
Lecture 22: Static Analysis

CS 5150, Spring 2025

1

Administrative Reminders

• Peer Evaluation 2 is out. Submit by next week.

2

Lecture Goals

• Understanding relative strengths and weaknesses of static
analysis

• Explore several popular analysis tools
• Understand how analysis tools are used in large Open-source

software

3

What are program analysis tools?

4

What static analysis can/cannot do
• Type-checking

• Set of data types taken any variable at any point
• Can be used to prevent type errors (e.g., java) or warn about potential type errors (e.g., Python)

• Checking for problematic patterns in syntax is easy and fast
• Is there a comparison of two java strings using `==`?
• Is there an array access `a[i] ̀without an eclosing bounds check for `i`?

• Reasoning about termination is impossible in general
• Halting problem

• Reasoning about exact values is hard, but conservative analysis via abstraction is possible
• Is the bounds check before `a[i] ̀guaranteeing that `i` is within bounds?
• Can the divisor ever take on zero value?
• Could the result of function call be `42`?
• Will this multi-threaded program give me a deterministic result?
• Be prepared for “MAYBE”

• Verifying some advanced properties is possible but expensive
• CI-based static analysis usually over-approximates conservatively

5

Static Analysis is well suited to detecting
certain defects
• Security: Buffer overruns, improperly validated input…
• Memory safety: Null dereference, uninitialized data…
• Resource leaks: Memory, OS resources…
• API Protocols: Device drivers; real time libraries; GUI frameworks
• Exceptions: Arithmetic/library/user-defined
• Encapsulation: Accessing internal data, calling private

functions…
• Data races: Two threads access the same data without

synchronization

6

The Bad News: Rice’s Theorem
Every static analysis is necessarily incomplete, unsound, undecidable, or a
combination thereof
“Any nontrivial property about the language recognized by a Turing machine is
undecidable.”

7

Henry Gordon Rice, 1953

Static Analysis: Broad classification

• Linters
• Shallow syntax analysis for enforcing code styles and formatting

• Pattern-based bug detectors
• Simple syntax or API-based rules for identifying common programming

mistakes
• Type-annotation validators

• Check conformance to user-defined types
• Types can be complex (e.g., “Nullable”)

• Data-flow analysis / Abstract interpretation)
• Deep program analysis to find complex error conditions (e.g., "can array

index be out of bounds?”)

9

Static analysis can be applied to all attributes
• Find bugs
• Refactor code
• Keep your code stylish!
• Identify code smells (long method names, duplicated code, …)
• Measure quality
• Find usability and accessibility issues
• Identify bottlenecks and improve performance

10

Activity: Analyze the Python program statically

def n2s(n: int, b: int):
if n <= 0: return '0'

r = ''

while n > 0:

 u = n % b

 if u >= 10:

 u = chr(ord('A') + u-10)

 n = n // b

 r = str(u) + r

return r

11

1. What is the type of variable `u`?

2. Will the variable `u` be a negative
number?

3. Will this function always return a
value?

4. Will the program divide by zero?

5. Will the returned value ever contain a
minus sign ‘-’?

Answers can be Yes/No/Maybe (depends on the input)

Dynamic analysis reasons about program
executions
• Tells you properties of the program that were definitely observed

• Code coverage
• Performance profiling
• Type profiling
• Testing

• In practice, implemented by program instrumentation
• Think “Automated logging”
• Slows down execution speed by a small amount

12

Static Analysis vs Dynamic Analysis

• Requires only source code
• Conservatively reasons about all

possible inputs and program paths
• Reported warnings may contain false

positives
• Can report all warnings of a

particular class of problems
• Advanced techniques like

verification can prove certain
complex properties, but rarely run in
CI due to cost

13

• Requires successful build + test
inputs

• Observes individual executions
• Reported problems are real, as

observed by a witness input
• Can only report problems that are

seen. Highly dependent on test
inputs. Subject to false negatives

• Advanced techniques like symbolic
execution can prove certain complex
properties, but rarely run in CI due to
cost

Tools for static analysis

14

LLVM (C++)

Static analysis is now heavily commercialized

15https://github.com/marketplace?type=apps&category=security

Static analysis is a key part of continuous
integration

16

Static Analysis is also integrated into IDEs

17

What makes a good static analysis tool?

