
Lecture 26: Finale
CS 5150, Spring 2025

1

Administrative Reminders

• Final Delivery May 14, 12 PM

• Final Presentation by May 10
• Reserve remaining time for final report/ handover package preparation

• Not for feature development

• What to present?
• Milestones: Promised vs Delivered

• Demo (client may ask to show additional use cases)

• User Study results

• Testing status

• Integration status

2

In-Class Exam 2 Stats

• Min: 17, Max: 44, Mean: 31, Median: 31

• Grades released on gradescope: In class exam, Report #4 ongoing

3

Fall 2025 Courses: CS 6158

• CS 6158: Software Engineering in the Era of Machine Learning

• Instructor: Saikat Dutta

• Goals:
• Study state-of-the-art research ideas in SExML

• Hands-on exposure to Software Engineering research
• Apply machine learning-based techniques to solve software engineering problems

• Apply automated software engineering techniques to machine learning systems.

• Develop and implement new research ideas

• Fall 2024 version: https://www.cs.cornell.edu/courses/cs6158/2024fa

• Apply for TA!

4

https://www.cs.cornell.edu/courses/cs6158/2024fa

Fall 2025 Courses: CS 5154

• CS 5154: Software Testing

• Instructor: Owolabi Legunsen

• Goals:
• Deep dive into testing: regression testing, unit testing, mutation analysis, …

• Design and automate the execution of high-quality software tests.

• Generate test suites that meet coverage and other adequacy criteria.

• Project: Extend your 5150 project to focus on testing

• Apply for TA!

5

Lecture Goals

• Few notes about Ethics

• Brief overview of AI/ML for SE landscape

• And using SE techniques to solve AI/ML related challenges

6

Professionalism & Ethics

7

What should you do if you discover a major security vulnerability in a
piece of widely-used software?

8

Responsible disclosure

• AKA "coordinated vulnerability disclosure"

• Coordinate timing of announcement with vendor
• Give them time to patch products, prepare press response

• Upper bound on timing to hasten vendor action (typ. 90 days)

• For open-source projects, look for security policy (SECURITY.md)
• Contact Vulnerability Management Team or owner

• Do not post details to public mailing lists, chat rooms

• May be assigned placeholder CVE to coordinate efforts without
disclosing details

9

Which of these development efforts would
you be comfortable contributing to?
• Drug marketing campaign

• Click fraud

• Selling 0-day vulnerabilities

• Reverse engineering

• Weaponized AI

• Selling personal data

• Bitcoin mining

10

Ethics

• Software can harm society beyond physical injury

• Personal fulfilment is important too
• Take responsibility for your work

• Avoid future regrets

• Compared to traditional engineering, software has less oversight and
wider impact
• Amplification: One day's work can affect millions of people, consume millions

of hours

11

Diversity

• Wider impact => more diverse user base
• => More potential to reinforce stereotypes, inequity

• Failure to anticipate/respond to biased systems can lead to major
societal (not to mention reputational) harm

• Need to expand diversity during development (shift left)
• More diverse developer teams
• More diverse user testing

• "Single source of truth" does not apply to human society
• Disputed borders
• Different interpretations of words/phrases/symbols
• Different value systems

12

Ethics extends beyond code

• Hiring practices
• Beware affinity bias, groupthink

• Promotions/opportunities
• Beyond mentoring - advocate for coworkers who do good work but seem to

go unnoticed

• Decision-making
• Don’t defend decisions solely on precedent

• Look beyond direct “bottom line” impact

13

ACM Code of ethics and professional practice

1. PUBLIC – Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER – Software engineers shall act in a manner that is in the best interests
of their client and employer consistent with the public interest.

3. PRODUCT – Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.

4. JUDGMENT – Software engineers shall maintain integrity and independence in their
professional judgment.

5. MANAGEMENT – Software engineering managers and leaders shall subscribe to and promote
an ethical approach to the management of software development and maintenance.

6. PROFESSION – Software engineers shall advance the integrity and reputation of the profession
consistent with the public interest.

