
Lecture 19: Unit Test Generation

CS 5150, Spring 2025

1

Administrative Reminders

• Project Report #3 due on April 10
• Project Report #4 due on April 25

• Focus on Testing and Integration!

• Assignment A4 coming soon!

2

Lecture Goals

• Understand unit-test generation techniques
• Learn about coverage and mutation testing techniques

3

Unit Test Generation

4

Outline

●Previously: Random testing (Fuzzing)

○ Security, mobile apps, …

●Feedback-directed random testing: Randoop

○ Classes and libraries

●Systematic testing: Korat

○ Linked data structures

5

Leveraging the Specifications

6

Automated Test Generation: Key Idea

Leverage the specifications to guide test generation:

● Types
● Invariants
● Pre- and Post- Conditions

7

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

Example: Leveraging Types

void remove(BinaryTree bt, Node n) {
 ... // remove node n from binary tree bt
 }

• Helps to avoid testing the remove method on arbitrary byte arrays

8

Example: Leveraging Invariants

▪ Root may be null

▪ If root is not null:

▪ No cycles

▪ Each node (except root) has one parent

▪ Root has no parent

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

9

Example: Leveraging Invariants
public boolean repOK(BinaryTree bt) {

 if (bt.root == null) return true;

 Set visited = new HashSet();

 List workList = new LinkedList();

 visited.add(bt.root);

 workList.add(bt.root);

 while (!workList.isEmpty()) {

 Node current = workList.removeFirst();

 if (current.left != null) {

 if (!visited.add(current.left)) return false;

 workList.add(current.left);

 }
 ... // similarly for current.right
 }
 return true;

 }

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

10

Example: Leveraging Invariants

• Helps to avoid testing the remove method on non-tree structures

• Also serves as a contract to check at the end of remove method

@invariant repOk(bt)

 void remove(BinaryTree bt, Node n) {
 ... // remove node n from binary tree bt
 }

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

11

Example: Leveraging Pre- and Post-Conditions

@invariant repOk(bt)
 @requires contains(bt, n) // pre condition
 @ensures !contains(bt, n) // post condition

 void remove(BinaryTree bt, Node n) {
 ... // remove node n from binary tree bt
 }

• Helps to test even richer states on entry and exit of remove method

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

12

Testing Classes and Libraries
Key Ideas of Randoop

13

Randoop: Feedback-Directed Random Testing

How do we generate a test like this?

public static void test() {
 LinkedList l1 = new LinkedList();
 Object o1 = new Object();
 l1.addFirst(o1);
 TreeSet t1 = new TreeSet(l1);
 Set s1 = Collections.unmodifiableSet(t1);

 // This assertion fails
 assert(s1.equals(s1));
 }

14

public TreeSet(Collection c): Constructs a new, empty tree set, sorted according to the specified comparator. All
elements inserted into the set must be mutually comparable by the specified comparator:
comparator.compare(e1, e2) must not throw a ClassCastException for any elements e1 and e2 in the set. If the
user attempts to add an element to the set that violates this constraint, the add call will throw a
ClassCastException. https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html

https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html

Overview

Problem with uniform random testing: Creates too many illegal or redundant tests

Idea: Randomly create new test guided by feedback from previously created tests

 test == method sequence

Recipe:

•Build new sequences incrementally, extending past sequences

•As soon as a sequence is created, execute it

•Use execution results to guide test generation towards sequences that create

 new object states

15

Randoop: Input and Output

Input:
● classes under test
● time limit
● set of contracts

 e.g. “o.hashCode() throws
 no exception”
 e.g. “o.equals(o) == true”

Output:
● contract-violating test cases

 LinkedList l1 = new LinkedList();
 Object o1 = new Object();
 l1.addFirst(o1);
 TreeSet t1 = new TreeSet(l1);
 Set s1 = Collections.unmodifiableSet(t1);

 assert(s1.equals(s1));

No contract violated up to here fails when executed

16

The Randoop Algorithm

SEGMENT

17

Randoop Algorithm

components = { int i = 0; boolean b = false; . . . } // seed components

Repeat until time limit expires:

