
CS 5150, Spring 2025

Lecture 25:
Delivery

1

Administrative Reminders

• Final Delivery May 14 12 PM

• For presentation, please use my calendly link to book 2 slots!
• Reserve 1 hr

2

Topics to refresh for in-class exam

• Differences between various test generation techniques, their relative
advantages, disadvantages

• Understanding how unit test generation algorithms work: Randoop,
Korat, …

• Different dependency management systems

• Comparison of build systems

• Performance testing (Amdahl’s law, flame graphs, profiling)

• Test minimization algorithm (delta debugging)

• How static analysis techniques work (annotations, types, etc.)

• Principles of user testing

3

Previously in 5150
Build Systems

4

What does a build system even do?

• Why something like javac *.java is not enough?

• How to handle:
• Building libraries stored in different directories (shared libraries)

• Code written in different programming languages (dependencies)

• Third-party jar files (how to store them, version management)

• Rebuilding part of the codebase after dependency upgrade

• Target different systems/release builds (build configs)

• (Implicit dependencies) Managing related artifacts/tasks: documentation,
latest library version

• Write a shell script?

5

Desirable properties of build system

• Fast:
• Run a single command to build and get the output binary in a short time (few

seconds)

• Correct:
• Reproducible: Should output same result for any developer/machine for the

same input files

6

Task-Based Build Systems

• Task: Fundamental Unit of Work

• Tasks can have other tasks as dependencies

• Major build systems: Ant, Maven, Gradle, Grunt, Rake, …

7

Artifact-based build system

• Build: Tell the system “what” to build instead of “how”

• Implemented in Blaze/Bazel (Google), Pants, Buck

• Build files are declarative: specify set of artifacts to build, their
dependencies, some build options (instead of exact steps)

• Blaze has full control over “how” build is run

• (Stronger) correctness guarantee while being more efficient

8

Bazel Advantages/Differences

• Parallelization:
• Targets that only require java compiler (vs custom script)

• Reuse/caching:
• If MyBinary.java changes, it will rebuild MyBinary but reuse mylib

• If a source file for //java/com/example/common changes, Bazel knows to
rebuild that library, mylib, and MyBinary, but reuse
//java/com/example/myproduct/otherlib

9

Other Bazel Features

• Tools as dependencies, toolchains (platform-specific tool usage)

• Custom user-defined actions: specify inputs, outputs, and steps

• Sandboxing: isolating filesystem for each action

• Remote caching

• Distributed build: Remote build

• Making remote/external dependencies deterministic
• Manifest file: Create cryptographic hash for each ext dependency, only

redownload when hash changes, build fails if hash changes

• What can go wrong?

10Read more details in SWE@Google Chapter 18 build systems

PollEv.com​/cs5150sp25

Which of these techniques is not useful for managing external
dependencies?

A. Signature/hash verification

B. (Shared) Caching

C. Mirroring servers

D. Distributed build

E. Vendoring

11

https://pollev.com/cs5150sp25

Releasing software

12

When is software ready to release?

• When it is feature-complete?

• When it is bug-free?

• When it has soaked for long
enough?

• On the release date?

• Continuously?

• "The biggest risk to any software
effort is that you end up building
something that isn't useful… The
earlier and more frequently you
get working software in front of
real users, the quicker you get
feedback to find out how
valuable it really is."
- Martin Fowler

13

Traditional release process

Example: GCC (Release managers)

1. Merge window (time-boxed, 4
months)
• Branches that are "ready" are merged to

trunk

2. Bug fixes (time-boxed) (now retired)
• Cut release branch
• No new (coupled) features

3. Regression & doc fixes (2 months)

4. Release
• When all high-priority bugs are fixed

• Challenges
• Need to coordinate process
• Features that miss merge window must

wait until next cycle
• Problematic features are difficult to

remove
• Branch divergence (maintain dev branch)

14

Time-based vs. feature-based releases

Feature-based

• Product manager decides which
major features define the next
release

• Developers argue for their
features to be included

• Which features should hold up
release? (tendency for inflation)

Time-based

• All features that are completed
(tested) by release deadline are
included in release

• Features that are not ready must
wait until next release

• Shorter release cadence reduces
cost of missing deadline

15

Risks of long release processes

• Delay in providing value to client
• May fall behind competition

• Slow feedback on feature utility

• Drain on morale
• Churn among release managers

prevents building expertise

• Difficult to diagnose issues

• Pain leads to over-conservatism,
which leads to irrelevance

• Example: YouTube
• Monolithic Python application

• Manual regression testing (50
hours)

• Requires release volunteers (lack
of automation)
• Burnout leads to loss of expertise

• Solution: use microservices?

• CD recommendation: don't slow
down; speed up!

16

Principles of Continuous Delivery (CD)

• Agility
• Release small updates frequently
• Faster is safer! (CD@Google)

• Automation
• Modularity

• Isolate changes
• Enable delegation

• Data
• Monitor health metrics
• Evaluate feature effectiveness
• A/B Testing

• Rollout control
• Phased rollouts
• Rollbacks

• Component-based design and
microservice architectures provide
modularity

• Most benefit comes from being
able to release frequently, not
necessarily from actually doing it

17

Launch and Iterate

“You get extraordinary outcomes by realizing that the launch never
lands but that it begins a learning cycle where you then fix the next
most important thing, measure how it went, fix the next thing, etc.—
and it is never complete.”

—David Weekly, Former Google product manager

Source: SWE@Google Chapter 24
18

Feature flags

• Tying new features to binary
builds is risky
• Binary rollout and rollback takes

time
• Risk of version skew

• Can't synchronize feature availability
with announcement

• Fixing a regression requires rolling
back all new features

• Runtime flags allow more
granular control
• Faster to propagate changes

• Can enable for arbitrary subset of
users

• Can toggle independently of other
features

• Build-time flags can be used to
avoid leaks

• Config-driven enabling/disabling

19

	Slide 1: Lecture 25: Delivery
	Slide 2: Administrative Reminders
	Slide 3: Topics to refresh for in-class exam
	Slide 4: Previously in 5150
	Slide 5: What does a build system even do?
	Slide 6: Desirable properties of build system
	Slide 7: Task-Based Build Systems
	Slide 8: Artifact-based build system
	Slide 9: Bazel Advantages/Differences
	Slide 10: Other Bazel Features
	Slide 11: PollEv.com​/cs5150sp25
	Slide 12: Releasing software
	Slide 13: When is software ready to release?
	Slide 14: Traditional release process
	Slide 15: Time-based vs. feature-based releases
	Slide 16: Risks of long release processes
	Slide 17: Principles of Continuous Delivery (CD)
	Slide 18: Launch and Iterate
	Slide 19: Feature flags