• Static analysis should be fast
• Don’t hold up development velocity
• This becomes more important as code scales

• Static analysis should report few false positives
• Otherwise developers will start to ignore warnings and alerts, and quality will

decline
• Static analysis should be continuous

• Should be part of your continuous integration pipeline
• Diff-based analysis is even better – don’t analyze the entire codebase; just the

changes
• Static analysis should be informative

• Messages that help the developer to quickly locate and address the issue
• Ideally, it should suggest or automatically apply fixes

18

(1) Linters: Cheap, fast, and lightweight static source analysis

19
https://softwareengineering.stackexchange.com/questions/367848/difference-between-linter-sanitizer-and-static-analysis-tools

https://softwareengineering.stackexchange.com/questions/367848/difference-between-linter-sanitizer-and-static-analysis-tools

Use linters to enforce style guidelines

• Don’t rely on manual inspection during code review!

20

https://checkstyle.sourceforge.io/

https://checkstyle.sourceforge.io/

Linters use very “shallow” static analysis to
enforce formatting rules
• Ensure proper indentation

• Naming convention

• Line sizes

• Class nesting

• Documenting public functions

• Parenthesis around expressions

• What else?

21

Use linters to improve maintainability

• Why? We spend more time reading code than writing it
• Various estimates of the exact %, some as high as 80%

• Code is ownership is usually shared
• The original owner of some code may move on
• Code conventions make it easier for other developers to quickly

understand your code

22

Use Style Guidelines to facilitate communication

• Guidelines are inherently opinionated, but consistency is the important
point

• Agree to a set of conventions and stick to them

23

Take-Away Message:
Style is an easy way to improve readability
• Everyone has their own opinion (e.g., tabs vs. spaces)
• Agree to a convention and stick to it

• Use continuous integration to enforce it

• Use automated tools to fix issues in existing code

24

(2) Pattern-based Static Analysis Tools

• Bad Practice
• Correctness
• Performance
• Internationalization
• Malicious Code
• Multithreaded Correctness
• Security
• Dodgy Code

25

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#i
l-an-apparent-infinite-recursive-loop-il-infinite-recursive-loop

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

Bad Practice:

String x = new String("Foo");

String y = new String("Foo");

if (x == y) {

System.out.println("x and y are the same!");

} else {

System.out.println("x and y are different!");

}

26

Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

String x = new String("Foo");

String y = new String("Foo");

if (x == y) { if (x.equals(y)) {

System.out.println("x and y are the same!");

} else {

System.out.println("x and y are different!");

}

27

How do we check for equality in JS?

• if (a=b) {
• if (a==b) {
• if (a===b) {
• if (Object.is(a,b)) {

28

How do we check for equality in JS?

• if (a=b) {
• No

• if (a==b) {
• Loose equality : 1==‘1’ is true (type coercion)

• if (a===b) {
• Correct! Checks for both value and type! So, 1==’1’ is false

• if (Object.is(a,b)) {
• More precise for cases like NaN or -0
• Object.is(NaN, NaN): true, Object.is("1", 1): false
• Object.is(-0, 0): false
• Object.is(obj, {}): false

29

Performance:

public static String repeat(String string, int times)

{

String output = string;

for (int i = 1; i < times; ++i) {

output = output + string;

}

return output;

}

30

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method
concatenates strings using + in a loop

public static String repeat(String string, int times)

{

String output = string;

for (int i = 1; i < times; ++i) {

output = output + string;

}

return output;

}

31

The method seems to be building a String using concatenation
in a loop. In each iteration, the String is converted to a
StringBuffer/StringBuilder, appended to, and converted back to
a String. This can lead to a cost quadratic in the number of
iterations, as the growing string is recopied in each iteration.