● Create a new sequence

○ Randomly pick a method call Tret m(T1,...,Tn)

○ For each argument of type Ti, randomly pick sequence Si from components
that constructs an object vi of that type

○ Create Snew = S1; ...; Sn; Tret vnew = m(v1,...,vn);

● Classify new sequence Snew: discard / output as test / add to
components

18

Randoop: example
Program under test:

public class A{

public A() {...}

public B m1(A a1) {...}

}

public class B{

public B(int i) {...}

public void m2(B b, A a) {...}

}

Test1:

B b1=new B(0);

Components:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

Method
Parameter
Receiver object

19

Randoop: example
Program under test:

public class A{

public A() {...}

public B m1(A a1) {...}

}

public class B{

public B(int i) {...}

public void m2(B b, A a) {...}

}

Test1:

B b1=new B(0);

Test2:

A a1=new A();

Components:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

Method
Parameter
Receiver object

20

Randoop: example
Program under test:

public class A{

public A() {...}

public B m1(A a1) {...}

}

public class B{

public B(int i) {...}

public void m2(B b, A a) {...}

}

Test1:

B b1=new B(0);

Test2:

A a1=new A();

Test3:

A a1=new A(); //reused from s2

B b2=a1.m1(a1);

Components:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

S3: A a1=new A();

B b2=a1.m1(a1);

Method
Parameter
Receiver object

21

Randoop: example
Program under test:

public class A{

public A() {...}

public B m1(A a1) {...}

}

public class B{

public B(int i) {...}

public void m2(B b, A a) {...}

}

Test1:

B b1=new B(0);

Test2:

A a1=new A();

Test3:

A a1=new A();

B b2=a1.m1(a1);

Test4:

B b1=new B(0); //reused from s1

A a1=new A();

B b2=a1.m1(a1); //reused from s3

b1.m2(b2, a1);

…

Components:

{0, 1, null, “hi”, …}

S1: B b1=new B(0);

S2: A a1=new A();

S3: A a1=new A();

B b2=a1.m1(a1);

S4: …

Method
Parameter
Receiver object

22

Classifying a Sequence

execute
sequence

sequence
illegal?

Yes
Discard

sequence

No

contract
violated?

Output
sequence

sequence
redundant?

Discard
sequence

NoAdd to
components

No

Yes

Yes

23

Illegal Sequences

● Sequences that “crash” before contract is checked

○ E.g., throw an exception

int i = -1;

 Date d = new Date(2006, 2, 14);

 d.setMonth(i); // pre: argument >= 0

 assert(d.equals(d));

24

Redundant Sequences

● Maintain set of all objects created in execution of each sequence

● New sequence is redundant if each object created during its execution
belongs to above set (using equals to compare)

● Could also use more sophisticated state equivalence methods

Set s = new HashSet();

 s.add(“hi”);

 s.isEmpty();

 assertTrue(s.equals(s));

Set s = new HashSet();

 s.add(“hi”);

 assertTrue(s.equals(s));

25

Randoop in Practice

SEGMENT

26

Code coverage by Randoop

Data structure programs Time (s) Branch
cov.

Bounded stack (30 LOC) 1 100%
Unbounded stack (59
LOC) 1 100%

BS Tree (91 LOC) 1 96%
Binomial heap (309 LOC) 1 84%
Linked list (253 LOC) 1 100%
Tree map (370 LOC) 1 81%
Heap array (71 LOC) 1 100%

27

Bug detection by Randoop: subjects

Subjects LOC Classes

JDK (2 libraries)
(java.util, javax.xml) 53K 272

Apache commons (6
libraries)
(logging, primitives, chain,
jelly, math, collections)

114K 974

.Net libraries (6 libraries) 615K 3455

28

Bug detection by Randoop: subjects

Subjects Failed
tests

Unique
failed tests

Error-revealing
tests

Distinct
errors

JDK 613 32 29 8
Apache
commons

3,044 187 29 6

.Net framework 543 205 196 196
Total 4,200 424 254 210

29

Some Bugs Found by Randoop

● JDK containers have 4 methods that violate o.equals(o) contract

● Javax.xml creates objects that cause hashCode and toString to crash, even
though objects are well-formed XML constructs

