Lecture 26: Finale

CS 5150, Spring 2025

Administrative Reminders

- Final Delivery May 14, 12 PM
- Final Presentation by May 10
 - Reserve remaining time for final report/ handover package preparation
 - Not for feature development
- What to present?
 - Milestones: Promised vs Delivered
 - Demo (client may ask to show additional use cases)
 - User Study results
 - Testing status
 - Integration status

In-Class Exam 2 Stats

• Min: 17, Max: 44, Mean: 31, Median: 31

• Grades released on gradescope: In class exam, Report #4 ongoing

Fall 2025 Courses: CS 6158

- CS 6158: Software Engineering in the Era of Machine Learning
- Instructor: Saikat Dutta
- Goals:
 - Study state-of-the-art research ideas in SExML
 - Hands-on exposure to Software Engineering research
 - Apply machine learning-based techniques to solve software engineering problems
 - Apply automated software engineering techniques to machine learning systems.
 - Develop and implement new research ideas
- Fall 2024 version: https://www.cs.cornell.edu/courses/cs6158/2024fa
- Apply for TA!

Fall 2025 Courses: CS 5154

- CS 5154: Software Testing
- Instructor: Owolabi Legunsen
- Goals:
 - Deep dive into testing: regression testing, unit testing, mutation analysis, ...
 - Design and automate the execution of high-quality software tests.
 - Generate test suites that meet coverage and other adequacy criteria.
- Project: Extend your 5150 project to focus on testing
- Apply for TA!

Lecture Goals

- Few notes about Ethics
- Brief overview of AI/ML for SE landscape
- And using SE techniques to solve AI/ML related challenges

Professionalism & Ethics

What should you do if you discover a major security vulnerability in a piece of widely-used software?

Responsible disclosure

- AKA "coordinated vulnerability disclosure"
- Coordinate timing of announcement with vendor
 - Give them time to patch products, prepare press response
 - Upper bound on timing to hasten vendor action (typ. 90 days)
- For open-source projects, look for security policy (SECURITY.md)
 - Contact Vulnerability Management Team or owner
 - Do not post details to public mailing lists, chat rooms
- May be assigned placeholder CVE to coordinate efforts without disclosing details

Which of these development efforts would you be comfortable contributing to?

- Drug marketing campaign
- Click fraud
- Selling 0-day vulnerabilities
- Reverse engineering
- Weaponized Al
- Selling personal data
- Bitcoin mining

Ethics

- Software can harm society beyond physical injury
- Personal fulfilment is important too
 - Take responsibility for your work
 - Avoid future regrets

- Compared to traditional engineering, software has less oversight and wider impact
 - Amplification: One day's work can affect millions of people, consume millions of hours

Diversity

- Wider impact => more diverse user base
 - => More potential to reinforce stereotypes, inequity
- Failure to anticipate/respond to biased systems can lead to major societal (not to mention reputational) harm
- Need to expand diversity during development (shift left)
 - More diverse developer teams
 - More diverse user testing
- "Single source of truth" does not apply to human society
 - Disputed borders
 - Different interpretations of words/phrases/symbols
 - Different value systems

Ethics extends beyond code

- Hiring practices
 - Beware affinity bias, groupthink
- Promotions/opportunities
 - Beyond mentoring advocate for coworkers who do good work but seem to go unnoticed
- Decision-making
 - Don't defend decisions solely on precedent
 - Look beyond direct "bottom line" impact

ACM Code of ethics and professional practice

- 1. PUBLIC Software engineers shall act consistently with the public interest.
- 2. CLIENT AND EMPLOYER Software engineers shall act in a manner that is in the best interests of their client and employer consistent with the public interest.
- 3. PRODUCT Software engineers shall ensure that their products and related modifications meet the highest professional standards possible.
- 4. JUDGMENT Software engineers shall maintain integrity and independence in their professional judgment.
- 5. MANAGEMENT Software engineering managers and leaders shall subscribe to and promote an ethical approach to the management of software development and maintenance.
- 6. PROFESSION Software engineers shall advance the integrity and reputation of the profession consistent with the public interest.
- 7. COLLEAGUES Software engineers shall be fair to and supportive of their colleagues.
- 8. SELF Software engineers shall participate in lifelong learning regarding the practice of their profession and shall promote an ethical approach to the practice of the profession.

https://ethics.acm.org/code-of-ethics/software-engineering-code

a wide range of technologies, strategies, and algorithms for machines to mimic human intelligence

subset of AI focused on the idea that machines can learn from observations or data

Machine Learning in One Slide (Supervised)

Deep neural network

How can ML be useful in SE?

