
Lecture 15:
Dynamic Analysis and
Testing I

CS 5150, Spring 2025

1

Lecture goals

• Write reliable, maintainable tests of various styles, scopes, and sizes

• Leverage dynamic analysis tools to find bugs

2

Quality Assurance

Internal Quality

• Is the code well structured?

• Is the code understandable?

• How well documented is it?

External Quality

• Does the software crash?

• Does it meet the requirements?

• Is the UI well designed?

3

Testing

4

Testing: Basic concepts
• Test case (or, simply test): an execution of a program with a given test

input, including:
• Input values

• Sometimes include execution steps

• Expected outputs (test oracle)

• Test suite: a finite set of tests
• Typically run in a sequence

• Test adequacy: a measurement to evaluate the test quality
• Such as code coverage

5

Testing: Basic concepts

• Fault: Specific location(s) in code that is defective/incorrect (static)

• Error: An incorrect program state that is triggered when faulty code is
executed

• Failure: observed behavior != expected behavior
• Crash, Incorrect result, bad performance, ….

• Bug: Commonly used to refer to any of the above

• Other terms: defect

6

Testing: Basic concepts

• Testing: Attempt to trigger failures

• Debugging: Attempt to locate faults given a failure

7

Testing: Levels

• Unit Testing
• Test each single module in isolation

• Integration Testing
• Test the interaction between modules

• System Testing
• Test the system as a whole, by

developers

• Acceptance Testing
• Validate the system against user

requirements, by customers with no
formal test cases

8

zw

Unit Testing

Integration Testing

System /
Acceptance

Testing

Goals of testing

• Find and prevent bugs

• Improve maintainability (esp. refactoring)

• Clarify intended usage

• To meet these goals, tests themselves should be:
• Bug-free

• Maintainable

• Clearly documented and easy to read

• Rigorous

9

Principles of Testing #1:
Avoid the absence of defects fallacy
• Testing shows the presence of defects

• Testing does not show the absence of defects!

• “no test team can achieve 100% defect detection
effectiveness”

10

Principles of Testing #2:
Exhaustive testing is impossible!
• Consider this simple function:

• def is_valid_email(email: str) -> bool:

• ...

• 1 input string, max length: 320, 26 characters + 5 symbols …
• Inputs to check: 320^31

• Might take you millions of years …

11

Principles of Testing #3: Start testing early

• To let tests guide design

• To get feedback as early as possible

• To find bugs when they are cheapest to fix

• To find bugs when they have caused least damage

12

Principles of Testing #4:
Defects are usually clustered
• “Hot” components requiring frequent change, bad habits, poor

developers, tricky logic, business uncertainty, innovative, size, …

• Use as heuristic to focus test effort

13

Principles of Testing #5: The pesticide paradox

“Every method you use to prevent of find bugs leaves a residue of
subtler bugs against which those methods are ineffectual”

• Re-running the same test suite again and again on a changing
program gives a false sense of security

• Testing must evolve with software!

14

Principles of Testing #6:
Testing is context-dependent

15

Principles of Testing #7:
Verification is not validation
• Verification:

• Does the software system meet the requirements specifications?

• Are we building the software right?

• Validation
• Does the software system meet the user’s real needs?

• Are we building the right software?

16

Test coverage

• Ways to measure "how much
code" was tested
• Function coverage
• Statement (line) coverage
• Branch coverage
• Condition/decision coverage
• Loop coverage
• Path coverage
• …

• Coverage analysis can reveal
gaps in testing

• Example:
if (a>b && c!=25) { d++; }

• Required cases for
condition/decision coverage:
• a<=b
• a>b && c==25
• a>b && c!=25

17

Poll: PollEv.com/cs5150sp25

double[] boxFilter(double[] x) {
 var y = new double[x.length];
 for (int i = 0; i < x.length; ++i) {
 var xl = x[i]; var xr = x[i];
 if (i > 0) { xl = x[i-1]; }
 if (i < x.length-1) { xr = x[i+1]; }
 y[i] = (xl + x[i] + xr)/3.0;
 }
 return y;
}

18

Coverage targets

• Any statement not covered by a test is code you expect
your client/users to run before you do

• By this philosophy, 100% line coverage would be a minimum target
• But chasing coverage metrics with low-quality tests can be self-defeating

• Tests take time to write, review, and run; must consider cost/benefit ratio

19

Activity: Brainstorm difficult testing scenarios

20

Difficult testing scenarios

• Error codes & exceptions from
library and system calls
• Out of memory
• Out of disk space
• Incomplete I/O
• Transient I/O error (EAGAIN)
• Timeouts

