

Administrative Reminders

* Project Team Matching Survey * Firehose upfront

* Project Pitch * Need to cover all the basics so you
can write your project plan

* Team-forming threads * Concepts are high-level, abstract;

* See internal project descriptions try to correlate them with a

concrete example (like FAA AAS)

Project

* How do | pick a project?
* Consider this as an opportunity to learn something new (e.g., new language)
* Do not go into a project where you are not familiar with anything!

* How do | pick a team/teammates?
e Consider working style preferences, program,
* |dentify complementary skill-set (front-end/backend, source/target language)

* See team matching survey responses:
https://docs.google.com/spreadsheets/d/1ySghKRdImOUGQYIwIOJY
WPp53CiSUAP4zaVRWrRDIgl/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1ySghKRdIm0UGQYlwlOJYWPp53CiSUAP4zaVRWrRDlqI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ySghKRdIm0UGQYlwlOJYWPp53CiSUAP4zaVRWrRDlqI/edit?usp=sharing

Project Options

* Internal projects + internal feature (Client: course staff)
* Internal projects + different feature (Client: course staff)
* Non-internal project + feature (Client: course staff)

* Pre-approved external project + feature (Client: fixed external client)
e See external-clients.txt (currently 3 projects)

e Other external project/client (E.g., if you know the project owner)
* All cases require approval from instructor/course staff!

Variety

Software is required to serve many

different purposes ... e Commerce

e Control systems e Science

* Embedded * Engineering

. . e Multimedia & entertainment
e Operating systems & drivers

* Developer tools

Creativity

* Data processing * Productivity

* Information systems

Variety (cont.)

... in many different settings ...

* Embedded firmware
* RTOS

e PC

* Smartphone

* Web browser

* Supercomputer

* Virtualized servers
 Cloud

... for many different people.
* Yourself

* Consumers

* Professionals

* B2B

* Employer/colleagues
 Government agencies
* Prime contractors

* General public

.. requires versatility

Consequently, there is no “best” way to create software in all cases
* No best operating system

* No best programming language

* No best framework or architecture

* No best development environment/tools

* No best methodology/process

A software engineer must know a wide variety of methods & tools and
select appropriate ones for the project at hand

Project stakeholders

* First step in any project:

identify the stakeholders

* Who sets requirements?

Who decides priorities?
Who will use your software?
Who is affected by your software?
Who writes the check?
 Who takes the fall?

 Stakeholder interests are not always aligned

Stakeholders: Developers

* You are a stakeholder
* You have to work with the code
* You have to support the system
* Your reputation is on the line

* You are also an (expensive)
resource

* Biggest cost of software is salaries
of development team

* You have responsibilities
* Competence
* Confidentiality
e Legal compliance (e.g., FERPA)
* Acceptable use & misuse

Stakeholders: Client

* Provides resources in exchange * Client sets requirements

for having the software * Though developers must elicit
developed them

* Bears risk in event of project * Client sets priorities
failure

* Client satisfaction is primary
measure of project success

Example: business-to-business

Nikon contracts with Nik Software
to co-develop “Nikon Capture NX”,
a digital photo editor sold to users
of Nikon cameras

CaptureNX 2

* Developer: Nik Software

* Client: Nikon (specifically, a
product manager in their
imaging business division)

guEms =
111111 R
1111111 R
-+ :

M.
:
/
X
g

Poll

Who is the client for general-purpose software products?