- Automation and reducing manual efforts
 - automate repetitive tasks such as code generation, bug detection, and code reviews
 - AI-powered tools and IDEs for code autocompletion and real-time suggestions
- Support in problem-solving and decision-making
 - analyze large volumes of data to uncover patterns and insights for informed decision-making in project management, etc.
 - process and interpret vast amounts of textual data (documentation, logs, etc.), assisting in efficient diagnostics and troubleshooting

Emergence of Large Language Models (LLMs)

Self-supervised learning on ...

wikipedia GitHub online forum

trillions of text tokens

World is throwing LLMs at everything

Chapter 4: Economy 4.3 Investment

While overall AI private investment decreased last year, funding for generative AI sharply increased (Figure 4.3.3). In 2023, the sector attracted \$25.2 billion, nearly nine times the investment of 2022 and about 30 times the amount from 2019. Furthermore, generative AI accounted for over a quarter of all AI-related private investment in 2023.

Private investment in generative AI, 2019-23

Code Generation and Assistance

GitHub Copilot

```
Js test.js 1 •

Js test.js > ② calculateDaysBetweenDates

1    function calculateDaysBetweenDates(begin, end) {
       var beginDate = new Date(begin);
       var endDate = new Date(end);
       var days = Math.round((endDate - beginDate) / (1000 * 60 * 60 * 24));
       return days;
    }

2
```

Github Copilot

- Code Completion
- Code Analysis
- Fixing issues

Generate Code in Different Ways

Automated Code Reviews

Also useful for...

- Writing Tests
- Refactoring Code
- Understanding Code
- Finding security vulnerabilities
- •

Large Language Models (LLMs)

- Language Modeling: Measure probability of a sequence of words
 - Input: Text sequence
 - Output: Most likely next word
- LLMs are... large
 - GPT-3 has 175B parameters
 - GPT-4 is estimated to have ~1.24 Trillion

- Pre-trained with up to a PB of Internet text data
 - Massive financial and environmental cost

Prompt Engineering

The process of crafting and refining prompts to effectively interact with LLMs to get accurate, relevant, and useful responses.

Forbes

FORBES > SMALL BUSINESS > ENTREPRENEURS

AI Prompt Engineers Earn \$300k Salaries: Here's How To Learn The Skill For Free

Jodie Cook Contributor O

I explore concepts in entrepreneurship, AI and lifestyle design.

Which of these problems should be solved by an LLM? Why or why not?

- Type checking Java code
- Grading mathematical proofs
- Answering emergency medical questions
- Unit test generation for your projects

More practical factors to consider when productionizing

- Operational Costs
- Latency/speed
- Intellectual property
- Security

Problems with LLMs

- Hallucinations
 - No guarantees whatsoever
- Limited by prompt length (now upto 100k tokens)
 - Hard to analyze large repos
- Generate Insecure/Inefficient Code (Safety)
- Hard to use for Low-Resource Languages (e.g., Ocaml, Rust, ...)
 - May regurgitate from memory

ML for Quality Assurance (My Research)

Large Language Models

Source Code

Documentation

```
import ("fmt" "math/big")
func main() {
  operands := []float64{2.6, 2.5}
  for mode := big.ToNearestEven; mode <=
  big.ToPositiveInf; mode++ {
     fmt.Printf(" %s", mode)
  }
}</pre>
```

Example Usage

```
@Test
public void testAddO bjectArrayBoolean() {
    boolean[] newArray;
    newArray = ArrayUtils.add((boolean[])null,
false);
    assertTrue(Arrays.equals(new
boolean[]{false}, newArray));
}
```

Test Cases

Specifications

- Fuzz testing
- Unit testing
- Program repair
- Automated debugging
- Program analysis
- Software verification
- ...

SWE-Bench (ICLR 24)

• 2024: ~3% (4% on Lite)

• Now: ~33% (65% on Lite)

SWE-BENCH: CAN LANGUAGE MODELS RESOLVE REAL-WORLD GITHUB ISSUES?

Carlos E. Jimenez* 1,2 John Yang* 1,2 Alexander Wettig^{1,2}
Shunyu Yao^{1,2} Kexin Pei³ Ofir Press^{1,2} Karthik Narasimhan^{1,2}

¹Princeton University ²Princeton Language and Intelligence ³University of Chicago

Leaderboard

BLAME DEVIN JAN 24, 11:19 AM EST by VICTOR TANGERMANN

The "First AI Software Engineer" Is Bungling the Vast Majority of Tasks It's Asked to Do

We've raised a \$21 million Series-A led by Founders Fund. Le

It took longer than a human, and failed at the vast majority of tasks.

March 12th, 2024 | Written by Scott Wu

Introducing Devin, the first Al software engineer

And setting a new state of the art on the SWE-bench coding benchmark

LLM Agents

Coding Agents (Demo)

https://www.anthropic.com/claude-code

IRIS: Neuro-Symbolic Static Analysis

Combine LLMs with Static Analysis (CodeQL) for whole-repository analysis.

IRIS: LLM-Assisted Static Analysis for Detecting Security Vulnerabilities.

