
Lecture 19: Unit Test Generation

CS 5150, Spring 2025
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Administrative Reminders

• Project Report #3 due on April 10
• Project Report #4 due on April 25

• Focus on Testing and Integration!

• Assignment A4 coming soon!
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Lecture Goals

• Understand unit-test generation techniques
• Learn about coverage and mutation testing techniques

3



Unit Test Generation
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Outline

●Previously: Random testing (Fuzzing)

○ Security, mobile apps, …

●Feedback-directed random testing: Randoop

○ Classes and libraries

●Systematic testing: Korat

○ Linked data structures
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Leveraging the Specifications
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Automated Test Generation: Key Idea

Leverage the specifications to guide test generation:

● Types
● Invariants
● Pre- and Post- Conditions
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class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }

Example: Leveraging Types

void remove(BinaryTree bt, Node n) {
   ...  // remove node n from binary tree bt
 }

• Helps to avoid testing the remove method on arbitrary byte arrays
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Example: Leveraging Invariants

▪ Root may be null

▪ If root is not null:

▪ No cycles

▪ Each node (except root) has one parent

▪ Root has no parent

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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Example: Leveraging Invariants
public boolean repOK(BinaryTree bt) {

     if (bt.root == null) return true;

     Set visited = new HashSet();

     List workList = new LinkedList();

     visited.add(bt.root);

     workList.add(bt.root);

     while (!workList.isEmpty()) {

        Node current = workList.removeFirst();

        if (current.left != null) {

           if (!visited.add(current.left)) return false;

           workList.add(current.left);

        }
       ... // similarly for current.right
     }
     return true;

  }

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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Example: Leveraging Invariants

• Helps to avoid testing the remove method on non-tree structures

• Also serves as a contract to check at the end of remove method

@invariant repOk(bt)

 void remove(BinaryTree bt, Node n) {
   ...  // remove node n from binary tree bt
 }

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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Example: Leveraging Pre- and Post-Conditions

@invariant repOk(bt)
 @requires contains(bt, n) // pre condition
 @ensures !contains(bt, n) // post condition

 void remove(BinaryTree bt, Node n) {
   ...  // remove node n from binary tree bt
 }

• Helps to test even richer states on entry and exit of remove method

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }

12



Testing Classes and Libraries
Key Ideas of Randoop
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Randoop: Feedback-Directed Random Testing

How do we generate a test like this?

public static void test() {
     LinkedList l1 = new LinkedList();
     Object o1 = new Object();
     l1.addFirst(o1);
     TreeSet t1 = new TreeSet(l1);
     Set s1 = Collections.unmodifiableSet(t1);

     // This assertion fails
     assert(s1.equals(s1));
  }
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public TreeSet(Collection c): Constructs a new, empty tree set, sorted according to the specified comparator. All 
elements inserted into the set must be mutually comparable by the specified comparator: 
comparator.compare(e1, e2) must not throw a ClassCastException for any elements e1 and e2 in the set. If the 
user attempts to add an element to the set that violates this constraint, the add call will throw a 
ClassCastException. https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html 

https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html


Overview

Problem with uniform random testing: Creates too many illegal or redundant tests

Idea: Randomly create new test guided by feedback from previously created tests

                                    test == method sequence

Recipe:

•Build new sequences incrementally, extending past sequences

•As soon as a sequence is created, execute it

•Use execution results to guide test generation towards sequences that create

     new object states
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Randoop: Input and Output

Input:
● classes under test
● time limit
● set of contracts

      e.g. “o.hashCode() throws 
        no exception”
      e.g. “o.equals(o) == true”

Output:
● contract-violating test cases

 LinkedList l1 = new LinkedList();
 Object o1 = new Object();
 l1.addFirst(o1);
 TreeSet t1 = new TreeSet(l1);
 Set s1 = Collections.unmodifiableSet(t1);

 assert(s1.equals(s1));

No contract violated up to here fails when executed
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The Randoop Algorithm

SEGMENT
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Randoop Algorithm

components = {   int i = 0;      boolean b = false;   . . . }      // seed components

Repeat until time limit expires:

