Lecture 22: Static Analysis

CS 5150, Spring 2025

Administrative Reminders

* Peer Evaluation 2 is out. Submit by next week.

Lecture Goals

* Understanding relative strengths and weaknesses of static
analysis

* Explore several popular analysis tools

* Understand how analysis tools are used in large Open-source
software

What are program analysis tools?

src/controllers/accounts/posts.js (3

136 Y

137 1,

138 . 5

139

140 postsController.getBookmarks = async function (req, res, next) {

141 await getPostsFromUserSet('account/bookmarks', req, res, © next);

This function expects 3 arguments, but 4 were provided.

Static Analysis ol g

143

144 postsController.getPosts = async function (req, res, next) {
145 [] await getPostsFromUserSet('account/posts’', req, res, next);
146 };

COVEMHS 66 Auth.reloadRoutes = async function (params) {

67 loginStrategies. length = 0;
* 68 const { router } = parass;

69
* 70
* i if (plugins.hooks.hasListeners(‘action:auth.overrideLogin')) {

72 winston.warn(' [authentication] Login override detected, skipping L
(2] login strategy.');

73 Plugins. hooks. fire(*action:auth.overrideLogin®);
T 74) else {
‘J 75 passport.use(new passportlocal({ passReqToCallback: true },

controllers,authentication, locallogin));

Dynamic Analysis T

77

78

79 passport.use('core.api', new BearerStrategy({}, Auth.verifyToken));

80

81

82 try {

83 loginStrategies = await plugins.hooks.fire('filter:auth.init’,
loginStrategies);

84) cateh (err) {

85 winston.error(’ [authentication] ${err.stack}');

86 }

87 loginStrategies = loginStrategies || [);

88 loginStrategies. forEach((strategy) = {

What static analysis can/cannot do

Type-checking
* Set of data types taken any variable at any point
 Canbeusedto prevent type errors (e.g., java) or warn about potential type errors (e.g., Python)

Checking for problematic patterns in syntaxis easy and fast
* Isthere a comparison of two java strings using ~==""
* Isthere anarray access "a[i] without an eclosing bounds check for "i" ?

Reasoning about termination is impossible in general
* Halting problem

Reasoning about exact values is hard, but conservative analysis via abstraction is possible
* |sthe bounds check before " a[i]" guaranteeing that "i" is within bounds?

Can the divisor ever take on zero value?

Could the result of function callbe "42°?

Will this multi-threaded program give me a deterministic result?

* Be prepared for “MAYBE”

Verifying some advanced properties is possible but expensive
* Cl-based static analysis usually over-approximates conservatively

Static Analysis is well suited to detecting
certain defects

* Security: Buffer overruns, improperly validated input...

* Memory safety: Null dereference, uninitialized data...

* Resource leaks: Memory, OS resources...

APl Protocols: Device drivers; real time libraries; GUI frameworks
* Exceptions: Arithmetic/library/user-defined

* Encapsulation: Accessing internal data, calling private
functions...

e Data races: Two threads access the same data without
synchronization

The Bad News: Rice’s Theorem

Every static analysis is necessarily incomplete, unsound, undecidable, or a
combination thereof

“Any nontrivial property about the language recognized by a Turing machine is
undecidable.”

Henry Gordon Rice, 1953

Static Analysis: Broad classification

* Linters
* Shallow syntax analysis for enforcing code styles and formatting

* Pattern-based bug detectors
* Simple syntax or APl-based rules for identifying common programming
mistakes
* Type-annotation validators
* Check conformance to user-defined types
* Types can be complex (e.g., “Nullable”)

* Data-flow analysis / Abstract interpretation)

* Deep program analysis to find complex error conditions (e.g., "can array
index be out of bounds?”)

Static analysis can be applied to all attributes

* Find bugs
* Refactor code
* Keep your code stylish!