7. COLLEAGUES – Software engineers shall be fair to and supportive of their colleagues.

8. SELF – Software engineers shall participate in lifelong learning regarding the practice of their
profession and shall promote an ethical approach to the practice of the profession.

https://ethics.acm.org/code-of-ethics/software-engineering-code

14

https://ethics.acm.org/code-of-ethics/software-engineering-code

a wide range of technologies, strategies,
and algorithms for machines to mimic
human intelligence

subset of AI focused on the idea that
machines can learn from observations or
data

15

Machine Learning in One Slide
(Supervised)

Lots of labelled data
(Inputs, outputs)

Model

Training

“bird”

Input Output

“dog”

Input Output

16

a wide range of technologies, strategies,
and algorithms for machines to mimic
human intelligence

subset of AI focused on the idea that
machines can learn from observations or
data

specialized subset of ML that uses
neural networks with many layers
(mimics the neural networks of the
human brain)

17

18

How can ML be useful in SE?

• Automation and reducing manual efforts
• automate repetitive tasks such as code generation, bug detection, and code

reviews

• AI-powered tools and IDEs for code autocompletion and real-time
suggestions

• Support in problem-solving and decision-making
• analyze large volumes of data to uncover patterns and insights for informed

decision-making in project management, etc.

• process and interpret vast amounts of textual data (documentation, logs, etc.),
assisting in efficient diagnostics and troubleshooting

19

ChatGPT
175B

GPT4
1.8T

years

pa
ra
me
te
rs

trillions of text tokens

wikipedia GitHub
online
forum

https://hanlab.mit.edu/proj
ects/efficientnlp_old/

Emergence of Large Language Models (LLMs)

20

Self-supervised learning on
…

World is
throwing
LLMs at
everything

Code Generation and Assistance

GitHub Copilot - Visual Studio Marketplace

22

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmarketplace.visualstudio.com%2Fitems%3FitemName%3DGitHub.copilot&psig=AOvVaw0TXsbZhenGAWAVJL1skQnk&ust=1741081270519000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCPjz46fP7YsDFQAAAAAdAAAAABBD

Github Copilot

• Code Completion

• Code Analysis

• Fixing issues

23

Generate Code in Different Ways

24

Automated Code Reviews

25

Also useful for…

• Writing Tests

• Refactoring Code

• Understanding Code

• Finding security vulnerabilities

• …

26

Large Language Models (LLMs)

• Language Modeling: Measure probability of a sequence
of words
• Input: Text sequence
• Output: Most likely next word

• LLMs are… large
• GPT-3 has 175B parameters
• GPT-4 is estimated to have ~1.24 Trillion

• Pre-trained with up to a PB of Internet text
data
• Massive financial and environmental cost

27

Prompt Engineering

The process of crafting and refining prompts to effectively interact with LLMs
to get accurate, relevant, and useful responses.

28

29

Which of these problems should be solved by
an LLM? Why or why not?

● Type checking Java code

● Grading mathematical proofs

● Answering emergency medical questions

● Unit test generation for your projects

30

More practical factors to consider when productionizing

● Operational Costs

● Latency/speed

● Intellectual property

● Security

31

Problems with LLMs

• Hallucinations
• No guarantees whatsoever

• Limited by prompt length (now upto 100k tokens)
• Hard to analyze large repos

• Generate Insecure/Inefficient Code (Safety)

• Hard to use for Low-Resource Languages (e.g., Ocaml, Rust, …)
• May regurgitate from memory

32

ML for Quality Assurance (My Research)

Source Code

Documentation

Large Language Models

• Fuzz testing

• Unit testing

• Program repair

• Automated debugging

• Program analysis

• Software verification

• …

import ("fmt" "math/big")
func main() {
 operands := []float64{2.6, 2.5}
 for mode := big.ToNearestEven; mode <=

big.ToPositiveInf; mode++ {
 fmt.Printf(" %s", mode)
 }
}

(theory Ints

 :funs ((NUMERAL Int)
 (- Int Int)

 (- Int Int Int :left-assoc)
 (+ Int Int Int :left-assoc)
 (* Int Int Int :left-assoc)
...

