
Lecture 26: Finale
CS 5150, Spring 2025
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Administrative Reminders

• Final Delivery May 14, 12 PM

• Final Presentation by May 10 
• Reserve remaining time for final report/ handover package preparation

• Not for feature development

• What to present?
• Milestones: Promised vs Delivered

• Demo (client may ask to show additional use cases)

• User Study results

• Testing status

• Integration status
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In-Class Exam 2 Stats

• Min: 17, Max: 44, Mean: 31, Median: 31

• Grades released on gradescope: In class exam, Report #4 ongoing
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Fall 2025 Courses: CS 6158

• CS 6158: Software Engineering in the Era of Machine Learning

• Instructor: Saikat Dutta

• Goals:
• Study state-of-the-art research ideas in SExML

• Hands-on exposure to Software Engineering research
• Apply machine learning-based techniques to solve software engineering problems

• Apply automated software engineering techniques to machine learning systems.

• Develop and implement new research ideas

• Fall 2024 version: https://www.cs.cornell.edu/courses/cs6158/2024fa 

• Apply for TA!
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Fall 2025 Courses: CS 5154

• CS 5154: Software Testing

• Instructor: Owolabi Legunsen

• Goals:
• Deep dive into testing: regression testing, unit testing, mutation analysis, …

• Design and automate the execution of high-quality software tests.

• Generate test suites that meet coverage and other adequacy criteria.

• Project: Extend your 5150 project to focus on testing

• Apply for TA!
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Lecture Goals

• Few notes about Ethics

• Brief overview of AI/ML for SE landscape

• And using SE techniques to solve AI/ML related challenges
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Professionalism & Ethics
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What should you do if you discover a major security vulnerability in a 
piece of widely-used software?
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Responsible disclosure

• AKA "coordinated vulnerability disclosure"

• Coordinate timing of announcement with vendor
• Give them time to patch products, prepare press response

• Upper bound on timing to hasten vendor action (typ. 90 days)

• For open-source projects, look for security policy (SECURITY.md)
• Contact Vulnerability Management Team or owner

• Do not post details to public mailing lists, chat rooms

• May be assigned placeholder CVE to coordinate efforts without 
disclosing details
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Which of these development efforts would 
you be comfortable contributing to?
• Drug marketing campaign

• Click fraud

• Selling 0-day vulnerabilities

• Reverse engineering

• Weaponized AI

• Selling personal data

• Bitcoin mining
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Ethics

• Software can harm society beyond physical injury

• Personal fulfilment is important too
• Take responsibility for your work

• Avoid future regrets

• Compared to traditional engineering, software has less oversight and 
wider impact
• Amplification: One day's work can affect millions of people, consume millions 

of hours
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Diversity

• Wider impact => more diverse user base
• => More potential to reinforce stereotypes, inequity

• Failure to anticipate/respond to biased systems can lead to major 
societal (not to mention reputational) harm

• Need to expand diversity during development (shift left)
• More diverse developer teams
• More diverse user testing

• "Single source of truth" does not apply to human society
• Disputed borders
• Different interpretations of words/phrases/symbols
• Different value systems
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Ethics extends beyond code

• Hiring practices
• Beware affinity bias, groupthink

• Promotions/opportunities
• Beyond mentoring - advocate for coworkers who do good work but seem to 

go unnoticed

• Decision-making
• Don’t defend decisions solely on precedent

• Look beyond direct “bottom line” impact
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ACM Code of ethics and professional practice

1. PUBLIC – Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER – Software engineers shall act in a manner that is in the best interests 
of their client and employer consistent with the public interest.

3. PRODUCT – Software engineers shall ensure that their products and related modifications 
meet the highest professional standards possible.

4. JUDGMENT – Software engineers shall maintain integrity and independence in their 
professional judgment.

5. MANAGEMENT – Software engineering managers and leaders shall subscribe to and promote 
an ethical approach to the management of software development and maintenance.

6. PROFESSION – Software engineers shall advance the integrity and reputation of the profession 
consistent with the public interest.

7. COLLEAGUES – Software engineers shall be fair to and supportive of their colleagues.

8. SELF – Software engineers shall participate in lifelong learning regarding the practice of their 
profession and shall promote an ethical approach to the practice of the profession.

https://ethics.acm.org/code-of-ethics/software-engineering-code 
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a wide range of technologies, strategies, 
and algorithms for machines to mimic 
human intelligence

subset of AI focused on the idea that 
machines can learn from observations or 
data 
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Machine Learning in One Slide
(Supervised)

Lots of labelled data
(Inputs, outputs)

Model

Training

“bird”

Input Output

“dog”

Input Output
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a wide range of technologies, strategies, 
and algorithms for machines to mimic 
human intelligence

subset of AI focused on the idea that 
machines can learn from observations or 
data 

specialized subset of ML that uses 
neural networks with many layers 
(mimics the neural networks of the 
human brain)
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How can ML be useful in SE?