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method
concatenates strings using + in a loop

public static String repeat(String string, int times)

{

int length = string.length() * times;

StringBuffer output = new StringBuffer(length);

for (int i = 0; i < times; ++i) {

output.append(string);

}

return output.toString();

}

32

Correctness:

@Override
public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);
try {
con.open();
} catch (Exception e) {
new SQLException(e);
}
return con;
}

33

Correctness: Missing “throw” before “new Exception”

@Override
public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);
try {
con.open();
} catch (Exception e) {
throw new SQLException(e);
}
return con;
}

34

Challenges with pattern-based static
analysis
• The analysis must produce zero false positives

• Otherwise developers won’t be able to build the code!

• The analysis needs to be really fast
• Ideally < 100 ms
• If it takes longer, developers will become irritated and lose productivity
• Practically, this means the analysis needs to focus on “shallow” bugs rather

than verifying some complex logic spanning multiple functions/classes.

• You can’t just “turn on” a particular check
• Every instance where that check fails will prevent existing code from building
• There could be thousands of violations for a single check across large

codebases

35

(3) Use type annotations to detect common
errors
• Uses static types to prevent meaningless operations from

executing in the first place (instead of dealing with bad results
later)

• Annotations can enhance type system already in the language
• Examples: Java Checker Framework, MyPy, TypeScript

36https://checkerframework.org/

Example: MyPy Type System

• Add type hints to programs
• Mix static and dynamic typing
• Makes code much safer!
• Avoids invalid operations statically!

37

Example: Detecting null pointer exceptions

• @Nullable indicates that an
expression may be null

• @NonNull indicates that an
expression must never be null

• Guarantees that expressions
annotated with @NonNull will
never evaluate to null, forbids
other expressions from being
dereferenced

38

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

public void example() {

@NonNull String foo = "foo";

String bar = null;

foo = bar;

println(foo.length());

}

}

39

@Nullable is applied by default

Error: [assignment.type.incompatible] incompatible
types in assignment.
found : @Initialized @Nullable String
required: @UnknownInitialization@NonNull String

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

public void example() {

@NonNull String foo = "foo";

String bar = null; //@Nullable

if (bar != null){

foo = bar;

}

println(foo.length());

}

}

40

bar is refined to @NonNull

DEMO

• http://eisop.uwaterloo.ca/live/#mode=edit

41

http://eisop.uwaterloo.ca/live/

Another example: Units checker

• Guarantees that operations are performed on the same kinds and
units

• Kind annotations
• @Acceleration, @Angle, @Area, @Current, …

• SI Unit annotation
• @m, @km, @mm, @kg, …

42

43

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric

https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric

import static org.checkerframework.checker.units.UnitsTools.m;

import static org.checkerframework.checker.units.UnitsTools.mPERs;

import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {

@m int x;

x = 5 * m;

@m int meters = 5 * m;

@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;

@m int foo = meters + seconds;

@s int bar = seconds - meters;

}

44

@m indicates that x represents meters

To assign a unit, multiply appropriate unit constant from UnitTools

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;

import static org.checkerframework.checker.units.UnitsTools.mPERs;

import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {

@m int x;

x = 5 * m;

@m int meters = 5 * m;

@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;

@m int foo = meters + seconds;

@s int bar = seconds - meters;

}

45

@m indicates that x represents meters

To assign a unit, multiply appropriate unit constant from UnitTools

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;

import static org.checkerframework.checker.units.UnitsTools.mPERs;

import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {

@m int x;

x = 5 * m;

@m int meters = 5 * m;

@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;

@m int foo = meters + seconds;

@s int bar = seconds - meters;

}

46

Does this program compile? No

import static org.checkerframework.checker.units.UnitsTools.m;

import static org.checkerframework.checker.units.UnitsTools.mPERs;

import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {

@m int x;

x = 5 * m;

@m int meters = 5 * m;