Example Usage

Specifications

@Test
public void testAddObjectArrayBoolean() {
 boolean[] newArray;
 newArray = ArrayUtils.add((boolean[])null ,

false);
 assertTrue(Arrays.equals(new
boolean[]{false}, newArray));
}

Test Cases

33

SWE-Bench (ICLR 24)

• 2024: ~3% (4% on Lite)

• Now: ~33% (65% on Lite)

34https://arxiv.org/pdf/2310.06770 https://www.swebench.com/#verified

https://arxiv.org/pdf/2310.06770
https://www.swebench.com/

35

LLM Agents

36

Coding Agents (Demo)

37

https://www.anthropic.com/claude-code

https://www.anthropic.com/claude-code

Combine LLMs with Static Analysis (CodeQL) for whole-repository analysis.

IRIS: Neuro-Symbolic Static Analysis

IRIS: LLM-Assisted Static Analysis for Detecting Security Vulnerabilities.
Ziyang Li, Saikat Dutta, Mayur Naik. ICLR 2025.

LLM

>300k LOC

38https://github.com/iris-sast/iris

https://github.com/iris-sast/iris

● LLMs can be used to infer the specifications (source/sink/sanitizers) of
commonly used external library APIs

● LLMs can use natural language information to understand code context;
can filter false positives!

IRIS: Main Ideas and Results

39

Quality Assurance for ML

LLM-generated Code

Code LLMs

High-level AI Frameworks

Optimized Libraries

Hardware

AI Compilers & Optimizers

OpenAI Triton

NVIDIA GPUs Google TPUs CPUsAMD GPUs Apple Silicon

• Benchmarking

• Code correctness

• Code security

• Model security

• System reliability

• …

40

Flaky Tests Empirical Study*

First study of flaky tests in Machine Learning libraries

Studied 75 flaky tests in 20 ML libraries
• 60% caused due to Algorithmic Randomness: e.g., Sampling,

Dropout (using random number generators)

• Adjusting assertion bounds is the most common fix

How can we automatically fix such flaky tests? [FLEX, FSE’21]

41

*Detecting Flaky Tests in Probabilistic and Machine Learning Applications. Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang,
Aryaman Jain, and Sasa Misailovic (ISSTA 2020)

Example Test
def test_MCMC_Sampler():

sampler = initMCMCSampler(chains=3)
 train_ds = createGaussMixDS()
 result = fit(sampler, train_ds, iters=1000)

 rvs1 = normal(loc=-1, scale=0.7, n=5000)
 rvs2 = normal(loc=100, scale=0.8, n=5001)
 statistic = ks(result.samples, [rvs1, rvs2])

assert statistic < 0.1

pyPESTO: provides state-of-art
algorithms for optimization and
uncertainty analysis of black-box
objective functions

42

Example Test
def test_MCMC_Sampler():

sampler = initMCMCSampler(chains=3)
 train_ds = createGaussMixDS()
 result = fit(sampler, train_ds, iters=1000)

 rvs1 = normal(loc=-1, scale=0.7, n=5000)
 rvs2 = normal(loc=100, scale=0.8, n=5001)
 statistic = ks(result.samples, [rvs1, rvs2])

assert statistic < 0.1 0.01 0.15

Test is Flaky!

0.11

44

Sources of Randomness
def test_MCMC_Sampler():

sampler = initMCMCSampler(chains=3)
 train_ds = createGaussMixDS()
 result = fit(sampler, train_ds, iters=1000)

 rvs1 = normal(loc=-1, scale=0.7, n=5000)
 rvs2 = normal(loc=100, scale=0.8, n=5001)
 statistic = ks(result.samples, [rvs1, rvs2])

assert statistic < 0.1

45

0.01 0.15 0.11

Test is Flaky!