PollEv.com/cs5150sp26

Stakeholders: Customer, User, Society

e Customer: buys the software or selects it for use by an organization
e User: Actually uses (interfaces with) the software

* Society: may be affected by the software
e Often not represented when stakeholders are consulted

* Advisable to appoint an advocate for their interests
* Automated processes tend to become invisible

* Risks to society should be identified and acknowledged
* Example: Cornell’s Outlook Exchange Service

Activity: Stakeholders

1. Read FAA AAS case:
https://sebokwiki.org/wiki/Federal Aviation Administration (FAA) Adva
nced Automation System (AAS)

2. Turn to your neighbor

3. ldentify the stakeholders (, , ,) for:

1. canvas.cornell.edu
2. FAA’s Advanced Automation System

4. Select a reporter to share results

(3 minutes)

14

https://sebokwiki.org/wiki/Federal_Aviation_Administration_(FAA)_Advanced_Automation_System_(AAS)
https://sebokwiki.org/wiki/Federal_Aviation_Administration_(FAA)_Advanced_Automation_System_(AAS)

Risk

* All projects require tradeoffs between function, cost, and time

* Many projects encounter difficulties:
* Does not work as expected (function)
* Over budget (cost/resources)
e Behind schedule (time)

* Who should set priorities when deciding tradeoffs?
* The client bears the cost of the project
* The client bears the risks of project failure

* The client should be given the information necessary to make an informed
decision based on their priorities

Consequences

* Failed projects have serious , , :
Apple Maps service loses train stations,

consequences . .
, shrinks tower and creates new airport
* Can bankrupt companies
e Mana gers can lose their jO bs Significant glitches reported in service that replaces Google

Maps on Apple'siOS6 for iPhones and iPads

* Users and society may be harmed WA | 9

* Example: Apple Maps 2012;
Maps chief fired

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower

16

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower

Minimizing risk — communication

* As much as half of delivered
software is never used

* Developers build the “wrong
software” — doesn’t meet client’s
needs

* Developer must work to
understand client, customer, and
user expectations

* Developer may add technical
insights, but client satisfaction is
the primary measure of success

Minimize risk with communication
* Feasibility study

* Requirements and design
(separated)

 Milestones & releases
e User & acceptance testing
e Handover

Minimizing risk — visibility

* Those responsible for the project ¢ In CS 5150, you will provide

(client, managers) must know visibility via regular progress
what is happening reports
* But most developers ... * Working software provides good
 Have trouble evaluating progress visibility
* Tend to be overly optimistic * Promoted by Agile methods
* Consider logging/reporting to be * But be upfront about limitations

unnecessary overhead

 Large projects are worse
 Dilution at every level of hierarchy

Improving visibility — short dev cycles

* Risk accumulates with time since last check-in

 Deliver working software frequently (weeks rather than months, or
even continuously)
* Clients, customers, & users can evaluate work
* Opportunity to adapt to new circumstances
* Promoted by Agile methods

Minimizing risk — management

* Project management * Development processes
* Track progress against schedule * Enforce best practices to minimize
e Prioritize tasks risk without excessive overhead

* Improve visibility
 Facilitate team productivity
* Ensure quality

* Personnel management

* Allocate the right number of
developers with the right skills at
the right time

* Ensure that developers have a
productive work environment

* Compliance advising

* Understand legal, regulatory,
economic environment

The software development challenge

o - £l E)

Problem Specification
Solution (product, app, ...)

21

One solution: Code and fix

Specification
(maybe)

Deliver?
(maybe)

22

One solution: Code and fix

* Pros:
* Little to no overhead —just dive in and develop, see progress quickly

* Applicable sometimes for small projects, short-lived prototypes, and/or small
teams

e Cons:

One solution: Code and fix

* Pros:
* Little to no overhead —just dive in and develop, see progress quickly

* Applicable sometimes for small projects, short-lived prototypes, and/or small
teams

* Cons:
* No way to assess progress, quality, or risks
* Challenging to manage multiple developers — how synchronize your work
* Harder to accommodate changes w/o major design overhaul
* Unclear delivery of features (scope), timing, and support

s a more structured process necessary?