@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;

@m int foo = meters + seconds;

@s int bar = seconds - meters;

}

47

Addition and subtraction between
meters and seconds is physically
meaningless

Limitations of Type-based Static Analysis

• Can only analyze code that is annotated
• Requires that dependent libraries are also annotated
• Can be tricky to retrofit annotations into existing codebases

• Only considers the signature and annotations of methods
• Doesn’t look at the implementation of methods that are being called

• Can’t handle dynamically generated code well
• Examples: Spring Framework, Templates

• Can produce false positives!
• Byproduct of necessary approximations

48

More Advanced Tools

• CodeQL
• Mostly focused on detecting deep security

bugs via data flow/taint analysis
• Write SQL-like queries for each vulnerability
• Provides 1000s of custom queries across

languages

• Key techniques: Data flow analysis,
Control flow analysis, …

• Other tools: Semgrep, Snyk, SonarQube

49

Best QA strategies employ a combination of
tools

50https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

Which tool to use?

• Depends on use case, available resources

• Linters: Fast, cheap, easy to address issues or set ignore rules

• Pattern-based bugs: Intuitive, but need to deal with false positives.

• Type-annotation-based checkers: More manual effort required;
needs overall project commitment. But good payoff once adopted.

• Deep analysis tools: Can find tricky issues, but can be costly. Might
need some awareness of the analysis to deal with false positives.

• The best QA strategy involves multiple analysis and testing
techniques!

51

	Slide 1: Lecture 22: Static Analysis
	Slide 2: Administrative Reminders
	Slide 3: Lecture Goals
	Slide 4: What are program analysis tools?
	Slide 5: What static analysis can/cannot do
	Slide 6: Static Analysis is well suited to detecting certain defects
	Slide 7: The Bad News: Rice’s Theorem Every static analysis is necessarily incomplete, unsound, undecidable, or a combination thereof
	Slide 9: Static Analysis: Broad classification
	Slide 10: Static analysis can be applied to all attributes
	Slide 11: Activity: Analyze the Python program statically
	Slide 12: Dynamic analysis reasons about program executions
	Slide 13: Static Analysis vs Dynamic Analysis
	Slide 14: Tools for static analysis
	Slide 15: Static analysis is now heavily commercialized
	Slide 16: Static analysis is a key part of continuous integration
	Slide 17: Static Analysis is also integrated into IDEs
	Slide 18: What makes a good static analysis tool?
	Slide 19: (1) Linters: Cheap, fast, and lightweight static source analysis
	Slide 20: Use linters to enforce style guidelines
	Slide 21: Linters use very “shallow” static analysis to enforce formatting rules
	Slide 22: Use linters to improve maintainability
	Slide 23: Use Style Guidelines to facilitate communication
	Slide 24: Take-Away Message: Style is an easy way to improve readability
	Slide 25: (2) Pattern-based Static Analysis Tools
	Slide 26: Bad Practice:
	Slide 27: Bad Practice: ES_COMPARING_STRINGS_WITH_EQ Comparing strings with ==
	Slide 28: How do we check for equality in JS?
	Slide 29: How do we check for equality in JS?
	Slide 30: Performance:
	Slide 31: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 32: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 33: Correctness:
	Slide 34: Correctness: Missing “throw” before “new Exception”
	Slide 35: Challenges with pattern-based static analysis
	Slide 36: (3) Use type annotations to detect common errors
	Slide 37: Example: MyPy Type System
	Slide 38: Example: Detecting null pointer exceptions
	Slide 39
	Slide 40
	Slide 41: DEMO
	Slide 42: Another example: Units checker
	Slide 43
	Slide 44
	Slide 45: Does this program compile?
	Slide 46: Does this program compile?
	Slide 47: Does this program compile? No
	Slide 48: Limitations of Type-based Static Analysis
	Slide 49: More Advanced Tools
	Slide 50: Best QA strategies employ a combination of tools
	Slide 51: Which tool to use?

