Lecture 25;
Delivery

CS 5150, Spring 2025

Administrative Reminders

* Final Delivery May 14 12 PM

* For presentation, please use my calendly link to book 2 slots!
* Reserve 1 hr

Topics to refresh for in-class exam

 Differences between various test generation techniques, their relative
advantages, disadvantages

* Understanding how unit test generation algorithms work: Randoop,
Korat, ...

* Different dependency management systems

 Comparison of build systems

* Performance testing (Amdahl’s law, flame graphs, profiling)

* Test minimization algorithm (delta debugging)

* How static analysis techniques work (annotations, types, etc.)
* Principles of user testing

Previously in 5150

What does a build system even do?

* Why something like javac *.java isnotenough?

* How to handle:

* Building libraries stored in different directories (shared libraries)
Code written in different programming languages (dependencies)
Third-party jar files (how to store them, version management)
Rebuilding part of the codebase after dependency upgrade
* Target different systems/release builds (build configs)

* (Implicit dependencies) Managing related artifacts/tasks: documentation,
latest library version

* Write a shell script?

Desirable properties of build system

* Fast:

* Run a single command to build and get the output binary in a short time (few
seconds)

* Correct:

* Reproducible: Should output same result for any developer/machine for the
same input files

Task-Based Build Systems

e Task: Fundamental Unit of Work
* Tasks can have other tasks as dependencies

* Major build systems: Ant, Maven, Gradle, Grunt, Rake, ...

Artifact-based build system

* Build: Tell the system “what” to build instead of “how”
* Implemented in Blaze/Bazel (Google), Pants, Buck

* Build files are declarative: specify set of artifacts to build, their
dependencies, some build options (instead of exact steps)

e Blaze has full control over “how” build is run

 (Stronger) correctness guarantee while being more efficient

Bazel Advantages/Differences

 Parallelization:
e Targets that only require java compiler (vs custom script)

* Reuse/caching:
* If MyBinary.java changes, it will rebuild MyBinary but reuse mylib

* If a source file for //java/com/example/common changes, Bazel knows to
rebuild that library, mylib, and MyBinary, but reuse
//java/com/example/myproduct/otherlib

Other Bazel Features

* Tools as dependencies, toolchains (platform-specific tool usage)
e Custom user-defined actions: specify inputs, outputs, and steps
* Sandboxing: isolating filesystem for each action

* Remote caching

* Distributed build: Remote build

* Making remote/external dependencies deterministic

* Manifest file: Create cryptographic hash for each ext dependency, only
redownload when hash changes, build fails if hash changes

* What can go wrong?

Read more details in SWE@Google Chapter 18 build systems

PollEv.com/cs5150sp25

Which of these techniques is not useful for managing external
dependencies?

Signature/hash verification
(Shared) Caching
Mirroring servers

. Distributed build
Vendoring

m o O w P

11

https://pollev.com/cs5150sp25

Releasing software

When is software ready to release?

* When it is feature-complete? * "The biggest risk to any software
effort is that you end up building

* When it is bug-free? , ,
something that isn't useful... The

* When it has soaked for long earlier and more frequently you
enough? get working software in front of
* On the release date? real users, the quicker you get
feedback to find out how

* Continuously? _ _
valuable it really is."

- Martin Fowler

Traditional release process

Example: GCC (Release managers) e Challenges

* Need to coordinate process
* Features that miss merge window must

1. Merge window (time-boxed, 4 wait until next cycle
months) * Problematic features are difficult to
* Branches that are "ready" are merged to remove
trunk * Branch divergence (maintain dev branch)

2. Bug fixes (time-boxed) (now retired)
e Cut release branch
* No new (coupled) features

3. Regression & doc fixes (2 months)

4. Release
* When all high-priority bugs are fixed

Time-based vs. feature-based releases

Feature-based Time-based
* Product manager decides which * All features that are completed
major features define the next (tested) by release deadline are
release included in release
* Developers argue for their * Features that are not ready must
features to be included wait until next release
* Which features should hold up * Shorter release cadence reduces

release? (tendency for inflation) cost of missing deadline

Risks of long release processes

* Delay in providing value to client ¢ Example: YouTube

* May fall behind competition * Monolithic Python application
» Slow feedback on feature utility * Manual regression testing (50
. hours)
* Drain on morale * Requires release volunteers (lack
* Churn among release managers of automation)
prevents building expertise * Burnout leads to loss of expertise
* Difficult to diagnose issues * Solution: use microservices?

* Pain leads to over-conservatism, ¢ CD recommendation: don't slow
which leads to irrelevance down; speed up!

Principles of Continuous Delivery (CD)

* Agility * Component-based design and
« Release small updates frequently microservice architectures provide
* Faster is safer! (CD@Google) modularity

* Automation

* Modularity * Most benefit comes from being
« Isolate changes able to release frequently, not

+ Enable delegation necessarily from actually doing it

* Data

e Monitor health metrics
e Evaluate feature effectiveness
* A/B Testing

e Rollout control
 Phased rollouts
* Rollbacks

Launch and Iterate

“You get extraordinary outcomes by realizing that the launch never
lands but that it begins a learning cycle where you then fix the next
most important thing, measure how it went, fix the next thing, etc. —
and it is never complete.”

—David Weekly, Former Google product manager

Source: SWE@Google Chapter 24

Feature flags

* Tying new features to binary
builds is risky
* Binary rollout and rollback takes
time
* Risk of version skew

* Can't synchronize feature availability
with announcement

* Fixing a regression requires rolling
back all new features

* Runtime flags allow more
granular control
* Faster to propagate changes

e Can enable for arbitrary subset of
users

e Can toggle independently of other
features

* Build-time flags can be used to
avoid leaks

* Config-driven enabling/disabling

	Slide 1: Lecture 25: Delivery
	Slide 2: Administrative Reminders
	Slide 3: Topics to refresh for in-class exam
	Slide 4: Previously in 5150
	Slide 5: What does a build system even do?
	Slide 6: Desirable properties of build system
	Slide 7: Task-Based Build Systems
	Slide 8: Artifact-based build system
	Slide 9: Bazel Advantages/Differences
	Slide 10: Other Bazel Features
	Slide 11: PollEv.com​/cs5150sp25
	Slide 12: Releasing software
	Slide 13: When is software ready to release?
	Slide 14: Traditional release process
	Slide 15: Time-based vs. feature-based releases
	Slide 16: Risks of long release processes
	Slide 17: Principles of Continuous Delivery (CD)
	Slide 18: Launch and Iterate
	Slide 19: Feature flags