• Automation and reducing manual efforts
• automate repetitive tasks such as code generation, bug detection, and code 

reviews

• AI-powered tools and IDEs for code autocompletion and real-time     
suggestions

• Support in problem-solving and decision-making
• analyze large volumes of data to uncover patterns and insights for informed 

decision-making in project management, etc.

• process and interpret vast amounts of textual data (documentation, logs, etc.), 
assisting in efficient diagnostics and troubleshooting
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Emergence of Large Language Models (LLMs)
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World is 
throwing 
LLMs at 
everything



Code Generation and Assistance

GitHub Copilot - Visual Studio Marketplace
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Github Copilot

• Code Completion

• Code Analysis

• Fixing issues
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Generate Code in Different Ways
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Automated Code Reviews
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Also useful for…

• Writing Tests

• Refactoring Code

• Understanding Code

• Finding security vulnerabilities

• …
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Large Language Models (LLMs)

• Language Modeling: Measure probability of a sequence 
of words
• Input: Text sequence
• Output: Most likely next word

• LLMs are… large
• GPT-3 has 175B parameters
• GPT-4 is estimated to have ~1.24 Trillion

• Pre-trained with up to a PB of Internet text 
data
• Massive financial and environmental cost
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Prompt Engineering

The process of crafting and refining prompts to effectively interact with LLMs 
to get accurate, relevant, and useful responses.
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Which of these problems should be solved by 
an LLM? Why or why not?

● Type checking Java code

● Grading mathematical proofs

● Answering emergency medical questions

● Unit test generation for your projects
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More practical factors to consider when productionizing

● Operational Costs

● Latency/speed

● Intellectual property

● Security

31



Problems with LLMs

• Hallucinations
• No guarantees whatsoever

• Limited by prompt length (now upto 100k tokens)
• Hard to analyze large repos

• Generate Insecure/Inefficient Code (Safety)

• Hard to use for Low-Resource Languages (e.g., Ocaml, Rust, …)
• May regurgitate from memory
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ML for Quality Assurance (My Research)

Source Code

Documentation

Large Language Models

• Fuzz testing

• Unit testing

• Program repair

• Automated debugging

• Program analysis

• Software verification

• …

import  ("fmt" "math/big")
func main() {
    operands := []float64{2.6, 2.5}
    for mode := big.ToNearestEven; mode <= 

big.ToPositiveInf; mode++ {
          fmt.Printf("  %s", mode)
    }
}

(theory Ints

 :funs ((NUMERAL Int) 
        (- Int Int)                

        (- Int Int  Int :left-assoc)
        (+ Int  Int Int :left-assoc) 
        (* Int  Int Int :left-assoc)
... 

Example Usage

Specifications

@Test
public void testAddObjectArrayBoolean() {
        boolean[] newArray;
        newArray = ArrayUtils.add((boolean[])null , 

false);
        assertTrue(Arrays.equals(new 
boolean[]{false}, newArray));
}

Test Cases
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SWE-Bench (ICLR 24)

• 2024: ~3% (4% on Lite)

• Now: ~33% (65% on Lite)

34https://arxiv.org/pdf/2310.06770 https://www.swebench.com/#verified 

https://arxiv.org/pdf/2310.06770
https://www.swebench.com/
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LLM Agents
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Coding Agents (Demo)
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https://www.anthropic.com/claude-code 

https://www.anthropic.com/claude-code


Combine LLMs with Static Analysis (CodeQL) for whole-repository analysis.

IRIS: Neuro-Symbolic Static Analysis

IRIS: LLM-Assisted Static Analysis for Detecting Security Vulnerabilities. 
Ziyang Li, Saikat Dutta, Mayur Naik. ICLR 2025.

LLM

>300k LOC

38https://github.com/iris-sast/iris 

https://github.com/iris-sast/iris


● LLMs can be used to infer the specifications (source/sink/sanitizers) of 
commonly used external library APIs

● LLMs can use natural language information to understand code context; 
can filter false positives!

