
Lecture 20: Unit Test Generation II

CS 5150, Spring 2025

1

Administrative Reminders

Project Report #3 Due Today! No Extensions allowed.

2

Previously…

• Randoop:
• Generating unit tests by generating API call sequences and incorporating

execution feedback
• Use API contracts as assertions

• Coverage/Mutation Analysis.

3

Code Coverage

● Metric to quantify extent to which a program’s code is tested
by a given test suite

● Given as percentage of some aspect of the program executed
in the tests

● 100% coverage rare in practice: e.g., (provably) unreachable code

○ Often required for safety-critical applications

4

Types of Code Coverage

● Function coverage: which functions were called?

● Statement coverage: which statements were executed?

● Branch coverage: which branches were taken?

● Many others: line coverage, condition coverage, basic block coverage,
path coverage, …

5

Mutation Testing/Analysis

● Founded on “competent programmer assumption”:

 The program is close to correct to begin with

● Key idea: Test variations (mutants) of the program

○ Replace x > 0 by x < 0

○ Replace w by w + 1, w - 1

● If test suite is good, should report failed tests in the mutants

● Find set of test cases to distinguish original program
from its mutants

6

Poll: PollEv.com/cs5150sp25

• Which of the statements are not true about code coverage and
mutation analysis?

7

https://pollev.com/cs5150sp25

Lecture Goals

• Understand unit-test generation techniques
• Learn about coverage and mutation testing techniques

8

Testing Data Structures

LESSON

9

Key Ideas of Korat

SEGMENT

10

Korat

● A test-generation research project

● Idea

○ Leverage pre-conditions and post-conditions to generate
tests automatically

● But how?

11

An Insight

● Often can do a good job by systematically testing all inputs up
to a small size

●Small Test Case Hypothesis:

○ If there is any test that causes the program to fail,
there is a smaller such test

● If a list function works for lists of length 0 through 3, probably
works for all lists

○ E.g., because the function is oblivious to the length

12

How Do We Generate Test Inputs?

● Use the types

● The class declaration shows what
values (or null) can fill each field

● Simply enumerate all possible shapes
with a fixed set of Nodes

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

13

Scheme for Representing Shapes

●Order all possible values of each field
●Order all fields into a vector
●Each shape == vector of field values

 Example: BinaryTree of up to 3 Nodes:

N0 N1 N2

root left right left right left right

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

14

Activity: Representing Shapes

Fill in the field values in each vector to represent the depicted shape:

N0 N1 N2

root left right left right left right

N2

N0

N1

N2

N0

N1

15

Activity: Representing Shapes

Fill in the field values in each vector to represent the depicted shape:

N0 N1 N2 null null null null

N0 N1 null null N2 null null

N0 N1 N2

root left right left right left right

N2

N0

N1

N2

N0

N1

16

A Simple Algorithm

SEGMENT

17

A Simple Algorithm

● User selects some maximum input size k

● Generate all possible inputs up to size k

● Discard inputs where pre-condition is false

● Run program on remaining inputs

● Check results using post-condition

18

Activity: Enumerating Shapes

Korat represents each input shape as a vector of the following form:

N0 N1 N2

root left right left right left right

What is the total number of vectors of the above form?

19

Activity: Enumerating Shapes

Korat represents each input shape as a vector of the following form:

N0 N1 N2

root left right left right left right

What is the total number of vectors of the above form? 16384

20

The General Case for Binary Trees

● How many binary trees are there of size <= k?

● Calculation:

o A BinaryTree object, bt

o k Node objects, n0, n1, n2, …

o 2k+1 Node pointers

o root (for bt)

o left, right (for each Node object)

o k+1 possible values (n0, n1, n2, … or null) per pointer

● (k+1)^(2k+1) possible “binary trees”

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

21

A Lot of “Trees”!

● The number of “trees” explodes rapidly

○ k = 3: over 16,000 “trees”

○ k = 4: over 1,900,000 “trees”

○ k = 5: over 360,000,000 “trees”

● Limits us to testing only very small input sizes

● Can we do better?

22

An Overestimate

● (k+1)^(2k+1) trees is a gross overestimate!

● Many of the shapes are not even trees:

N2N0 N1

N1N2 N0

23

● And many are isomorphic:

How Many Trees?