* |dentify code smells (long method names, duplicated code, ...)
* Measure quality

* Find usability and accessibility issues

* |dentify bottlenecks and improve performance

10

Activity: Analyze the Python program statically

def n2s(n: int, b: int): 1. What is the type of variable 'u™?
if n<=0:return '0' 2. Will the variable ‘u’ be a negative
r= number?
while n > 0O:
u=n%b 3. Will this function always return a
if u>=10: value?
u = chr(ord('A’) + u-10) 4. Will the program divide by zero?
n=n//b
r=str(u)+r 5. Will the returned value ever contain a
returnr minus sign -'?

Answers can be Yes/No/Maybe (depends on the input)
11

Dynamic analysis reasons about program
executions

* Tells you properties of the program that were definitely observed
* Code coverage
* Performance profiling
* Type profiling
* Testing
* |[n practice, implemented by program instrumentation

* Think “Automated logging”
* Slows down execution speed by a small amount

12

Static Analysis vs Dynamic Analysis

* Requires only source code * Requires successful build + test

* Conservatively reasons about all Inputs o .
possible inputs and program paths e Observes individual executions

* Reported warnings may contain false * Reported problems are real, as
positives observed by a withess input

 Canonlyreport problems that are
seen. Highly dependent on test

Can report all warnings of a

particular class of problems inputs. Subject to false negatives

* Advanced techniques like Advanced techniques like symbolic
verification can prove certain execution can prove certain complex
complex properties, but rarely run in properties, but rarely runin Cl due to

Cl due to cost cost

13

Tools for static analysis

QERSIZ),
c -‘\ N\ O
= ®
18 56
/ o
Cs R g
ANV F 1ndBug S
l)Q(‘i\USL‘ il’S CL\S_"

&: my[py] @snyk sonarqube\\\

»

(‘ COV@I'ity® squale e

SYNOPSYs

LLVM (C++)

14

Static analysis Is now heavily commercialized

GitHub acquires code analysis tool Semmle

4

Frederic Lardinois

Y

f -

Types

categories

Zube WhiteSource Bolt &
D> 4 g e Detect
@ ?mwum o 00 Slack + GitHub ©

BackHub - GitLocalize ¢)

e Codacy © Code Climate @
a Semaphore @& o Flaptastic ©

° DeepScan @ 9 Depfu ©

) GitHub

News

Snyk Secures $150M, Snags $1B
Valuation

Sydney Sawaya | Assoclate Editor AR
P oo 600000

Snyk, a developer-focused security startup that and Identifies vulnerabllities In open source applications,
announced a $150 million Serles C funding round today. This brings the company's total investment to

$250 million alongside reports that put the company's valuation at more than $1 blllion

snyk

https://github.com/marketplace?type=apps&category=security 15

Static analysis is a key part of continuous
Integration

X [0 RO4

COMMIT
& ®O— 00— 000
‘ BUILD UNIT INTEGRATION
TESTS TESTS
&
@ CI PIPELINE
RELATED CODE
a0
Q.

GitHub Actions

16

Static Analysis is also integrated into IDEs

of B =

c++ Cppcoreguidelines.cpp

clipse

// To enable only C++ Core Guidelines checks
// go to Settings/Preferences | Editor | Inspections | C/C++ | Clang-Tidy
// and provide: -x,cppcoreguidelines—* in options

void fill_pointer(intx arr, const int num) {
for(ipt i=0; 1i<num ++i) {
arr[il = 0;
1
Do not use pointer arithmetic

void fill_array(int ind) {

int a.rr [3] = {l, 25 3}; hi:,:g:uhlwmdmm” — H Cross-site Scripting (XSS)
arr[ind] = @; ey

6 high | @ medium erability

}

void cast_away_const(const int& magic_num)

{ s ring' & item.match(ingRegex)) {

const_cast<int&>(magic_num) = 42;
}

tring(). indexOf (remindToken) ;

1 1w 7 reminder + remindToken, length);

9 high | 21 medium | 25 low 8 reminder) ;
critical | 66 high | 56 medium | 142 low

What makes a good static analysis tool?