● Apache libraries have constructors that leave fields unset, leading to NPE on calls
of equals, hashCode, and toString

● .Net framework has at least 175 methods that throw an exception forbidden
by the library specification (NPE, out-of-bounds, or illegal state exception)

● .Net framework has 8 methods that violate o.equals(o) contract

30

QUIZ: Randoop Test Generation (Part 1)
class BinaryTree {
 Node root;
 public BinaryTree(Node r) {
 root = r;
 assert(repOk(this));
 }
 public Node removeRoot() {
 assert(root != null);
 ...
 }
}

class Node {
 Node left;
 Node right;
 public Node(Node l, Node r) {
 left = l; right = r;
 }
}

Write the smallest sequence that Randoop can
possibly generate to create a valid BinaryTree.

Once generated, how does Randoop classify it?

 Discards it as illegal

 Outputs it as a bug

 Adds to components for future extension

31

QUIZ: Randoop Test Generation (Part 1)
class BinaryTree {
 Node root;
 public BinaryTree(Node r) {
 root = r;
 assert(repOk(this));
 }
 public Node removeRoot() {
 assert(root != null);
 ...
 }
}

class Node {
 Node left;
 Node right;
 public Node(Node l, Node r) {
 left = l; right = r;
 }
}

Write the smallest sequence that Randoop can
possibly generate to create a valid BinaryTree.

Once generated, how does Randoop classify it?

 Discards it as illegal

 Outputs it as a bug

 Adds to components for future extension

BinaryTree bt = new BinaryTree(null);

32

QUIZ: Randoop Test Generation (Part 2)
class BinaryTree {
 Node root;
 public BinaryTree(Node r) {
 root = r;
 assert(repOk(this));
 }
 public Node removeRoot() {
 assert(root != null);
 ...
 }
}

class Node {
 Node left;
 Node right;
 public Node(Node l, Node r) {
 left = l; right = r;
 }
}

Write the smallest sequence that Randoop can
possibly generate that violates the assertion in
removeRoot().

Once generated, how does Randoop classify it?

 Discards it as illegal

 Outputs it as a bug

 Adds to components for future extension

34

Write the smallest sequence that Randoop can
possibly generate that violates the assertion in
removeRoot().

Once generated, how does Randoop classify it?

 Discards it as illegal

 Outputs it as a bug

 Adds to components for future extension

QUIZ: Randoop Test Generation (Part 2)
class BinaryTree {
 Node root;
 public BinaryTree(Node r) {
 root = r;
 assert(repOk(this));
 }
 public Node removeRoot() {
 assert(root != null);
 ...
 }
}

class Node {
 Node left;
 Node right;
 public Node(Node l, Node r) {
 left = l; right = r;
 }
}

BinaryTree bt = new BinaryTree(null);
 bt.removeRoot();

35

QUIZ: Randoop Test Generation (Part 3)
class BinaryTree {
 Node root;
 public BinaryTree(Node r) {
 root = r;
 assert(repOk(this));
 }
 public Node removeRoot() {
 assert(root != null);
 ...
 }
}

class Node {
 Node left;
 Node right;
 public Node(Node l, Node r) {
 left = l; right = r;
 }
}

Write the smallest sequence that Randoop can
possibly generate that violates the assertion in
BinaryTree’s constructor.

Can Randoop create a BinaryTree object with
cycles using the given API?

 Yes No

37

Example: Leveraging Invariants

▪ Root may be null

▪ If root is not null:

▪ No cycles

▪ Each node (except root) has one parent

▪ Root has no parent

▪ RepOk method checks if the binary tree is valid

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

38

QUIZ: Randoop Test Generation (Part 3)
Write the smallest sequence that Randoop can
possibly generate that violates the assertion in
BinaryTree’s constructor.

Can Randoop create a BinaryTree object with
cycles using the given API?