● Create a new sequence

○ Randomly pick a method call Tret m(T1,...,Tn)

○ For each argument of type Ti, randomly pick sequence Si from components 
that constructs an object vi of that type

○ Create Snew = S1; ...; Sn; Tret vnew = m(v1,...,vn);

● Classify new sequence Snew: discard / output as test / add to 
components
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Randoop: example
Program under test:

public class A{

public A() {...}

public B m1(A a1) {...}

} 

public class B{

public B(int i) {...}

public void m2(B b, A a) {...}

}

Test1:

B b1=new B(0);

Components:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

Method
Parameter
Receiver object
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Randoop: example
Program under test:

public class A{

public A() {...}

public B m1(A a1) {...}

} 

public class B{

public B(int i) {...}

public void m2(B b, A a) {...}

}

Test1:

B b1=new B(0);

Test2:

A a1=new A();

Components:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

Method
Parameter
Receiver object
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Randoop: example
Program under test:

public class A{

public A() {...}

public B m1(A a1) {...}

} 

public class B{

public B(int i) {...}

public void m2(B b, A a) {...}

}

Test1:

B b1=new B(0);

Test2:

A a1=new A();

Test3:

A a1=new A(); //reused from s2

B b2=a1.m1(a1);

Components:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

S3: A a1=new A();

B b2=a1.m1(a1);

Method
Parameter
Receiver object
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Randoop: example
Program under test:

public class A{

public A() {...}

public B m1(A a1) {...}

} 

public class B{

public B(int i) {...}

public void m2(B b, A a) {...}

}

Test1:

B b1=new B(0);

Test2:

A a1=new A();

Test3:

A a1=new A();

B b2=a1.m1(a1);

Test4:

B b1=new B(0); //reused from s1

A a1=new A();

B b2=a1.m1(a1); //reused from s3

b1.m2(b2, a1);

…

Components:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

S3: A a1=new A();

B b2=a1.m1(a1);

S4: …

Method
Parameter
Receiver object
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Classifying a Sequence

execute 
sequence

sequence
illegal?

Yes
Discard 

sequence

No

contract
violated?

Output 
sequence

sequence
redundant?

Discard 
sequence

NoAdd to 
components

No

Yes

Yes
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Illegal Sequences

● Sequences that “crash” before contract is checked

○ E.g., throw an exception

int i = -1;

 Date d = new Date(2006, 2, 14);

 d.setMonth(i);    // pre: argument >= 0

 assert(d.equals(d));
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Redundant Sequences

● Maintain set of all objects created in execution of each sequence

● New sequence is redundant if each object created during its execution 
belongs to above set (using equals to compare)

● Could also use more sophisticated state equivalence methods

Set s = new HashSet();

 s.add(“hi”);

 s.isEmpty();

 assertTrue(s.equals(s));

Set s = new HashSet();

 s.add(“hi”);

 assertTrue(s.equals(s));
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Randoop in Practice

SEGMENT
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Code coverage by Randoop

Data structure programs Time (s) Branch 
cov.

Bounded stack (30 LOC) 1 100%
Unbounded stack (59 
LOC) 1 100%

BS Tree (91 LOC) 1 96%
Binomial heap (309 LOC) 1 84%
Linked list (253 LOC) 1 100%
Tree map (370 LOC) 1 81%
Heap array (71 LOC) 1 100%
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Bug detection by Randoop: subjects

Subjects LOC Classes

JDK (2 libraries)
(java.util, javax.xml) 53K 272

Apache commons (6 
libraries)
(logging, primitives, chain, 
jelly, math, collections)

114K 974

.Net libraries (6 libraries) 615K 3455
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Bug detection by Randoop: subjects

Subjects Failed
tests

Unique
failed tests

Error-revealing 
tests

Distinct 
errors

JDK 613 32 29 8
Apache 
commons

3,044 187 29 6

.Net framework 543 205 196 196
Total 4,200 424 254 210
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Some Bugs Found by Randoop

● JDK containers have 4 methods that violate o.equals(o) contract

● Javax.xml creates objects that cause hashCode and toString to crash, even 
though objects are well-formed XML constructs