• Unbounded blocking
• Crash/power loss

• Corrupted data

• Malicious intent

• Concurrency
• High lock contention
• Race conditions
• Caching & memory ordering
• True concurrency vs. multitasking

• Portability
• Unsupported capabilities
• Platform differences

• Performance
• NUMA Non-Uniform Memory Access
• Big.LITTLE
• Disk I/O (bandwidth, latency)
• Network I/O (bandwidth, latency)

21

Beyoncé rule

• "If you liked it, then you shoulda put a test on it"

• Manages responsibility during large-scale refactoring
• Infrastructure team must ensure all tests pass before committing

• If functionality breaks, product team must fix it (and add more tests)

• Aim for sufficient coverage so that you (and your teammates) would
be okay being held responsible for a production breakage in
uncovered code

22

Example: SQLite

• 640x more test code than application
code

• 100% branch test coverage

• OOM, I/O errors, crashes
• Use abstractions to wrap malloc, I/O

operations

• Boundary values

• Regression tests

• Valgrind: memory debugging, memory
leak detection, and profiling.

• Fuzz testing

• https://www.sqlite.org/testing.html

23

https://www.sqlite.org/testing.html

Kinds of testing

• Styles
• Exploratory
• Smoke tests
• Black box
• Glass box
• Fuzz testing
• Dynamic analysis

• Scopes
• Unit tests
• Integration tests
• End-to-end tests

• Sizes
• Small: fast, deterministic (in-

process)
• Medium: multi-process, allow

blocking calls (single machine)
• Large: Multi-node

• Purpose
• Prevent reoccurrence of bugs

(regression tests)
• Prepare for release (acceptance

tests, beta testing)
• Ensure operating health (self tests)

Can synthesize with
boundary value analysis,
coverage feedback

24

Example: Aerospace testing

• Unit tests
• Ensure thorough coverage
• Verify independent implementations

• Smoke tests
• Small-scale integration test
• Ensure configs are valid

• Regression tests
• Catch any change to behavior (ensure

refactoring changes are non-functional)
• Ensure control algorithms achieve

mission objectives

• Checkpoint/restore tests

• Exploratory tests
• Logged data posted to reviews

• Software-in-the-loop
• Medium-scale integration test
• Leverage virtualization, preloading,

hardware simulation
• Subsystem and end-to-end scope

• Hardware-in-the-loop
• Large-scale integration test
• Verify non-functional requirements

• Vehicle-in-the-loop
• Large-scale integration test
• Verify a particular "production unit"

• Formal test deliverables

25

Flaky vs. brittle tests

Flaky

• Non-deterministic failures
• Multi-process/multi-node

infrastructure failures

• Timeouts

• Randomness
• Always log seed

• Concurrency
• Difficult to reproduce

Brittle

• "High maintenance"
• Leverage private functionality

• Depend on private state

• Assume behavior beyond the spec
• e.g., checking interactions instead of

state

26

Aside: random numbers

• In most settings, random numbers should be deterministic
• Enables reproducibility, reduces test flakiness
• Exceptions (in production): cryptography, gambling

• Recommended approach
• Application starts with a specified global seed (and logs it)
• Each component constructs a private RNG by combining global seed with unique

instance name
• Alternative for parallel computation: sequence queries, use RNG that can "fast

forward" state

• Advantages
• Results independent of amount of parallelism
• Results do not change if "peripheral" components are added or removed

27

Test scope

Good Bad

From Software Engineering at Google, Ch. 11
28

Test scope

Small scope
• Limited coverage (per test)

• But coverage is orthogonal

• May require awkward setup (dependency
injection, mock objects)

• Can be written simultaneously with the code-
under-test

• Easy to diagnose
• Limited amount of code is executed
• Easier to understand procedure and results

• Typically faster
• Can run more often

Large scope
• Extensive coverage (per test)

• Much coverage is redundant
• Most results are not checked (false sense of

security)

• May be easier to set up than mid-scoped tests
• But total configuration harder to reason about

• Depends on whole system
• Bugs may not be found until later

• Difficult to diagnose
• Slows down debugging when bugs are found

• Typically slower

29

Exploratory testing

• Applications
• Developers check how existing code

behaves
• Developers "gut check" new code
• Demonstrate functionality in a

scenario of interest with complicated
setup

• QA testing (test behaviors developers
often overlook)

• Tools
• Application itself
• REPL (JShell, iPython)
• Dynamic analysis tools (valgrind,

callgrind)

• Drawbacks
• Not reproducible

• Results may depend on unique context
• Good habit to log all interactions

• Good to think about expectations
before running test, but if you can
express what you expect, just write a
unit test

• Quality varies with tester
• Can't measure coverage

• Other tools: Selenium for browsers

30

Unit tests

• Narrow scope (typically a single
function or a single class)