 Yes No

Node v1 = new Node(null, null);
 Node v2 = new Node(v1, v1);
 BinaryTree bt = new BinaryTree(v2);

v2

v1

class BinaryTree {
 Node root;
 public BinaryTree(Node r) {
 root = r;
 assert(repOk(this));
 }
 public Node removeRoot() {
 assert(root != null);
 ...
 }
}

class Node {
 Node left;
 Node right;
 public Node(Node l, Node r) {
 left = l; right = r;
 }
}

39

QUIZ: Randoop Test Generation (Part 3)
Write the smallest sequence that Randoop can
possibly generate that violates the assertion in
BinaryTree’s constructor.

Can Randoop create a BinaryTree object with
cycles using the given API?

 Yes No

Node v1 = new Node(null, null);
 Node v2 = new Node(v1, v1);
 BinaryTree bt = new BinaryTree(v2);

v2

v1

class BinaryTree {
 Node root;
 public BinaryTree(Node r) {
 root = r;
 assert(repOk(this));
 }
 public Node removeRoot() {
 assert(root != null);
 ...
 }
}

class Node {
 Node left;
 Node right;
 public Node(Node l, Node r) {
 left = l; right = r;
 }
}

40

How Good Is Your Test Suite?

● How do we know that our test suite is good?

○ Too few tests: may miss bugs

○ Too many tests: costly to run, bloat and redundancy, harder to maintain

● Two approaches:

○ Code coverage metrics

○ Mutation analysis (or mutation testing)

41

Code Coverage

● Metric to quantify extent to which a program’s code is tested
by a given test suite

● Given as percentage of some aspect of the program executed
in the tests

● 100% coverage rare in practice: e.g., (provably) unreachable code

○ Often required for safety-critical applications

42

Types of Code Coverage

● Function coverage: which functions were called?

● Statement coverage: which statements were executed?

● Branch coverage: which branches were taken?

● Many others: line coverage, condition coverage, basic block coverage,
path coverage, …

43

QUIZ: Code Coverage Metrics

Test Suite: { foo(1, 0) }
int foo(int x, int y) {
 int z = 0;
 if (x <= y) {
 z = x;
 } else {
 z = y;
 }
 return z;
}

Statement Coverage: %

Branch Coverage: %

Give arguments for another call to foo(x, y) to add
to the test suite to increase both coverages to 100%.

 x = y =

44

QUIZ: Code Coverage Metrics

Test Suite: { foo(1, 0) }
int foo(int x, int y) {
 int z = 0;
 if (x <= y) {
 z = x;
 } else {
 z = y;
 }
 return z;
}

Statement Coverage: %

Branch Coverage: %

Give arguments for another call to foo(x, y) to add
to the test suite to increase both coverages to 100%.

 x = y =

80

50

11

45

Mutation Testing/Analysis

● Founded on “competent programmer assumption”:

 The program is close to correct to begin with

● Key idea: Test variations (mutants) of the program

○ Replace x > 0 by x < 0

○ Replace w by w + 1, w - 1

● If test suite is good, should report failed tests in the mutants

● Find set of test cases to distinguish original program
from its mutants

46

A Problem

● What if a mutant is equivalent to the original?

● Then no test will kill it

● In practice, this is a real problem

○ Not easily solved

○ Try to prove program equivalence automatically (undecidable)

○ Often requires manual intervention

47

QUIZ: Mutation Analysis - Part 1

Check the boxes
indicating a passed

test.

Test 1
assert:

foo(0, 1) == 0

Test 2
assert:

foo(0, 0) == 0

Mutant 1
x <= y → x > y

Mutant 2
x <= y → x != y

Is the test suite adequate with respect to both mutants? Yes No

int foo(int x, int y) {
 int z = 0;
 if (x <= y) {
 z = x;
 } else {
 z = y;
 }
 return z;
 }

48

QUIZ: Mutation Analysis - Part 1

Is the test suite adequate with respect to both mutants? Yes No

Check the boxes
indicating a passed

test.

Test 1
assert:

foo(0, 1) == 0

Test 2
assert:

foo(0, 0) == 0

Mutant 1
x <= y → x > y

Mutant 2
x <= y → x != y

int foo(int x, int y) {
 int z = 0;
 if (x <= y) {
 z = x;
 } else {
 z = y;
 }
 return z;
 }

49

QUIZ: Mutation Analysis - Part 2

Give a test case which Mutant 2 fails but the original
code passes.

assert:

foo(,) ==

Check the boxes
indicating a passed

test.