● Apache libraries have constructors that leave fields unset, leading to NPE on calls 
of equals, hashCode, and toString

● .Net framework has at least 175 methods that throw an exception forbidden
by the library specification (NPE, out-of-bounds, or illegal state exception)

● .Net framework has 8 methods that violate o.equals(o) contract
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QUIZ: Randoop Test Generation (Part 1)
class BinaryTree {
  Node root;
  public BinaryTree(Node r) {
     root = r;
     assert(repOk(this));
  }
  public Node removeRoot() {
     assert(root != null);
     ...
  }  
}

class Node {
  Node left;
  Node right;
  public Node(Node l, Node r) {
     left = l; right = r;
  }
}

Write the smallest sequence that Randoop can 
possibly generate to create a valid BinaryTree.
 

Once generated, how does Randoop classify it?

        Discards it as illegal

        Outputs it as a bug

        Adds to components for future extension
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QUIZ: Randoop Test Generation (Part 1)
class BinaryTree {
  Node root;
  public BinaryTree(Node r) {
     root = r;
     assert(repOk(this));
  }
  public Node removeRoot() {
     assert(root != null);
     ...
  }  
}

class Node {
  Node left;
  Node right;
  public Node(Node l, Node r) {
     left = l; right = r;
  }
}

Write the smallest sequence that Randoop can 
possibly generate to create a valid BinaryTree.
 

Once generated, how does Randoop classify it?

        Discards it as illegal

        Outputs it as a bug

        Adds to components for future extension

BinaryTree bt = new BinaryTree(null);
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QUIZ: Randoop Test Generation (Part 2)
class BinaryTree {
  Node root;
  public BinaryTree(Node r) {
     root = r;
     assert(repOk(this));
  }
  public Node removeRoot() {
     assert(root != null);
     ...
  }  
}

class Node {
  Node left;
  Node right;
  public Node(Node l, Node r) {
     left = l; right = r;
  }
}

Write the smallest sequence that Randoop can 
possibly generate that violates the assertion in 
removeRoot().

Once generated, how does Randoop classify it?

        Discards it as illegal

        Outputs it as a bug

        Adds to components for future extension
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Write the smallest sequence that Randoop can 
possibly generate that violates the assertion in 
removeRoot().

Once generated, how does Randoop classify it?

        Discards it as illegal

        Outputs it as a bug

        Adds to components for future extension

QUIZ: Randoop Test Generation (Part 2)
class BinaryTree {
  Node root;
  public BinaryTree(Node r) {
     root = r;
     assert(repOk(this));
  }
  public Node removeRoot() {
     assert(root != null);
     ...
  }  
}

class Node {
  Node left;
  Node right;
  public Node(Node l, Node r) {
     left = l; right = r;
  }
}

BinaryTree bt = new BinaryTree(null);
 bt.removeRoot();

35



QUIZ: Randoop Test Generation (Part 3)
class BinaryTree {
  Node root;
  public BinaryTree(Node r) {
     root = r;
     assert(repOk(this));
  }
  public Node removeRoot() {
     assert(root != null);
     ...
  }  
}

class Node {
  Node left;
  Node right;
  public Node(Node l, Node r) {
     left = l; right = r;
  }
}

Write the smallest sequence that Randoop can 
possibly generate that violates the assertion in 
BinaryTree’s constructor.

Can Randoop create a BinaryTree object with 
cycles using the given API?

      Yes                              No
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Example: Leveraging Invariants

▪ Root may be null

▪ If root is not null:

▪ No cycles

▪ Each node (except root) has one parent

▪ Root has no parent

▪ RepOk method checks if the binary tree is valid

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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QUIZ: Randoop Test Generation (Part 3)
Write the smallest sequence that Randoop can 
possibly generate that violates the assertion in 
BinaryTree’s constructor.

Can Randoop create a BinaryTree object with 
cycles using the given API?