e Static analysis should be fast
* Don’t hold up development velocity
* This becomes more important as code scales

e Static analysis should report few false positives

. c]IOthFrwis,e developers will start to ignore warnings and alerts, and quality will
ecline

e Static analysis should be continuous
* Should be part of your continuous integration pipeline

* Diff-based analysisis even better —don’t analyze the entire codebase; just the
changes

e Static analysis should be informative

* Messages that help the developer to quickly locate and address the issue
* |deally, it should suggest or automatically apply fixes

18

(1) Linters: Cheap, fast, and lightweight static source analysis

19

https://softwareengineering.stackexchange.com/questions/367848/difference-between-linter-sanitizer-and-static-analysis-tools

Use linters to enforce style guidelines

* Don’trely on manual inspection during code review!

gvsvv & RuboCop @

ﬂ @ python

= Java

https://checkstyle.sourceforge.io/

20

https://checkstyle.sourceforge.io/

Linters use very “shallow” static analysis to
enforce formatting rules

* Ensure proper indentation
 Naming convention

* Line sizes

* Class nesting

* Documenting public functions

* Parenthesis around expressions

 What else?

21

Use linters to improve maintainability

* Why? We spend more time reading code than writing it
* Various estimates of the exact %, some as high as 80%

* Code is ownership is usually shared
* The original owner of some code may move on

* Code conventions make it easier for other developers to quickly
understand your code

22

Use Style Guidelines to facilitate communication

* Guidelines are inherently opinionated, but consistencyis the im

point

* Agree to a set of conventions and stick to them

Tweets by oepsr
@@ Pyihon Software Foundation &

We encourage you to contribute to our
community's knowledge by taking part in
the official Pyhon Susvey 2020, of
n pattnership bat ThePSF &
JetBrains. Sh v win prizes! The
survey should only take you abous 10

o complete b 3
o

ized

Python Developers S...

Eh Join and contibute fo .

@ Python Saftware Foundation &
ThepSF

Hey, Pythonistas, have you aiready joined
Developers Survey 20207

Outhan Nevstaners €

The PSF

The Python Software Foundation

.

Downloads Documentation Community Success Stories News

Python » Python Developer’s Guide) PEP Index) PEP 8 - Style Guide for Python Code

PEP 8 -- Style Guide for Python Code

PEP: 8
Title: Style Guide for Python Code
Author: Guido van Rossum <guido at python.org>, Barry Warsaw <barry at python.org>, Nick

gmail.com>
Status: Active
Type: Process
Created: 05-Jul-2001

Post- 05-Jul-2001, 01-Aug-2013

Contents

= Introduction

ay-out
« Indentation

= Tabs or Spaces’

= Maximum Lin

ak Before or After a Binary Op

Style Guidelines

This document collects the emerging principles, co

itions, and best practices for w

Rust code

Since Rust s evolving at @ rapid ps

se guidel

re preliminary. The hope s that writing them

down explicitly will help drive discussion,

1 adoption

Whenever feasible, guidelines provide speciic examples from Rusts standard libaries,
Guideline statuses
Every guideline has a status:

[FIXME]: Marks places where there is
through the RFC prosess,

ork to be done. In some eases, that just me:

» [FIXME ENNNNNJ: Like [FIXME], but links 10 the tssue tracker

@ [RFC $NNNNJ: Marks accepted guidelines, linking to the rust-lang RFC establishing them.

Guideline stabilization

choices. Discussion

sing the Guidelines category. Discussion can also oceur on the guid

Guidelines that are under development or discussion will be marked with the status [FIXME], with a
link 10 the issue tracker when appropriate.

Once a concreic guideline

ready to be proposcd, it should be filed as an FIXME: needs RFC.If the
lines will be updated to maich, and will include the tag [RFC

IN] linking to the RFC dosument

What's in this document
This document is broken into four parts:
= Style provides a st of rules governing naming conventions, whitespace, and ather stylistic isstes.

® Guidelines by Rust feature places the focus on cach of Rust's feature:

& from expressions

and working the way o

s, dispensing guidelines relevant 1o cach.