It establishes an order — provides a model — of software project events

* Forces us to think of “big picture” and follow steps so that we reach it without
glaring deficiencies

* W/o it we may make decisions that are individually on target but collectively
misdirected

* Allows us to organize and coordinate work as as team

* Allows us to track progress and minimize risks, and adjust as necessary

Overview of development process steps

* Feasibility * Requirements
* Define scope * Define function of system from
* Catalog benefits, risks client’s viewpoint
e Evaluate technical feasibility * Establish constraints ("non-

functional requirements")

* Elicit from consultation with client,
customer, users
e Self-contained study or incremental

Select development process

Estimate cost, schedule, resource
availability

Decide: go/no-go

Overview of development process steps
(cont.)

e System & interface design * Program development
e Select an architecture that * May start with documenting
supports requirements program design (class & function
e User interfaces must be iteratively definitions)
evaluated with users * Coding!
* What you already know how to do
e Architectural integrity is key to * May incorporate testing

maintainable systems

Overview of development process steps
(cont.)

* Acceptance & release * Operation & maintenance
* Product is verified against e System is kept running smoothly
requirements by the client Bugs discovered and fixed in
 |deally with selected customers & production

users
 Complete system (with
documentation) delivered to client

* Deployed in production, marketed to
customers

* New features proposed and
integrated (requirements change)

* May eventually be phased out

Key question: How to combine the stages and in what order?

Activity: FAA AAS Discuss

Which steps were handled poorly
for the FAA’s Advanced
Automation System?

(3 minutes)

Feasibility & planning
Requirements
System & interface design
Program development

Acceptance and release

Operations and maintenance

31

Software Methodologies

* Can organize sets of process * Heavyweight
decisions by how they address e Fully complete (and document)
the common process steps each step before moving on
e Formal vs. informal * Avoid revisions to work done in
* Do steps have pre-defined outputs? previous steps
* Duration and ordering e Lightweight

* Schedule work in “time boxes”
that include multiple process steps

* Avoid formal documentation to
more easily accommodate
changes

Heavyweight vs lightweight methodologies

Heavyweight Lightweight
* Processes and tools * Individuals and interactions
* Specifications * Working software
* Following a plan * Responding to change
* Client negotiation * Client collaboration

Based on the Manifesto for Agile Software Development
http://agilemanifesto.orgf

http://agilemanifesto.org/

Waterfall model: Origins

* Based on traditional engineering
project management

* Long lead time for supplies; must
commit to large orders

* Extremely expensive to change
hardware once built, BoM once
ordered

* Extremely expensive to pause
manufacturing

* At this time in software history,

well understood
(automating manual processes)

* Little variety in

e Coding was very tedious (no
modern languages/tools) —
benefits from detailed program
design

* Good match for a heavyweight
process

The waterfall model

Feasibility study

N\
Requirements
AN
System design
N\
Program design
N\
Implementation (coding)
N\
Program testing
N\
Acceptance & release

AN

Operation & maintenance

35

Cost of defects

Phase in Which a
Defect Is Introduced

Requirements \ ')/_L/

\\ >v/ >/

Cost

o

Architecture \

o

Requirements . Construction - Post-Release
l Architecture System Test

Phase in Which a Defect Is Detected

36
Code Complete, 2nd Edition. McConnell 2004

Shift left

* QA is difficult without a working
system

* But working systems aren’t
available until the end of a
waterfall process

* Process decisions can effectively
shift QA left without requiring
formal deliverables after each
step

250
NUMBER 200

DEFECTS 190

FOUND 100
50 | NO REVIEWS
0 lllllll

WITH PEER REVIEWS

(%) (7] 2 [a) z w Z
= = s (O wZ o = (@) 0
Z wz = = (G = = =
w . - - w
S o w e =) < Q- = e
ws <= =¥a)] wkE on 20 w
[N o o (@] ouw er i w>
>3 w5 w Y o= = = =<
U)D OD |—> w = > (0
g »nC =u = > < >a
w w Ird o ww
o o O s @)
£ . s
T <

Figure 22.2. Number of defects found with and without peer reviews from two
example projects.