      Yes                              No

Node v1 = new Node(null, null);
 Node v2 = new Node(v1, v1);
 BinaryTree bt = new BinaryTree(v2);

v2

v1

class BinaryTree {
  Node root;
  public BinaryTree(Node r) {
     root = r;
     assert(repOk(this));
  }
  public Node removeRoot() {
     assert(root != null);
     ...
  }  
}

class Node {
  Node left;
  Node right;
  public Node(Node l, Node r) {
     left = l; right = r;
  }
}
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QUIZ: Randoop Test Generation (Part 3)
Write the smallest sequence that Randoop can 
possibly generate that violates the assertion in 
BinaryTree’s constructor.

Can Randoop create a BinaryTree object with 
cycles using the given API?

      Yes                              No

Node v1 = new Node(null, null);
 Node v2 = new Node(v1, v1);
 BinaryTree bt = new BinaryTree(v2);

v2

v1

class BinaryTree {
  Node root;
  public BinaryTree(Node r) {
     root = r;
     assert(repOk(this));
  }
  public Node removeRoot() {
     assert(root != null);
     ...
  }  
}

class Node {
  Node left;
  Node right;
  public Node(Node l, Node r) {
     left = l; right = r;
  }
}
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How Good Is Your Test Suite?

● How do we know that our test suite is good?

○ Too few tests: may miss bugs

○ Too many tests: costly to run, bloat and redundancy, harder to maintain

● Two approaches:

○ Code coverage metrics

○ Mutation analysis (or mutation testing)
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Code Coverage

● Metric to quantify extent to which a program’s code is tested
by a given test suite

● Given as percentage of some aspect of the program executed
in the tests

● 100% coverage rare in practice: e.g., (provably) unreachable code

○ Often required for safety-critical applications
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Types of Code Coverage

● Function coverage: which functions were called?

● Statement coverage: which statements were executed?

● Branch coverage: which branches were taken?

● Many others: line coverage, condition coverage, basic block coverage,
path coverage, …
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QUIZ: Code Coverage Metrics

Test Suite:   {  foo(1, 0)  }
int foo(int x, int y) {
    int z = 0;
    if (x <= y) {
        z = x;
    } else {
        z = y;
    }
    return z;
}

Statement Coverage:                 %

Branch Coverage:                       %

Give arguments for another call to foo(x, y) to add 
to the test suite to increase both coverages to 100%.

 x =                          y =      
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QUIZ: Code Coverage Metrics

Test Suite:   {  foo(1, 0)  }
int foo(int x, int y) {
    int z = 0;
    if (x <= y) {
        z = x;
    } else {
        z = y;
    }
    return z;
}

Statement Coverage:                 %

Branch Coverage:                       %

Give arguments for another call to foo(x, y) to add 
to the test suite to increase both coverages to 100%.

 x =                          y =      

80

50

11
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Mutation Testing/Analysis

● Founded on “competent programmer assumption”:

            The program is close to correct to begin with

● Key idea: Test variations (mutants) of the program

○ Replace x > 0 by x < 0

○ Replace w by w + 1, w - 1

● If test suite is good, should report failed tests in the mutants

● Find set of test cases to distinguish original program
from its mutants
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A Problem

● What if a mutant is equivalent to the original?

● Then no test will kill it

● In practice, this is a real problem

○ Not easily solved

○ Try to prove program equivalence automatically (undecidable)

○ Often requires manual intervention
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QUIZ: Mutation Analysis - Part 1

Check the boxes 
indicating a passed 

test.

Test 1
assert:

foo(0, 1) == 0

Test 2
assert:

foo(0, 0) == 0

Mutant 1
x <= y →  x > y

Mutant 2
x <= y  → x != y

Is the test suite adequate with respect to both mutants? Yes No

int foo(int x, int y) {
    int z = 0;
    if (x <= y) {
        z = x;
    } else {
        z = y;
    }
    return z;
 }
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QUIZ: Mutation Analysis - Part 1

Is the test suite adequate with respect to both mutants? Yes No

Check the boxes 
indicating a passed 

test.

Test 1
assert:

foo(0, 1) == 0

Test 2
assert:

foo(0, 0) == 0

Mutant 1
x <= y →  x > y

Mutant 2
x <= y  → x != y

int foo(int x, int y) {
    int z = 0;
    if (x <= y) {
        z = x;
    } else {
        z = y;
    }
    return z;
 }
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QUIZ: Mutation Analysis - Part 2

Give a test case which Mutant 2 fails but the original 
code passes.

assert:

foo(   ,   ) == 

Check the boxes 
indicating a passed 

test.