There are only 9 distinct (non-isomorphic) binary trees with at most 3 nodes:

24

Using the Invariant

SEGMENT

25

Another Insight

● Avoid generating inputs that don’t satisfy the invariant
in the first place

● Leverage the invariant to guide the generation of tests

26

The Technique

●Instrument the invariant

○ Add code to record fields accessed by the invariant

●Observation:

○ If the invariant doesn’t access a field, then it doesn’t
depend on the field

27

The Invariant for Binary Trees

●Root may be null

●If root is not null:

○ No cycles

○ Each node (except root) has one parent

○ Root has no parent

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

28

The Invariant for Binary Trees
public boolean repOK(BinaryTree bt) {

 if (bt.root == null) return true;

 Set visited = new HashSet();

 List workList = new LinkedList();

 visited.add(bt.root);

 workList.add(bt.root);

 while (!workList.isEmpty()) {

 Node current = workList.removeFirst();

 if (current.left != null) {

 if (!visited.add(current.left)) return false;

 workList.add(current.left);

 }
 ... // similarly for current.right
 }
 return true;

 }

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

29

The Invariant for Binary Trees

N0

N1

N2

public boolean repOK(BinaryTree bt) {

 if (bt.root == null) return true;

 Set visited = new HashSet();

 List workList = new LinkedList();

 visited.add(bt.root);

 workList.add(bt.root);

 while (!workList.isEmpty()) {

 Node current = workList.removeFirst();

 if (current.left != null) {

 if (!visited.add(current.left)) return false;

 workList.add(current.left);

 }
 ... // similarly for current.right
 }
 return true;

 }

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

30

Example: Using the Invariant

●Consider the following “tree”:

● The invariant accesses only the root as it is null

 => Every possible shape for other nodes yields same result

 => This single input eliminates 25% of the tests!

N2N0 N1

null null N1 null N2 null null

N0 N1 N2

root left right left right left right

31

Example: Generated Test

@invariant repOk(bt)
 @requires contains(bt, n) // pre condition
 @ensures !contains(bt, n) // post condition

 void remove(BinaryTree bt, Node n) {
 ... // remove node n from binary tree bt
 }

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

32

Korat will generate a test creating a binary tree that satisfies the invariant,
and other inputs that satisfy the pre-condition

The test will then contain an assertion checking the post-condition

Enumerating Tests

SEGMENT

33

Enumerating Tests

● Shapes are enumerated according to their associated vectors

○ Initial candidate vector: all fields null

○ Next shape generated by:

■ Expanding last field accessed in invariant

■ Backtracking if all possibilities for a field are exhausted

● Key idea: Never expand fields not examined by invariant

● Also: Cleverly checks for and discards shapes isomorphic to
previously generated shapes

34

See paper for details: http://mir.cs.illinois.edu/marinov/publications/BoyapatiETAL02Korat.pdf

http://mir.cs.illinois.edu/marinov/publications/BoyapatiETAL02Korat.pdf

Example: Enumerating Binary Trees

null null null null null null null

1

N0 null null null null null null

1 2 3

N0 null N0 null null null null

N0 null N1 null null null null

1 2 3 4 5

N0 N1 N2

root left right left right left right

35

Activity: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0 null N1 null null null null

1 2 3 4 5

N0 N1 N2

root left right left right left right

36

Activity: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0 null N1 null N2 null null

1 2 3 4 5

N0 null N1 N2 null null null

6 7

N0 null N1 null null null null

1 2 3 4 5

N0 N1 N2

root left right left right left right

37

Activity: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0 N1 N2

root left right left right left right

N0 null N1 N2 null null null

38

Activity: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

1 2 3 4 5 6 7

1 2 53 4

N0 N1 N2

root left right left right left right

N0 null N1 N2 null null null

N0 N1 null null null null null

N0 N1 null null N2 null null

39

Poll: PollEv.com/cs5150sp25

Q: How many Binary trees of max size 2 can be generated by
Korat?