37
Better Embedded System Software. Koopman 2010

The waterfall model

Advantages Disadvantages

e Separation of tasks * In practice, later stages improve
* Aids personnel management understanding of earlier stages,

« Process visibility necessitating revision

« Quality control at each step * Not flexible enough to react to

o changing conditions
e Cost monitoring at each step

Question: What is missing?

lteration is required

* Feasibility study needs preliminary requirements and tentative design
* Implementation often reveals gaps in requirements
e User interfaces hard to analyze without actually using them

* Requirements, technology may change during development
e E.g. updated market analysis

Modified waterfall model

Feasibility study

Waterfall model with

feedback
A N\
Requirements
4 N
System design
A N
Program design
A N
Implementation (coding)
A AN
Program testing
N
Acceptance & release
I N
y y y y Operation & maintenance

40

Modified waterfall model

* A fine choice when are well-understood and
is fixed

 Automating manual data processing systems (e.g. utility billing)

* New version of system whose functionality derives from earlier product (e.g.
embedded controller)

* Self-contained components/services with a pre-defined interface

* Widely recommended for safety-critical or highly regulated systems
* Requirements must be thoroughly analyzed and documented

* Maybe suitable for CS 5150 projects

* But plan for iteration around user interfaces

iterative refinement: Prototyping

* Requirements are hard to elicit without an operational
system

* Especially for user interfaces

* Developers can learn a lot about the domain and
proposed design through prototyping

* Process:

Prototype

Create a prototype early on
Review prototype with clients; test prototype with users Refine Review

 Clarify requirements, improve design (revise documentation)
* Refine prototype iteratively

* Prototype is not a releasable product!

e Cannot evaluate non-functional requirements without final
system design

When does it work well?

Ul Prototyping is popular

WIREFRAME MOCKUP PROTOTYPE

(=== - T ——— - -
== e == = . = m .—- oy ,:_-‘n'_
—— — ——— s / meLE AT, e .
s S e— o s - p— e, —

05
Q
st
=)
2,
N
)
o
=
2
c
E]
| i
| i

=)

@ Name
J @000
o ezats

oooooooooooooo

Lorem Ipsum Lovem Ipsum == omme=sn. et e

iterative refinement: Prototyping

* Pros:
* Client involvement and early feedback
* Improves requirements and specifications Prototype
e Reduces risk of developing the “wrong” product

* Cons:

* Time/cost for developing may be high
 Hard to commit what will be delivered and when

Refine Review

* May end up evolving a poor choice (limit thinking
holistically)

	Slide 1: Lecture 2: Projects & Processes
	Slide 2: Administrative Reminders
	Slide 3: Project
	Slide 4: Project Options
	Slide 5: Variety
	Slide 6: Variety (cont.)
	Slide 7: … requires versatility
	Slide 8: Project stakeholders
	Slide 9: Stakeholders: Developers
	Slide 10: Stakeholders: Client
	Slide 11: Example: business-to-business
	Slide 12: Poll
	Slide 13: Stakeholders: Customer, User, Society
	Slide 14: Activity: Stakeholders
	Slide 15: Risk
	Slide 16: Consequences
	Slide 17: Minimizing risk – communication
	Slide 18: Minimizing risk – visibility
	Slide 19: Improving visibility – short dev cycles
	Slide 20: Minimizing risk – management
	Slide 21: The software development challenge
	Slide 22: One solution: Code and fix
	Slide 23: One solution: Code and fix
	Slide 24: One solution: Code and fix
	Slide 25: Is a more structured process necessary?
	Slide 28: Overview of development process steps
	Slide 29: Overview of development process steps (cont.)
	Slide 30: Overview of development process steps (cont.)
	Slide 31: Activity: FAA AAS Discuss
	Slide 32: Software Methodologies
	Slide 33: Heavyweight vs lightweight methodologies
	Slide 34: Waterfall model: Origins
	Slide 35: The waterfall model
	Slide 36: Cost of defects
	Slide 37: Shift left
	Slide 38: The waterfall model
	Slide 39: Iteration is required
	Slide 40: Modified waterfall model
	Slide 41: Modified waterfall model
	Slide 42: Iterative refinement: Prototyping
	Slide 43: UI Prototyping is popular
	Slide 44: Iterative refinement: Prototyping