Test 1
assert:

foo(0, 1) == 0

Test 2
assert:

foo(0, 0) == 0

Mutant 1
x <= y →  x > y

Mutant 2
x <= y  → x != y

int foo(int x, int y) {
    int z = 0;
    if (x <= y) {
        z = x;
    } else {
        z = y;
    }
    return z;
 }
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QUIZ: Mutation Analysis - Part 2

assert:

foo(   ,   ) == 1 0 0

Check the boxes 
indicating a passed 

test.

Test 1
assert:

foo(0, 1) == 0

Test 2
assert:

foo(0, 0) == 0

Mutant 1
x <= y →  x > y

Mutant 2
x <= y  → x != y

Give a test case which Mutant 2 fails but the original 
code passes.

int foo(int x, int y) {
    int z = 0;
    if (x <= y) {
        z = x;
    } else {
        z = y;
    }
    return z;
 }

51



52



Testing Data Structures

LESSON
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Key Ideas of Korat

SEGMENT
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Korat

● A test-generation research project

● Idea

○ Leverage pre-conditions and post-conditions to generate
tests automatically

● But how?
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An Insight

● Often can do a good job by systematically testing all inputs up
to a small size

●Small Test Case Hypothesis:

○ If there is any test that causes the program to fail,
there is a smaller such test

● If a list function works for lists of length 0 through 3, probably
works for all lists

○ E.g., because the function is oblivious to the length
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How Do We Generate Test Inputs?

● Use the types

● The class declaration shows what 
values (or null) can fill each field

● Simply enumerate all possible shapes 
with a fixed set of Nodes

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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Scheme for Representing Shapes

●Order all possible values of each field
●Order all fields into a vector
●Each shape == vector of field values

     Example: BinaryTree of up to 3 Nodes:

N0            N1            N2

root    left  right   left  right   left  right

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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QUIZ: Representing Shapes

Fill in the field values in each vector to represent the depicted shape:

N0            N1            N2

root    left  right   left  right   left  right

N2

N0

N1

N2

N0

N1
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QUIZ: Representing Shapes

Fill in the field values in each vector to represent the depicted shape:

N0 N1 N2 null null null null

N0 N1 null null N2 null null

N0            N1            N2

root    left  right   left  right   left  right

N2

N0

N1

N2

N0

N1
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A Simple Algorithm

SEGMENT
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A Simple Algorithm

● User selects some maximum input size k

● Generate all possible inputs up to size k

● Discard inputs where pre-condition is false

● Run program on remaining inputs

● Check results using post-condition
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QUIZ: Enumerating Shapes

Korat represents each input shape as a vector of the following form:

N0            N1            N2

root    left  right   left  right   left  right

What is the total number of vectors of the above form?
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QUIZ: Enumerating Shapes

Korat represents each input shape as a vector of the following form:

N0            N1            N2

root    left  right   left  right   left  right

What is the total number of vectors of the above form? 16384
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The General Case for Binary Trees

● How many binary trees are there of size <= k?

● Calculation:

o A BinaryTree object, bt

o k Node objects, n0, n1, n2, … 

o 2k+1 Node pointers

o root (for bt)

o left, right (for each Node object)

o k+1 possible values (n0, n1, n2, … or null) per pointer

● (k+1)^(2k+1) possible “binary trees”

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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A Lot of “Trees”!

● The number of “trees” explodes rapidly

○ k = 3: over 16,000 “trees”

○ k = 4: over 1,900,000 “trees”

○ k = 5: over 360,000,000 “trees”

● Limits us to testing only very small input sizes

● Can we do better?

66



An Overestimate

● (k+1)^(2k+1) trees is a gross overestimate!

● Many of the shapes are not even trees:

● And many are isomorphic:

N2N0 N1 N1N2 N0
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How Many Trees?