Test 1
assert:

foo(0, 1) == 0

Test 2
assert:

foo(0, 0) == 0

Mutant 1
x <= y → x > y

Mutant 2
x <= y → x != y

int foo(int x, int y) {
 int z = 0;
 if (x <= y) {
 z = x;
 } else {
 z = y;
 }
 return z;
 }

50

QUIZ: Mutation Analysis - Part 2

assert:

foo(,) == 1 0 0

Check the boxes
indicating a passed

test.

Test 1
assert:

foo(0, 1) == 0

Test 2
assert:

foo(0, 0) == 0

Mutant 1
x <= y → x > y

Mutant 2
x <= y → x != y

Give a test case which Mutant 2 fails but the original
code passes.

int foo(int x, int y) {
 int z = 0;
 if (x <= y) {
 z = x;
 } else {
 z = y;
 }
 return z;
 }

51

52

Testing Data Structures

LESSON

53

Key Ideas of Korat

SEGMENT

54

Korat

● A test-generation research project

● Idea

○ Leverage pre-conditions and post-conditions to generate
tests automatically

● But how?

55

An Insight

● Often can do a good job by systematically testing all inputs up
to a small size

●Small Test Case Hypothesis:

○ If there is any test that causes the program to fail,
there is a smaller such test

● If a list function works for lists of length 0 through 3, probably
works for all lists

○ E.g., because the function is oblivious to the length

56

How Do We Generate Test Inputs?

● Use the types

● The class declaration shows what
values (or null) can fill each field

● Simply enumerate all possible shapes
with a fixed set of Nodes

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

57

Scheme for Representing Shapes

●Order all possible values of each field
●Order all fields into a vector
●Each shape == vector of field values

 Example: BinaryTree of up to 3 Nodes:

N0 N1 N2

root left right left right left right

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

58

QUIZ: Representing Shapes

Fill in the field values in each vector to represent the depicted shape:

N0 N1 N2

root left right left right left right

N2

N0

N1

N2

N0

N1

59

QUIZ: Representing Shapes

Fill in the field values in each vector to represent the depicted shape:

N0 N1 N2 null null null null

N0 N1 null null N2 null null

N0 N1 N2

root left right left right left right

N2

N0

N1

N2

N0

N1

60

A Simple Algorithm

SEGMENT

61

A Simple Algorithm

● User selects some maximum input size k

● Generate all possible inputs up to size k

● Discard inputs where pre-condition is false

● Run program on remaining inputs

● Check results using post-condition

62

QUIZ: Enumerating Shapes

Korat represents each input shape as a vector of the following form:

N0 N1 N2

root left right left right left right

What is the total number of vectors of the above form?

63

QUIZ: Enumerating Shapes

Korat represents each input shape as a vector of the following form:

N0 N1 N2

root left right left right left right

What is the total number of vectors of the above form? 16384

64

The General Case for Binary Trees

● How many binary trees are there of size <= k?

● Calculation:

o A BinaryTree object, bt

o k Node objects, n0, n1, n2, …

o 2k+1 Node pointers

o root (for bt)

o left, right (for each Node object)

o k+1 possible values (n0, n1, n2, … or null) per pointer

● (k+1)^(2k+1) possible “binary trees”

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

65

A Lot of “Trees”!

● The number of “trees” explodes rapidly

○ k = 3: over 16,000 “trees”

○ k = 4: over 1,900,000 “trees”

○ k = 5: over 360,000,000 “trees”

● Limits us to testing only very small input sizes

● Can we do better?

66

An Overestimate

● (k+1)^(2k+1) trees is a gross overestimate!

● Many of the shapes are not even trees:

● And many are isomorphic:

N2N0 N1 N1N2 N0

67

How Many Trees?

