What is missing?

Iteration is required

• Feasibility study needs preliminary requirements and tentative design

• Implementation often reveals gaps in requirements

• User interfaces hard to analyze without actually using them

• Requirements, technology may change during development
• E.g. updated market analysis

39

Modified waterfall model

 equirements

System design

 rogram tes ng

Opera on maintenance

 rogram design

 mplementa on (coding)

Acceptance release

Feasibility study
Waterfall model with
feedback

40

Modified waterfall model

• A fine choice when requirements are well-understood and system
design is fixed
• Automating manual data processing systems (e.g. utility billing)

• New version of system whose functionality derives from earlier product (e.g.
embedded controller)

• Self-contained components/services with a pre-defined interface

• Widely recommended for safety-critical or highly regulated systems
• Requirements must be thoroughly analyzed and documented

• Maybe suitable for CS 5150 projects
• But plan for iteration around user interfaces

41

Iterative refinement: Prototyping

• Requirements are hard to elicit without an operational
system
• Especially for user interfaces

• Developers can learn a lot about the domain and
proposed design through prototyping

• Process:
• Create a prototype early on
• Review prototype with clients; test prototype with users
• Clarify requirements, improve design (revise documentation)
• Refine prototype iteratively

• Prototype is not a releasable product!
• Cannot evaluate non-functional requirements without final

system design

42
When does it work well?

UI Prototyping is popular

43

Iterative refinement: Prototyping

• Pros:
• Client involvement and early feedback

• Improves requirements and specifications

• educes risk of developing the “wrong” product

• Cons:
• Time/cost for developing may be high

• Hard to commit what will be delivered and when

• May end up evolving a poor choice (limit thinking
holistically)

44

	Slide 1: Lecture 2: Projects & Processes
	Slide 2: Administrative Reminders
	Slide 3: Project
	Slide 4: Project Options
	Slide 5: Variety
	Slide 6: Variety (cont.)
	Slide 7: … requires versatility
	Slide 8: Project stakeholders
	Slide 9: Stakeholders: Developers
	Slide 10: Stakeholders: Client
	Slide 11: Example: business-to-business
	Slide 12: Poll
	Slide 13: Stakeholders: Customer, User, Society
	Slide 14: Activity: Stakeholders
	Slide 15: Risk
	Slide 16: Consequences
	Slide 17: Minimizing risk – communication
	Slide 18: Minimizing risk – visibility
	Slide 19: Improving visibility – short dev cycles
	Slide 20: Minimizing risk – management
	Slide 21: The software development challenge
	Slide 22: One solution: Code and fix
	Slide 23: One solution: Code and fix
	Slide 24: One solution: Code and fix
	Slide 25: Is a more structured process necessary?
	Slide 28: Overview of development process steps
	Slide 29: Overview of development process steps (cont.)
	Slide 30: Overview of development process steps (cont.)
	Slide 31: Activity: FAA AAS Discuss
	Slide 32: Software Methodologies
	Slide 33: Heavyweight vs lightweight methodologies
	Slide 34: Waterfall model: Origins
	Slide 35: The waterfall model
	Slide 36: Cost of defects
	Slide 37: Shift left
	Slide 38: The waterfall model
	Slide 39: Iteration is required
	Slide 40: Modified waterfall model
	Slide 41: Modified waterfall model
	Slide 42: Iterative refinement: Prototyping
	Slide 43: UI Prototyping is popular
	Slide 44: Iterative refinement: Prototyping