IRIS: Main Ideas and Results
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Quality Assurance for ML

LLM-generated Code

Code LLMs

High-level AI Frameworks

Optimized Libraries

Hardware

AI Compilers & Optimizers

OpenAI Triton

NVIDIA GPUs Google TPUs CPUsAMD GPUs Apple Silicon

• Benchmarking

• Code correctness

• Code security

• Model security

• System reliability

• …
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Flaky Tests Empirical Study*

First study of flaky tests in Machine Learning libraries

Studied 75 flaky tests in 20 ML libraries
• 60% caused due to Algorithmic Randomness: e.g., Sampling, 

Dropout (using random number generators) 

• Adjusting assertion bounds is the most common fix
 

How can we automatically fix such flaky tests? [FLEX, FSE’21]

41

*Detecting Flaky Tests in Probabilistic and Machine Learning Applications. Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang,  
Aryaman Jain, and Sasa Misailovic (ISSTA 2020)



Example Test
def test_MCMC_Sampler():

sampler = initMCMCSampler(chains=3)
  train_ds = createGaussMixDS()
  result = fit(sampler, train_ds, iters=1000)

  rvs1 = normal(loc=-1, scale=0.7, n=5000)
  rvs2 = normal(loc=100, scale=0.8, n=5001)
  statistic = ks(result.samples, [rvs1, rvs2])

assert statistic < 0.1

pyPESTO: provides state-of-art 
algorithms for optimization and 
uncertainty analysis of black-box 
objective functions 
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Example Test
def test_MCMC_Sampler():

sampler = initMCMCSampler(chains=3)
  train_ds = createGaussMixDS()
  result = fit(sampler, train_ds, iters=1000)

  rvs1 = normal(loc=-1, scale=0.7, n=5000)
  rvs2 = normal(loc=100, scale=0.8, n=5001)
  statistic = ks(result.samples, [rvs1, rvs2])

assert statistic < 0.1 0.01 0.15

Test is Flaky!

0.11

44



Sources of Randomness
def test_MCMC_Sampler():

sampler = initMCMCSampler(chains=3)
  train_ds = createGaussMixDS()
  result = fit(sampler, train_ds, iters=1000)

  rvs1 = normal(loc=-1, scale=0.7, n=5000)
  rvs2 = normal(loc=100, scale=0.8, n=5001)
  statistic = ks(result.samples, [rvs1, rvs2])

assert statistic < 0.1
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0.01 0.15 0.11

Test is Flaky!



Sources of Randomness (MCMC)
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def perform_step(self, x, …):
       …        
        u = np.random.uniform(0, 1)
        if np.log(u) < log_p_acc:
              x = x_new

def propose_parameter(self,  x):
        …
        x_new = multivariate_normal.sample(x, cov)
        return x_new

Propose new parameter value

Accept or Reject new sample



Fixing Flaky Tests in ML Libraries*(FSE’21)

Mitigates Flakiness due to Randomness of ML Algorithm

Statistical Modeling to reason about underlying randomness 

FLEX
Confidence C

Test T

assert X < 𝛼

Test T*
assert X < 𝛼′

47

Pass-Probability(T*) >= C

* FLEX: Fixing Flaky Tests in Machine-Learning Projects by Updating Assertion Bounds. Saikat Dutta, August Shi, and Sasa Misailovic (FSE 2021)



FLEX: Workflow

48

All Samples Tail Samples Tail Distribution (GPD)  

Test T

95 99 99.9

How to collect I.I.D. samples?

*Pickands et al. – Statistical inference using extreme order statistics (1975)

Samples from Different Test Executions, 
Same Distribution are I.I.D.

Check convergence using GPD 
Convergence Test

Challenges for applying Extreme Value Theory:

Converges to Generalized Pareto Distribution*!

How many samples to collect?



Effectiveness vs Flakiness*(ICSE 2023)

• Problem:  Loose Assertion Bound => Flakiness   ,Effectiveness

• Balance Effectiveness (Mutation Testing) & Flakiness (Concentration Inequalities)
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Effectiveness can be improved!

*Balancing Effectiveness and Flakiness of Non-Deterministic Machine Learning Tests. S. Xia, et al. ICSE 2023.

Effectiveness cannot be improved!



• Software engineering is bigger than programming
• More stakeholders
• Collaborative development
• Quality has a cost

• Successful projects involve tradeoffs, communication
• Different projects warrant different approaches

• Big projects are possible
• With planning & teamwork, can accomplish far more than 

solo

Good luck with all your future endeavors!
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