The rest of the document proceeds by cross-cutting topic, starting

Rust discusses the farward-compatibility hazards, especially those that

pre- 1.0 library stabilization process.

The
Chicago
Manual

of Style

THE E TIAL GUIDE
for Writers, Editors, and Publishers

ortant

Take-Away Message:
Style i1s an easy way to improve readability

* Everyone has their own opinion (e.g., tabs vs. spaces)

* Agree to a convention and stick to it
* Use continuous integration to enforce it

* Use automated tools to fix issues in existing code

24

Pattern-based Static Analysis Tools

JERSIF
v *
<30 7 = = =
= FindBugs Bug Descriptions
1 54
LYW This document lists the standard bug patterns reported by FindBugs version 3.0.1.

TRYLAS ™

- A . S
FindBugs "M

L]
 Bad Practice e — —-
BC: Equals method should not assume anything about the tvpe of its argument Bad practice
Docs and Info BIT: Check for sign of bitwise operation Bad practice
FiredBuge 2.0 CN; Class implements Cloneable but does not define or use clone method Bad practice
C 3°'“°::: g CN: clone method does not call super.clone() Bad practice
o O r r e Ct n e S S F.:::;“gs l;:;pwwm CN: Class defines clone() but doesn't implement Cloneable Bad practice
Fact sheet CNT: Rough value of known constant found Bad practice
Manual 20: ; i Bad practice
Manual(ja/H) Co: mmpan:Tn){mmgarp Lincorrectly handlpf, ﬂoat or dnuhlp value Bad practice
E Co: compareTol)/compare() returns Integer. MIN VALUE Bad practice
* Performance e
nu: descriptionsifr) i M 0 ! Bad practice
Mailing lists DE; Method might ignore exception Bad practice
Documents and Publications DML Adding elements of an entry set may fail due to reuse of Entry objects Bad practice
. . . Links. DMI: Random object created and used only once Bad practice
o DMIL: Don't use removeAll to clear a collection Bad practice
I n t e r n a t I O n a l I Z at I O n Downloads Dm: Method invokes System.exit(...) Bad practice
Dm: Method invokes dangerous method runFinalizersOnExit Bad practice
FindBugs Swag ES: Comparison of String parameter using == or != Bad practice
ES: Comparison of String objects using == or != Bad practice
M M m},:;mem Eq: Abstract class defines covariant equals() method Bad practice
® a ICIOU S O e Reporting bugs Eq: Equals checks for incompatible operand Bad practice
Contributing Eg: Class defines compareTo(...) and uses Object.equals() Bad practice
Wi Eq; equals method fails for subtypes Bad practice
API [no frames] . .
S I::q. Covariant e.!qualst] method defined Bad pl‘dL.L.lL(-_'
. SF project page FL: Empty finalizer should be deleted Bad practice
[) M u lt I t h re a d e d ‘ O r re Ct n e S S Browse source FI: Explicit invocation of finalizer Bad practice
Latest code changes FI: Finalizer nulls fields Bad practice
FI: Finalizer only nulls fields Bad practice
FIL: Finalizer does not call superclass finalizer Bad practice
. 7: Finalize i s fi e Bad practice
[) S e C u r I ty EL Finalizer does nothing but call superclass finalizer Bad practice
ES: Format string should use %n rather than \n Bad practice
GC; Unchecked type in generic call Bad practice
HE: Class defines equals() but not hashCode() Bad practice
HE: Class defines equals() and uses Object. hashCode() Bad practice
HE: Class defines hashCode() but not equals() Bad practice
. O O e HE: Class defines hashCode() and uses Object.equals() Bad practice
HE: Class inherits equals() and uses Object.hashCode() Bad practice
IC: Superclass uses subclass during initialization Bad practice
IMSE: Dubious catching of IllegalMonitorStateException Bad practice
ISC: Needless instantiation of class that only supplies static methods Bad practice
It: Iterator next() method can't throw NoSuchElementException Bad practice
2EE: serfalize ject into HitpSession Bad practice
JCIP; Fields of immutable classes should be final Bad practice

ME: Public enum method unconditionally sets its field Bad practice

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

Bad Practice:

String x = new String("Foo");

String y = new String("Foo");

if (x==1y) {

System.out.printin("x and y are the same!");
} else {

System.out.printin("x and y are different!");

}

26

Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

String x = new String("Foo");

String y = new String("Foo");

He==yHif (x.equals(y)) {
System.out.printin("x and y are the same!");

}else {
System.out.printin("x and y are different!");

}

27

How do we check for equality in JS?