Sources of Randomness (MCMC)

46

def perform_step(self, x, …):
 …
 u = np.random.uniform(0, 1)
 if np.log(u) < log_p_acc:
 x = x_new

def propose_parameter(self, x):
 …
 x_new = multivariate_normal.sample(x, cov)
 return x_new

Propose new parameter value

Accept or Reject new sample

Fixing Flaky Tests in ML Libraries*(FSE’21)

Mitigates Flakiness due to Randomness of ML Algorithm

Statistical Modeling to reason about underlying randomness

FLEX
Confidence C

Test T

assert X < 𝛼

Test T*
assert X < 𝛼′

47

Pass-Probability(T*) >= C

* FLEX: Fixing Flaky Tests in Machine-Learning Projects by Updating Assertion Bounds. Saikat Dutta, August Shi, and Sasa Misailovic (FSE 2021)

FLEX: Workflow

48

All Samples Tail Samples Tail Distribution (GPD)

Test T

95 99 99.9

How to collect I.I.D. samples?

*Pickands et al. – Statistical inference using extreme order statistics (1975)

Samples from Different Test Executions,
Same Distribution are I.I.D.

Check convergence using GPD
Convergence Test

Challenges for applying Extreme Value Theory:

Converges to Generalized Pareto Distribution*!

How many samples to collect?

Effectiveness vs Flakiness*(ICSE 2023)

• Problem: Loose Assertion Bound => Flakiness ,Effectiveness

• Balance Effectiveness (Mutation Testing) & Flakiness (Concentration Inequalities)

49

Effectiveness can be improved!

*Balancing Effectiveness and Flakiness of Non-Deterministic Machine Learning Tests. S. Xia, et al. ICSE 2023.

Effectiveness cannot be improved!

• Software engineering is bigger than programming
• More stakeholders
• Collaborative development
• Quality has a cost

• Successful projects involve tradeoffs, communication
• Different projects warrant different approaches

• Big projects are possible
• With planning & teamwork, can accomplish far more than

solo

Good luck with all your future endeavors!

51

	Slide 1: Lecture 26: Finale
	Slide 2: Administrative Reminders
	Slide 3: In-Class Exam 2 Stats
	Slide 4: Fall 2025 Courses: CS 6158
	Slide 5: Fall 2025 Courses: CS 5154
	Slide 6: Lecture Goals
	Slide 7: Professionalism & Ethics
	Slide 8
	Slide 9: Responsible disclosure
	Slide 10: Which of these development efforts would you be comfortable contributing to?
	Slide 11: Ethics
	Slide 12: Diversity
	Slide 13: Ethics extends beyond code
	Slide 14: ACM Code of ethics and professional practice
	Slide 15
	Slide 16: Machine Learning in One Slide
	Slide 17
	Slide 18
	Slide 19: How can ML be useful in SE?
	Slide 20: Emergence of Large Language Models (LLMs)
	Slide 21: World is throwing LLMs at everything
	Slide 22: Code Generation and Assistance
	Slide 23: Github Copilot
	Slide 24: Generate Code in Different Ways
	Slide 25: Automated Code Reviews
	Slide 26: Also useful for…
	Slide 27: Large Language Models (LLMs)
	Slide 28: Prompt Engineering
	Slide 29
	Slide 30: Which of these problems should be solved by an LLM? Why or why not?
	Slide 31: More practical factors to consider when productionizing
	Slide 32: Problems with LLMs
	Slide 33: ML for Quality Assurance (My Research)
	Slide 34: SWE-Bench (ICLR 24)
	Slide 35
	Slide 36: LLM Agents
	Slide 37: Coding Agents (Demo)
	Slide 38: IRIS: Neuro-Symbolic Static Analysis
	Slide 39: IRIS: Main Ideas and Results
	Slide 40: Quality Assurance for ML
	Slide 41: Flaky Tests Empirical Study*
	Slide 42: Example Test
	Slide 44: Example Test
	Slide 45: Sources of Randomness
	Slide 46: Sources of Randomness (MCMC)
	Slide 47: Fixing Flaky Tests in ML Libraries*(FSE’21)
	Slide 48: FLEX: Workflow
	Slide 49: Effectiveness vs Flakiness*(ICSE 2023)
	Slide 51