40

https://pollev.com/cs5150sp25

Korat in Practice

SEGMENT

41

Experimental Results

42

Strengths and Weaknesses

●Strong when we can enumerate all possibilities

○ e.g. Four nodes, two edges per node

 => Good for:

■ Linked data structures

■ Small, easily specified procedures

■ Unit testing

●Weaker when enumeration is weak

○ Integers, Floating-point numbers, Strings

43

Weaknesses

Only as good as the pre- and post-conditions

Pre: is_member(x, list)
 List remove(Element x, List list) {

 if (x == head(list))
 return tail(list);

 else
 return cons(head(list),
 remove(x, tail(list)));

 }
 Post: !is_member(x, list’)

44

Weaknesses

Only as good as the pre- and post-conditions

Pre: !is_empty(list)
 List remove(Element x, List list) {

 if (x == head(list))
 return tail(list);

 else
 return cons(head(list),
 remove(x, tail(list)));

 }
 Post: is_list(list’)

45

QUIZ: Randoop and Korat

Randoop Korat

Uses type information to guide test generation.

Each test is generated independently of past tests.

Generates tests deterministically.

Suited to test method sequences.

Avoids generating redundant tests.

Identify which statements are true for each test generation technique:

QUIZ: Randoop and Korat

Randoop Korat

Uses type information to guide test generation.

Each test is generated independently of past tests.

Generates tests deterministically.

Suited to test method sequences.

Avoids generating redundant tests.

Identify which statements are true for each test generation technique:

✓

✓ ✓

✓

✓

✓

Test Generation: The Bigger Picture

● Why didn’t automatic test generation become popular decades ago?

● Belief: Weak-type systems

○ Test generation relies heavily on type information

○ C, Lisp just didn’t provide the needed types

● Contemporary languages lend themselves better to test generation

○ Java, UML

What Have We Learned?

● Automatic test generation is a good idea

○ Key: avoid generating illegal and redundant tests

● Even better, it is possible to do

○ At least for unit tests in strongly-typed languages

● Being adopted in industry

○ Likely to become widespread

50

In Class Exam 1 Discussion?

● 1A:
6.b: Critical Path
7.1: static vs dynamic
8: UML Diagram
10: Builder pattern
11: The goal of user testing is to allow test evaluators to determine
design choices
14: Singleton

51

	Slide 1: Lecture 20: Unit Test Generation II
	Slide 2: Administrative Reminders
	Slide 3: Previously…
	Slide 4: Code Coverage
	Slide 5: Types of Code Coverage
	Slide 6: Mutation Testing/Analysis
	Slide 7: Poll: PollEv.com​/cs5150sp25
	Slide 8: Lecture Goals
	Slide 9: LESSON
	Slide 10: SEGMENT
	Slide 11: Korat
	Slide 12: An Insight
	Slide 13: How Do We Generate Test Inputs?
	Slide 14: Scheme for Representing Shapes
	Slide 15: Activity: Representing Shapes
	Slide 16: Activity: Representing Shapes
	Slide 17: SEGMENT
	Slide 18: A Simple Algorithm
	Slide 19: Activity: Enumerating Shapes
	Slide 20: Activity: Enumerating Shapes
	Slide 21: The General Case for Binary Trees
	Slide 22: A Lot of “Trees”!
	Slide 23: An Overestimate
	Slide 24: How Many Trees?
	Slide 25: SEGMENT
	Slide 26: Another Insight
	Slide 27: The Technique
	Slide 28: The Invariant for Binary Trees
	Slide 29: The Invariant for Binary Trees
	Slide 30: The Invariant for Binary Trees
	Slide 31: Example: Using the Invariant
	Slide 32: Example: Generated Test
	Slide 33: SEGMENT
	Slide 34: Enumerating Tests
	Slide 35: Example: Enumerating Binary Trees
	Slide 36: Activity: Enumerating Binary Trees
	Slide 37: Activity: Enumerating Binary Trees
	Slide 38: Activity: Enumerating Binary Trees
	Slide 39: Activity: Enumerating Binary Trees
	Slide 40: Poll: PollEv.com/cs5150sp25
	Slide 41: SEGMENT
	Slide 42: Experimental Results
	Slide 43: Strengths and Weaknesses
	Slide 44: Weaknesses
	Slide 45: Weaknesses
	Slide 46: QUIZ: Randoop and Korat
	Slide 47: QUIZ: Randoop and Korat
	Slide 48: Test Generation: The Bigger Picture
	Slide 49: What Have We Learned?
	Slide 50
	Slide 51: In Class Exam 1 Discussion?