If (a=

If (a=
* If (a===D) {
* if (Object.is(a,b)) {

28

How do we check for equality in JS?

* if (a=Db) {
* No
¢ if (a==b) {
* Loose equality : 1==1is true (type coercion)
¢ if (a===Db) {
* Correct! Checks for both value and type! So, 1=="1"is false
if (Object.is(a,b)) {
More precise for cases like NaN or -0
Object.is(NaN, NaN): true, Object.is("1" 1): false
Object.is(-0, 0): false
Object.is(obj, {}): false

Performance:

public static String repeat(String string, int times)
{

String output = string;

for (inti=1;i<times; ++i) {

output = output + string;

}

return output;

}

30

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method
concatenates strings using + in a loop

public static String repeat(String string, int times)

{
String output = string;
for (inti=1;i<times; ++i) {

output = output + String’- The method seems to be building a String using concatenation
in a loop. In each iteration, the String is converted to a

} StringBuffer/StringBuilder, appended to, and converted back to

return output; a String. This can lead to a cost quadratic in the number of

iterations, as the growing string is recopied in each iteration.

}

31

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method
concatenates strings using + in a loop

public static String repeat(String string, int times)
{

int length = string.length() * times;

StringBuffer output = new StringBuffer(length);
for (inti=0; i< times; ++i) {
output.append(string);

}

return output.toString();

}

32

Correctness:

@Override

public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);
try {

con.open();

} catch (Exception e) {

new SQLException(e);

}

return con;

}

33

Correctness: Missing “throw” before “new Exception”

@Override

public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);
try {

con.open();

} catch (Exception e) {

throw new SQLException(e);

}

return con;

}

34

Challenges with pattern-based static
analysis

* The analysis must produce zero false positives
* Otherwise developers won’t be able to build the code!

* The analysis needs to be really fast
* |deally <100 ms
* |fittakes longer, developers will become irritated and lose productivity

* Practically, this means the analysis needs to focus on “shallow” bugs rather
than verifying some complex logic spanning multiple functions/classes.

* You can’tjust “turn on” a particular check

* Every instance where that check fails will prevent existing code from building

* There could be thousands of violations for a single check across large
codebases

35

(3) Use type annotations to detect common
errors

* Uses static types to prevent meaningless operations from
executing in the first place (instead of dealing with bad results

later)
* Annotations can enhance type system already in the language
* Examples: Java Checker Framework, MyPy, TypeScript

framework @: my[py] TypeScript

36

Example: MyPy Type System

* Add type hints to programs

* Mix static and dynamic typing

* Makes code much safer!

* Avoids invalid operations statically!

From Python... ...to statically typed Python
def fib(n): def fib(n: int) -> Iterator[int]:
a? b = @) 1 a,. b = @, 1
while a < n: while a < n:
yield a yield a

a, b = b, a+b a, b = b, a+b

37

Example: Detecting null pointer exceptions

* @Nullable indicates that an
expression may be null // return value

« @NonNull indicates that an @NonNull String toString() { ... }
expression must never be null

« Guarantees that expressions /V parameter _
annotated with @NonNull will int compareTo(@NonNull String other)
never evaluate to null, forbids Lo g
other expressions from being
dereferenced

38

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

public void example() {
@NonNull String foo = "foo";

String bar = null; —

foo = bar;
printin(foo.length(]J;
}

}

@Nullable is applied by default

Error: [assignment.type.incompatible] incompatible

types in assighnment.
found : @Initialized @Nullable String

required: @Unknownlnitialization@NonNull String

39

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {

@NonNull String foo = "foo";
String bar = null; //@Nullable

baris refined to @NonNull

if (bar != null){

foo = bar; T —
}

printin(foo.length());

}

}

40

DEMO

* http://eisop.uwaterloo.ca/live/#mode=edit

41

http://eisop.uwaterloo.ca/live/

Another example: Units checker

 Guarantees that operations are performed on the same kinds and
units

* Kind annotations
* @Acceleration, @Angle, @Area, @Current, ...