There are only 9 distinct binary trees with at most 3 nodes:

68

Using the Invariant

SEGMENT

69

Another Insight

● Avoid generating inputs that don’t satisfy the invariant
in the first place

● Leverage the invariant to guide the generation of tests

70

The Technique

●Instrument the invariant

○ Add code to record fields accessed by the invariant

●Observation:

○ If the invariant doesn’t access a field, then it doesn’t
depend on the field

71

The Invariant for Binary Trees

●Root may be null

●If root is not null:

○ No cycles

○ Each node (except root) has one parent

○ Root has no parent

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

72

The Invariant for Binary Trees
public boolean repOK(BinaryTree bt) {

 if (bt.root == null) return true;

 Set visited = new HashSet();

 List workList = new LinkedList();

 visited.add(bt.root);

 workList.add(bt.root);

 while (!workList.isEmpty()) {

 Node current = workList.removeFirst();

 if (current.left != null) {

 if (!visited.add(current.left)) return false;

 workList.add(current.left);

 }
 ... // similarly for current.right
 }
 return true;

 }

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

73

The Invariant for Binary Trees

N0

N1

N2

public boolean repOK(BinaryTree bt) {

 if (bt.root == null) return true;

 Set visited = new HashSet();

 List workList = new LinkedList();

 visited.add(bt.root);

 workList.add(bt.root);

 while (!workList.isEmpty()) {

 Node current = workList.removeFirst();

 if (current.left != null) {

 if (!visited.add(current.left)) return false;

 workList.add(current.left);

 }
 ... // similarly for current.right
 }
 return true;

 }

class BinaryTree {
 Node root;
 class Node {
 Node left;
 Node right;
 }
 }

74

Example: Using the Invariant

●Consider the following “tree”:

● The invariant accesses only the root as it is null

 => Every possible shape for other nodes yields same result

 => This single input eliminates 25% of the tests!

N2N0 N1

null null N1 null N2 null null

N0 N1 N2

root left right left right left right

75

Enumerating Tests

SEGMENT

76

Enumerating Tests

● Shapes are enumerated according to their associated vectors

○ Initial candidate vector: all fields null

○ Next shape generated by:

■ Expanding last field accessed in invariant

■ Backtracking if all possibilities for a field are exhausted

● Key idea: Never expand fields not examined by invariant

● Also: Cleverly checks for and discards shapes isomorphic to
previously generated shapes

77

Example: Enumerating Binary Trees

null null null null null null null

1

N0 null null null null null null

1 2 3

N0 null N0 null null null null

N0 null N1 null null null null

1 2 3 4 5

N0 N1 N2

root left right left right left right

78

QUIZ: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0 null N1 null null null null

1 2 3 4 5

N0 N1 N2

root left right left right left right

79

QUIZ: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0 null N1 null N2 null null

1 2 3 4 5

N0 null N1 N2 null null null

6 7

N0 null N1 null null null null

1 2 3 4 5

N0 N1 N2

root left right left right left right

80

QUIZ: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

N0 N1 N2

root left right left right left right

N0 null N1 N2 null null null

81

QUIZ: Enumerating Binary Trees

What are the next two legal, non-isomorphic shapes Korat generates?

1 2 3 4 5 6 7

1 2 53 4

N0 N1 N2

root left right left right left right

N0 null N1 N2 null null null

N0 N1 null null null null null

N0 N1 null null N2 null null

82

Korat in Practice

SEGMENT

83

Experimental Results

84

Strengths and Weaknesses

●Strong when we can enumerate all possibilities

○ e.g. Four nodes, two edges per node

 => Good for:

■ Linked data structures

■ Small, easily specified procedures

■ Unit testing

●Weaker when enumeration is weak

○ Integers, Floating-point numbers, Strings

85

Weaknesses

Only as good as the pre- and post-conditions

Pre: is_member(x, list)
 List remove(Element x, List list) {

 if (x == head(list))
 return tail(list);

 else
 return cons(head(list),
 remove(x, tail(list)));

 }
 Post: !is_member(x, list’)

86

Weaknesses

Only as good as the pre- and post-conditions

Pre: !is_empty(list)
 List remove(Element x, List list) {

 if (x == head(list))
 return tail(list);

 else
 return cons(head(list),
 remove(x, tail(list)));

 }
 Post: is_list(list’)