Ziyang Li, Saikat Dutta, Mayur Naik. ICLR 2025.

https://github.com/iris-sast/iris

IRIS: Main Ideas and Results

- LLMs can be used to infer the specifications (source/sink/sanitizers) of commonly used external library APIs
- LLMs can use natural language information to understand code context; can **filter false positives**!

	Method	#Detected (/120)	Detection Rate (%)	Avg FDR (%)	Avg F1 Score
	CodeQL	27	22.50	90.03	0.076
IRIS +	GPT-4 GPT-3.5 L3 8B L3 70B DSC 7B	55 († 28) 47 († 20) 41 († 14) 54 († 27) 52 († 25)	$45.83 (\uparrow 23.33)$ $39.17 (\uparrow 16.67)$ $34.17 (\uparrow 11.67)$ $45.00 (\uparrow 22.50)$ $43.33 (\uparrow 20.83)$	84.82 (\downarrow 5.21) 90.42 (\uparrow 0.39) 95.55 (\uparrow 5.52) 90.96 (\uparrow 0.93) 95.40 (\uparrow 5.37)	$0.177 (\uparrow 0.101)$ $0.096 (\uparrow 0.020)$ $0.058 (\downarrow 0.018)$ $0.113 (\uparrow 0.037)$ $0.062 (\downarrow 0.014)$

Quality Assurance for ML

- Benchmarking
- Code correctness
- Code security
- Model security
- System reliability
- ...

Flaky Tests Empirical Study*

First study of flaky tests in Machine Learning libraries

Studied 75 flaky tests in 20 ML libraries

- 60% caused due to Algorithmic Randomness: e.g., Sampling, Dropout (using random number generators)
- Adjusting assertion bounds is the most common fix

How can we automatically fix such flaky tests? [FLEX, FSE'21]

^{*}Detecting Flaky Tests in Probabilistic and Machine Learning Applications. Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain, and Sasa Misailovic (ISSTA 2020)

Example Test

```
def test_MCMC_Sampler():
 sampler = initMCMCSampler(chains=3)
 train ds = createGaussMixDS()
 result = fit(sampler, train ds, iters=1000)
 rvs1 = normal(loc=-1, scale=0.7, n=5000)
 rvs2 = normal(loc=100, scale=0.8, n=5001)
 statistic = ks(result.samples, [rvs1, rvs2])
```

pyPESTO: provides state-of-art algorithms for optimization and uncertainty analysis of black-box objective functions

assert statistic < 0.1

Example Test

```
def test_MCMC_Sampler():
    sampler = initMCMCSampler(chains=3)
    train_ds = createGaussMixDS()
    result = fit(sampler, train_ds, iters=1000)

rvs1 = normal(loc=-1, scale=0.7, n=5000)
    rvs2 = normal(loc=100, scale=0.8, n=5001)
```

statistic = ks(result.samples, [rvs1, rvs2])

Test is Flaky!

assert statistic < 0.1

Sources of Randomness

```
def test_MCMC_Sampler():
```

```
sampler = initMCMCSampler(chains=3)
train_ds = createGaussMixDS()
result = fit(sampler, train_ds, iters=1000)
```

```
rvs1 = normal(loc=-1, scale=0.7, n=5000)
rvs2 = normal(loc=100, scale=0.8, n=5001)
statistic = ks(result.samples, [rvs1, rvs2])
```

Test is Flaky!

assert statistic < 0.1

Sources of Randomness (MCMC)

```
def propose_parameter(self, x):
    ...
    x_new = multivariate_normal.sample(x, cov)
    return x_new
```

Propose new parameter value

```
def perform_step(self, x, ...):
    ...
    u = np.random.uniform(0, 1)
    if np.log(u) < log_p_acc:
        x = x_new</pre>
```

Accept or Reject new sample

Fixing Flaky Tests in ML Libraries*(FSE'21)

Mitigates Flakiness due to Randomness of ML Algorithm

Statistical Modeling to reason about underlying randomness

^{*} FLEX: Fixing Flaky Tests in Machine-Learning Projects by Updating Assertion Bounds. Saikat Dutta, August Shi, and Sasa Misailovic (FSE 2021)

FLEX: Workflow

Converges to **Generalized Pareto Distribution*!**

Challenges for applying Extreme Value Theory:

How to collect I.I.D. samples?

Samples from **Different Test Executions**, **Same Distribution** are **I.I.D.**

How many samples to collect?

48

Effectiveness vs Flakiness*(ICSE 2023)

- Problem: Loose Assertion Bound => Flakiness ___, Effectiveness
- Balance Effectiveness (Mutation Testing) & Flakiness (Concentration Inequalities)

Effectiveness can be improved!

Effectiveness **cannot** be improved!

⁴⁹

- Software engineering is bigger than programming
 - More stakeholders
 - Collaborative development
 - Quality has a cost
- Successful projects involve tradeoffs, communication
 - Different projects warrant different approaches
- Big projects are possible
 - With planning & teamwork, can accomplish far more than solo

Good luck with all your future endeavors!