S| Unit annotation
e @m, @km, @mm, @kg, ...

42

YL T ke S

"METRIC, ENGLSH, WHATEVeR.."

Remember the Mars Climate Orbiter incident from 1999?

% sl Mscn lE Blog Product Solutions Learning ~ Public Projects ~ Case Studies Careers Pricing LogIn Sign Up

When NASA Lost a Spacecraft Due to

a Metric Math Mistake

WRITTEN BY JPDATED O APPROX READING TIME
ﬁ Ajay Harish March 10th, 2020 11 Minutes

Blog > CAE Hub > When NASA Lost a Spacecraft Due to a Metric Math Mistake

In September of 1999, after almost 10 months of travel to Mars, the Mars Climate Orbiter burned
and broke into pieces. On a day when NASA engineers were expecting to celebrate, the ground
reality turned out to be completely different, all because someone failed to use the right units,
i.e., the metric units! The Scientific American Space Lab made a brief but interesting video on this

very topic.

NASA'S LOST SPACECRAFT

The Metric System and NASA's Mars Climate Orbiter

The Mars Climate Orbiter, built at a cost of $125 million, was a 338-kilogram robotic space probe
launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and
surface changes. In addition, its function was to act as the communications relay in the Mars
Surveyor ‘98 program for the Mars Polar Lander. The navigation team at the Jet Propulsion

Laboratory (JPL) used the metric system of millimeters and meters in its calculations, while

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {

@m int x; @m indicates that x represents meters

X=5%*m;

@m int meters =5 * m; : : : : : :
. To assign a unit, multiply appropriate unit constant from UnitTools

@s int seconds =2 *s;

@mPERs int speed = meters / seconds;

@m int foo = meters + seconds;

@s int bar = seconds - meters;

}

44

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {

@m int x; @m indicates that x represents meters

X=5%*m;

@m int meters =5 * m; : : : : : :
, To assign a unit, multiply appropriate unit constant from UnitTools

@s int seconds =2 *s;

@mPERs int speed = meters / seconds;

@m int foo = meters + seconds;

@s int bar = seconds - meters;

}

45

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;
void demo() {

@m int x;

X=5%*m;

@m int meters =5 * m;

@s int seconds =2 *s;

@mPERs int speed = meters / seconds;

@m int foo = meters + seconds;

@s int bar = seconds - meters;

}

46

Does this program compile? No

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;

import static org.checkerframework.checker.units.UnitsTogd Addition and subtraction between
void demo() { meters and seconds is physically

@m int x; .
5t meaningless

@m int meters =5 * m;

@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;

@s int bar = seconds - meters;

}

Limitations of Type-based Static Analysis

 Can only analyze code thatis annotated
* Requires that dependent libraries are also annotated
* Can be tricky to retrofit annotations into existing codebases

* Only considers the signature and annotations of methods
 Doesn’t look atthe implementation of methods that are being called

 Can’t handle dynamically generated code well
* Examples: Spring Framework, Templates

 Can produce false positives!
* Byproduct of necessary approximations

48

More Advanced Tools

 CodeQL

* Mostly focused on detecting deep security
bugs via data flow/taint analysis
* Write SQL-like queries for each vulnerability

* Provides 1000s of custom queries across
languages

* Key techniques: Data flow analysis,
Control flow analysis, ...