• Focus on publicly-visible, fully-
specified behavior
• Check state, not process

• Write for clarity
• Okay to be repetitive
• Avoid new abstractions or logic

• Bad example:
• When registering a new user, the

system first generates a password,
then tries to insert a new auth table
row, throwing an exception if
insertion failed (name already taken)

• Better example:
• After registering a new user whose

name is not taken, a new row will
exist in the database with their
username and password

• If attempting to register a new user
whose name is already taken, an
exception is thrown

31

Behavior-driven development (BDD)

• Structuring tests around
methods can make them brittle,
hard to read
• Try to test too many behaviors at

once

• Better to structure tests around
scenarios

• Arrange-act-assert format
• "Given …, when …, then …"
• Analogous to User Stories

preamble

• "Given two accounts, the first of
which has at least $100,
when transferring $100 from the
first to the second account,
then both account balances
should reflect the transfer"

• Test frameworks can help make
tests self-documenting

32

BDD example

"A Stack" should "pop values in last-in-first-out order" in {

 val stack = new Stack[Int]

 stack.push(1)

 stack.push(2)

 stack.pop() should be (2)

 stack.pop() should be (1)

}

it should "throw NoSuchElementException if an empty stack is popped" in {

 val emptyStack = new Stack[Int]

 a [NoSuchElementException] should be thrownBy {

 emptyStack.pop()

 }

}

33

BDD example output

A Stack

- should pop values in last-in-first-out order

- should throw NoSuchElementException if an empty stack
is popped

Run completed in 76 milliseconds.

Total number of tests run: 2

Suites: completed 1, aborted 0

Tests: succeeded 2, failed 0, canceled 0, ignored 0,
pending 0

All tests passed.

34

BDD example 2

 info("As a TV set owner")

 info("I want to be able to turn the TV on and off")

 info("So I can watch TV when I want")

 info("And save energy when I'm not watching TV")

 Feature("TV power button") {

 Scenario("User presses power button when TV is
off") {

 Given("a TV set that is switched off")

 val tv = new TVSet

 assert(!tv.isOn)

 When("the power button is pressed")

 tv.pressPowerButton()

 Then("the TV should switch on")

 assert(tv.isOn)

 }

 Scenario("User presses power button when TV is on")
{

 Given("a TV set that is switched on")

val tv = new TVSet

tv.pressPowerButton()

 assert(tv.isOn)

 When("the power button is pressed")

tv.pressPowerButton()

 Then("the TV should switch off")

 assert(!tv.isOn)

 }

 }

35

Activity: Design tests using BDD

class BinarySearchTree {

private Node root; // root node

private int size; // number of nodes in the tree

static class Node {

private Node left; // left child

private Node right; // right child

}

public BinarySearchTree insert(int N);

public BinarySearchTree delete(int N);

public BinarySearchTree search(int N);

public BinarySearchTree succ(int N);

public BinarySearchTree pred(int N);

public int getSize();

Task: What kind of tests would you add?

36

Test doubles

• How to write unit-scoped tests
with complex dependencies?
• Using external services makes tests

"larger"
• Depending on specialty hardware is

very constraining

• Can be difficult to get complex
objects into appropriate state

• Can be difficult to trigger a corner-
case response (e.g. I/O errors)

• Examples of external
dependencies?

• Options
• Use real dependencies

anyway (highest fidelity and
coverage)

• Use fakes & simulators (good
option; requires investment)

• Use stubbing/mocks (convenient,
but dangerous)
• Beware temptation of

interaction testing

• Design for testing
• Dependency injection: pass in

dependencies instead of using
Singletons or constructing your own

37

Stubbing and mocking frameworks

• Create subclasses of
dependencies whose methods
return values specified by the
test
• Frameworks like Mockito make

this easy, even with static types

• Enables interaction testing
• Checking whether code-under-test

calls methods on dependencies in
the way we expect

Example:

var userAuth = new UserAuthorizer(
 mockPermissionDb);

when(mockPermissionDb.getPermission(
 user1, ACCESS)).thenReturn(EMPTY);

userAuth.grantPermission(ACCESS);

verify(mockPermissionDb).addPermission(
 user1, ACCESS);

38

Dangers of stubbing & interaction testing

• Increases brittleness
• When refactoring the real

dependency, must also change
everyone's stubs

• Reduced fidelity

• Decreases clarity
• Pollutes tests for one class with a

different class's API

• Depends on implementation
details rather than on
observable state
• May be appropriate to test for

"side effects"