There are only 9 distinct binary trees with at most 3 nodes:
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Using the Invariant

SEGMENT
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Another Insight

● Avoid generating inputs that don’t satisfy the invariant 
in the first place

● Leverage the invariant to guide the generation of tests
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The Technique

●Instrument the invariant

○ Add code to record fields accessed by the invariant

●Observation:

○ If the invariant doesn’t access a field, then it doesn’t
depend on the field
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The Invariant for Binary Trees

●Root may be null

●If root is not null:

○ No cycles

○ Each node (except root) has one parent

○ Root has no parent

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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The Invariant for Binary Trees
public boolean repOK(BinaryTree bt) {

     if (bt.root == null) return true;

     Set visited = new HashSet();

     List workList = new LinkedList();

     visited.add(bt.root);

     workList.add(bt.root);

     while (!workList.isEmpty()) {

        Node current = workList.removeFirst();

        if (current.left != null) {

           if (!visited.add(current.left)) return false;

           workList.add(current.left);

        }
       ... // similarly for current.right
     }
     return true;

  }

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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The Invariant for Binary Trees

N0

N1

N2

public boolean repOK(BinaryTree bt) {

     if (bt.root == null) return true;

     Set visited = new HashSet();

     List workList = new LinkedList();

     visited.add(bt.root);

     workList.add(bt.root);

     while (!workList.isEmpty()) {

        Node current = workList.removeFirst();

        if (current.left != null) {

           if (!visited.add(current.left)) return false;

           workList.add(current.left);

        }
       ... // similarly for current.right
     }
     return true;

  }

class BinaryTree {
    Node root;
    class Node {
      Node left;
      Node right;
    }
  }
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Example: Using the Invariant

●Consider the following “tree”:

● The invariant accesses only the root as it is null

 => Every possible shape for other nodes yields same result

 => This single input eliminates 25% of the tests!

N2N0 N1

null null N1 null N2 null null

N0            N1            N2

root    left  right   left  right   left  right
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Enumerating Tests

SEGMENT
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Enumerating Tests

● Shapes are enumerated according to their associated vectors

○ Initial candidate vector: all fields null

○ Next shape generated by:

■ Expanding last field accessed in invariant

■ Backtracking if all possibilities for a field are exhausted

● Key idea: Never expand fields not examined by invariant

● Also: Cleverly checks for and discards shapes isomorphic to
previously generated shapes
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Example: Enumerating Binary Trees

null null null null null null null

1

N0 null null null null null null

1 2 3

N0 null N0 null null null null

N0 null N1 null null null null

1 2 3 4 5

N0            N1            N2

root    left  right   left  right   left  right
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QUIZ: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0 null N1 null null null null

1 2 3 4 5

N0            N1            N2

root    left  right   left  right   left  right
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QUIZ: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0 null N1 null N2 null null

1 2 3 4 5

N0 null N1 N2 null null null

6 7

N0 null N1 null null null null

1 2 3 4 5

N0            N1            N2

root    left  right   left  right   left  right

80



QUIZ: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0            N1            N2

root    left  right   left  right   left  right

N0 null N1 N2 null null null
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QUIZ: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

1 2 3 4 5 6 7

1 2 53 4

N0            N1            N2

root    left  right   left  right   left  right

N0 null N1 N2 null null null

N0 N1 null null null null null

N0 N1 null null N2 null null
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Korat in Practice

SEGMENT
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Experimental Results
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Strengths and Weaknesses

●Strong when we can enumerate all possibilities

○ e.g. Four nodes, two edges per node

 => Good for:

■ Linked data structures

■ Small, easily specified procedures

■ Unit testing

●Weaker when enumeration is weak

○ Integers, Floating-point numbers, Strings
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Weaknesses

Only as good as the pre- and post-conditions

Pre: is_member(x, list)
 List remove(Element x, List list) {

 if (x == head(list))
 return tail(list);

 else
 return cons(head(list),
             remove(x, tail(list)));

 }
 Post: !is_member(x, list’)
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Weaknesses

Only as good as the pre- and post-conditions

Pre: !is_empty(list)
 List remove(Element x, List list) {

 if (x == head(list))
 return tail(list);

 else
 return cons(head(list),
             remove(x, tail(list)));

 }
 Post: is_list(list’)
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