* Othertools: Semgrep, Snyk, SonarQube

public static Object deserialize (InputStream is)
throws IOException %
ObjectInputStream ois = new ObjectInputStream(is);
return ois.readObject();

h

from PathNode source, PathNode sink
where flowPath(source, sink)
select sink.getNode(). (UnsafeDeserializationSink)
.getMethodAccess(),
source, sink, "Unsafe deserialization of $@.",
source.getNode(), "user input"

alerts v

v

<
< il il

Unsafe deserialization of user input.

Unsafe deserialization of user input.
Path

getContent(...) : InputStream

getContentAsStream(...) : InputStream

toBufferedInputStream(...) : InputStream

is : InputStream

1l
2
3
4 getInputStream(...) : InputStream
5
6

ois

Path

[/

Unsafe deserialization of user input.

Best QA strategies employ a combination of

tools

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib
andrew.a habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defectsd] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i} static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static

Michael Pradel
michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE "18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doiorg/10.1145/3238147.3238213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-

Tool Bugs
Error Prone 8
Infer 5
SpotBugs 18
Total: 31

Total of 27 unique bugs

SpotBugs
14
2 2
0
7] 0 3
Error Prone Infer

Figure 4: Total number of bugs found by all three static
checkers and their overlap.

50

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

Which tool to use?

* Depends on use case, available resources
* Linters: Fast, cheap, easy to address issues or set ignore rules
 Pattern-based bugs: Intuitive, but need to deal with false positives.

* Type-annotation-based checkers: More manual effort required;
needs overall project commitment. But good payoff once adopted.

* Deep analysis tools: Can find tricky issues, but can be costly. Might
need some awareness of the analysis to deal with false positives.

* The best QA strategy involves multiple analysis and testing
techniques!

51

	Slide 1: Lecture 22: Static Analysis
	Slide 2: Administrative Reminders
	Slide 3: Lecture Goals
	Slide 4: What are program analysis tools?
	Slide 5: What static analysis can/cannot do
	Slide 6: Static Analysis is well suited to detecting certain defects
	Slide 7: The Bad News: Rice’s Theorem Every static analysis is necessarily incomplete, unsound, undecidable, or a combination thereof
	Slide 9: Static Analysis: Broad classification
	Slide 10: Static analysis can be applied to all attributes
	Slide 11: Activity: Analyze the Python program statically
	Slide 12: Dynamic analysis reasons about program executions
	Slide 13: Static Analysis vs Dynamic Analysis
	Slide 14: Tools for static analysis
	Slide 15: Static analysis is now heavily commercialized
	Slide 16: Static analysis is a key part of continuous integration
	Slide 17: Static Analysis is also integrated into IDEs
	Slide 18: What makes a good static analysis tool?
	Slide 19: (1) Linters: Cheap, fast, and lightweight static source analysis
	Slide 20: Use linters to enforce style guidelines
	Slide 21: Linters use very “shallow” static analysis to enforce formatting rules
	Slide 22: Use linters to improve maintainability
	Slide 23: Use Style Guidelines to facilitate communication
	Slide 24: Take-Away Message: Style is an easy way to improve readability
	Slide 25: (2) Pattern-based Static Analysis Tools
	Slide 26: Bad Practice:
	Slide 27: Bad Practice: ES_COMPARING_STRINGS_WITH_EQ Comparing strings with ==
	Slide 28: How do we check for equality in JS?
	Slide 29: How do we check for equality in JS?
	Slide 30: Performance:
	Slide 31: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 32: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 33: Correctness:
	Slide 34: Correctness: Missing “throw” before “new Exception”
	Slide 35: Challenges with pattern-based static analysis
	Slide 36: (3) Use type annotations to detect common errors
	Slide 37: Example: MyPy Type System
	Slide 38: Example: Detecting null pointer exceptions
	Slide 39
	Slide 40
	Slide 41: DEMO
	Slide 42: Another example: Units checker
	Slide 43
	Slide 44
	Slide 45: Does this program compile?
	Slide 46: Does this program compile?
	Slide 47: Does this program compile? No
	Slide 48: Limitations of Type-based Static Analysis
	Slide 49: More Advanced Tools
	Slide 50: Best QA strategies employ a combination of tools
	Slide 51: Which tool to use?