39

Integration tests

• Broader scope
• Check that multiple components

interface correctly

• Check behavior of subsystems

• Tend to be larger in size
• SoA requires multiple processes

• Non-trivial data, config can be
slow

• Aim for smallest test possible
• Split pipelines into pairwise

interactions

• Larger tests require non-trivial
infrastructure, can be flaky
• Fakes

• Lightweight substitutions
• In-memory databases

• Hermetic services
• Leverage virtualization to deploy

isolated instances of service
dependencies

• Record/replay I/O
• Trades flakiness for brittleness

40

Integration environments

• Production
• Highest fidelity, esp. for load

• Failures affect real users

• Canarying: deploy to subset of
production systems
• E.g., internal users, early access

• Can lead to version skew –
incompatibility between
concurrently-running components

• Feature flags: Allow operators to
quickly toggle between new and
old implementation

• Staging
• Ideally configured just like

production

• Potentially high infrastructure
cost, limited availability

• Often can't duplicate production
load

• Failures do not harm users

• Can practice disaster recovery

41

Chaos engineering

• Originated at Netflix
(ChaosMonkey)

• High-reliability, distributed
systems must tolerate failure

• Recovery procedures are often
not sufficiently rehearsed –
painful, risky

• Deliberately inject failures in
production environment
• Tests system resiliency under

realistic load

• Encourages recovery automation

42

Continuous integration ("CI")

• Build and test whole systems regularly
• Discover issues earlier

• Reduce integration pain through automation and isolation of issues

• Test beyond single developer's resources

• Eliminate reliance on developers' discipline

• Continuously monitor readiness of code

• Applies to both development and release
• Continuous build+test

• Continuous delivery

43

CI decisions

• How to compose systems along release workflow

• Which tests to run when along release workflow

• Typical setup
• Pre-submit test suite gates all merges

• Compilation and fast tests relevant to affected code

• Post-submit test suite verifies subset of commits on trunk
• Contains larger, more integrated tests

• Blesses commits that pass as "green"

• Release promotion pipeline verifies candidates for release
• Contains even larger tests, may require dedicated resources

46

Automation, speed, & infrastructure

• Builds, tests, and deployment must be automated and reliable
• Ideally completely reproducible

• Most steps must be fast to avoid impeding productivity
• Cache build products
• Skip unaffected tests
• Parallelize & invest in compute resources

• Benefits from tooling
• Integration with version control and code review

• Pre-merge and pre-release gates
• "Last-known-good" branch (new work should branch from here, not trunk)

• Bisect breakages
• Log all results
• Automatically rerun flaky tests

47

Multi-system CI

• Without monorepo, need to assemble system from several
asynchronously-versioned repositories

• Large integration tests can't check every revision/combination

• Objective: identify "configurations" (revision combinations) suitable
for promotion (larger-scale testing, release)

48

	Slide 1: Lecture 15: Dynamic Analysis and Testing I
	Slide 2: Lecture goals
	Slide 3: Quality Assurance
	Slide 4: Testing
	Slide 5: Testing: Basic concepts
	Slide 6: Testing: Basic concepts
	Slide 7: Testing: Basic concepts
	Slide 8: Testing: Levels
	Slide 9: Goals of testing
	Slide 10: Principles of Testing #1: Avoid the absence of defects fallacy
	Slide 11: Principles of Testing #2: Exhaustive testing is impossible!
	Slide 12: Principles of Testing #3: Start testing early
	Slide 13: Principles of Testing #4: Defects are usually clustered
	Slide 14: Principles of Testing #5: The pesticide paradox
	Slide 15: Principles of Testing #6: Testing is context-dependent
	Slide 16: Principles of Testing #7: Verification is not validation
	Slide 17: Test coverage
	Slide 18: Poll: PollEv.com/cs5150sp25
	Slide 19: Coverage targets
	Slide 20: Activity: Brainstorm difficult testing scenarios
	Slide 21: Difficult testing scenarios
	Slide 22: Beyoncé rule
	Slide 23: Example: SQLite
	Slide 24: Kinds of testing
	Slide 25: Example: Aerospace testing
	Slide 26: Flaky vs. brittle tests
	Slide 27: Aside: random numbers
	Slide 28: Test scope
	Slide 29: Test scope
	Slide 30: Exploratory testing
	Slide 31: Unit tests
	Slide 32: Behavior-driven development (BDD)
	Slide 33: BDD example
	Slide 34: BDD example output
	Slide 35: BDD example 2
	Slide 36: Activity: Design tests using BDD
	Slide 37: Test doubles
	Slide 38: Stubbing and mocking frameworks
	Slide 39: Dangers of stubbing & interaction testing
	Slide 40: Integration tests
	Slide 41: Integration environments
	Slide 42: Chaos engineering
	Slide 43: Continuous integration ("CI")
	Slide 46: CI decisions
	Slide 47: Automation, speed, & infrastructure
	Slide 48: Multi-system CI