87

88

89

	Slide 1: Lecture 19: Unit Test Generation
	Slide 2: Administrative Reminders
	Slide 3: Lecture Goals
	Slide 4: Unit Test Generation
	Slide 5: Outline
	Slide 6: Leveraging the Specifications
	Slide 7: Automated Test Generation: Key Idea
	Slide 8: Example: Leveraging Types
	Slide 9: Example: Leveraging Invariants
	Slide 10: Example: Leveraging Invariants
	Slide 11: Example: Leveraging Invariants
	Slide 12: Example: Leveraging Pre- and Post-Conditions
	Slide 13: Testing Classes and Libraries
	Slide 14: Randoop: Feedback-Directed Random Testing
	Slide 15: Overview
	Slide 16: Randoop: Input and Output
	Slide 17: SEGMENT
	Slide 18: Randoop Algorithm
	Slide 19: Randoop: example
	Slide 20: Randoop: example
	Slide 21: Randoop: example
	Slide 22: Randoop: example
	Slide 23: Classifying a Sequence
	Slide 24: Illegal Sequences
	Slide 25: Redundant Sequences
	Slide 26: SEGMENT
	Slide 27: Code coverage by Randoop
	Slide 28: Bug detection by Randoop: subjects
	Slide 29: Bug detection by Randoop: subjects
	Slide 30: Some Bugs Found by Randoop
	Slide 31: QUIZ: Randoop Test Generation (Part 1)
	Slide 32: QUIZ: Randoop Test Generation (Part 1)
	Slide 34: QUIZ: Randoop Test Generation (Part 2)
	Slide 35: QUIZ: Randoop Test Generation (Part 2)
	Slide 37: QUIZ: Randoop Test Generation (Part 3)
	Slide 38: Example: Leveraging Invariants
	Slide 39: QUIZ: Randoop Test Generation (Part 3)
	Slide 40: QUIZ: Randoop Test Generation (Part 3)
	Slide 41: How Good Is Your Test Suite?
	Slide 42: Code Coverage
	Slide 43: Types of Code Coverage
	Slide 44: QUIZ: Code Coverage Metrics
	Slide 45: QUIZ: Code Coverage Metrics
	Slide 46: Mutation Testing/Analysis
	Slide 47: A Problem
	Slide 48: QUIZ: Mutation Analysis - Part 1
	Slide 49: QUIZ: Mutation Analysis - Part 1
	Slide 50: QUIZ: Mutation Analysis - Part 2
	Slide 51: QUIZ: Mutation Analysis - Part 2
	Slide 52
	Slide 53: LESSON
	Slide 54: SEGMENT
	Slide 55: Korat
	Slide 56: An Insight
	Slide 57: How Do We Generate Test Inputs?
	Slide 58: Scheme for Representing Shapes
	Slide 59: QUIZ: Representing Shapes
	Slide 60: QUIZ: Representing Shapes
	Slide 61: SEGMENT
	Slide 62: A Simple Algorithm
	Slide 63: QUIZ: Enumerating Shapes
	Slide 64: QUIZ: Enumerating Shapes
	Slide 65: The General Case for Binary Trees
	Slide 66: A Lot of “Trees”!
	Slide 67: An Overestimate
	Slide 68: How Many Trees?
	Slide 69: SEGMENT
	Slide 70: Another Insight
	Slide 71: The Technique
	Slide 72: The Invariant for Binary Trees
	Slide 73: The Invariant for Binary Trees
	Slide 74: The Invariant for Binary Trees
	Slide 75: Example: Using the Invariant
	Slide 76: SEGMENT
	Slide 77: Enumerating Tests
	Slide 78: Example: Enumerating Binary Trees
	Slide 79: QUIZ: Enumerating Binary Trees
	Slide 80: QUIZ: Enumerating Binary Trees
	Slide 81: QUIZ: Enumerating Binary Trees
	Slide 82: QUIZ: Enumerating Binary Trees
	Slide 83: SEGMENT
	Slide 84: Experimental Results
	Slide 85: Strengths and Weaknesses
	Slide 86: Weaknesses
	Slide 87: Weaknesses
	Slide 88
	Slide 89

