Cornell University
Computing and Information Science

CS 5150 Software Engineering
Verification, Testing, and Bugs

William Y. Arms

Building Reliable Systems: Two Principles

For a software system to be reliable:

e FEach stage of development must be done well, with
incremental verification and testing.

e Testing and correction do not ensure quality, but reliable
systems are not possible without thorough testing.

Static and Dynamic Verification

Static verification:

Techniques of verification that do not include execution of the
software.

e May be manual or use computer tools.
Dynamic verification:
e Testing the software with trial data.

e Debugging to remove errors.

Static Verification: Reviews

Reviews are a form of static verification that is carried out throughout
the software development process.

Verification

Requirements Design Program

REVIEWS

Reviews

Reviews are a fundamental part of good software development
Concept
Colleagues review each other's work:

e can be applied to any stage of software development, but particularly
valuable to review program design or code

e can be formal orinformal
Preparation

The developer(s) provides colleagues with documentation (e.g., models,
specifications, or design), or code listing.

Participants study the materials in advance.
Meeting

The developer leads the reviewers through the materials, describing what
each section does and encouraging questions.

The Review Meeting

A review is a structured meeting

Participants and their roles:
Developer(s): person(s) whose work is being reviewed
Moderator: ensures that the meeting moves ahead steadily
Scribe: records discussion in a constructive manner
Interested parties: other developers on the same project

Outside experts: knowledgeable people who are not working on
this project

Client: representatives of the client who are knowledgeable about
this part of the process

Benefits of Reviews

Benefits:

e Extra eyes spot mistakes, suggest improvements

e Colleagues share expertise; helps with training

* [Incompatibilities between components can be identified
e Gives developers an incentive to tidy loose ends

e Helps scheduling and management control

Successful Reviews

To make a review a success:

e Senior team members must show leadership

e Good reviews require good preparation by everybody

e Everybody must be helpful, not threatening

Allow plenty of time and be prepared to continue on another day.

Static Verification: Pair Design and Pair Programming

Concept: achieve benefits of review by shared development
Two people work together as a team:

e design and/or coding

e testing and system integration

e documentation and hand-over

Benefits include:

e two people create better software with fewer mistakes

® Cross training

Many software houses report excellent productivity

Static Verification: Program Inspections

Formal program reviews whose objective is to detect faults

e Code is read or reviewed line by line.

150 to 250 lines of code in 2 hour meeting.
e Use checklist of common errors.
e Requires team commitment, e.g., trained leaders

So effective that it is claimed that it can replace unit testing

Program Inspections: Common Errors

Check list of common errors
Data faults: Initialization, constants, array bounds, character strings

Control faults: Conditions, loop termination, compound statements,
case statements

Input/output faults: All inputs used; all outputs assigned a value

Interface faults: Parameter numbers, types, and order; structures and
shared memory

Storage management faults: Modification of links, allocation and de-
allocation of memory

Exceptions: Possible errors, error handlers

Static Verification: Analysis Tools

Program analyzers scan the source of a program for possible errors and
anomalies.

e Control flow: Loops with multiple exit or entry points

e Data use: Undeclared or uninitialized variables, unused variables,
multiple assignments, array bounds

e |nterface faults: Parameter mismatches, non-use of functions results,
uncalled procedures

e Storage management: Unassigned pointers, pointer arithmetic

Static Analysis Tools (continued)

Static analysis tools

e Cross-reference table: Shows every use of a variable, procedure, object,
etc.

e Information flow analysis: Identifies input variables on which an output
depends.

e Path analysis: Identifies all possible paths through the program.

Static Analysis Tools in Programming Toolkits

Java - Tfldf/src/setup/Indexer.java - Eclipse Platform - /Users/wya/William/Program09

M CA J[29 = A Ji§9 § & Jng"Gi' A B e v

package setup;

«import java.io.IlO0Exception;|]

—il
* This is a Hadoop MapReduce demonstration program for Cornell class (S/Info4300. It reads text documents
¥ in a simple format and for each unique term in each document it writes out a record that can
* be used to calculate tf.idf term weighting.

%
* To run: bin/hadoop jar Indexer.jar Indexer in-dir out-dir
*
* uthor Williom Y. Arms
*

Ve n Version 1, October 2008
x/

public class Indexer extends Configured implements Tool {

E protected static enum MyCounter {
INPUT_FILES

¥;

- public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(}, new Indexer(), args);
System.exit(res);

}

= S

¥ This is the control method. If the program has several MapReduce passes,
¥ Lhicec meathnd FaAlle +ham 1in centience nnd handlece s+arndinne pderm

Static Analysis Tools in Programming Toolkits

String doc = H
String line = value.toString();

StringTokenizer itr = new StringTokenizer(line);

if (itr.hasMoreTokens(})) doc = itr.nextToken();

String word;
int counter = 9;
int maxF = 1;
int lengthSq - 9;

WordinDoc tempNode = new WordinDoc();
int tempF = 1;

/* Read the input document one token at a time and build the wordTree */

while (itr.hasMoreTokens() && counter <= MAXWORDS) {
word = itr.nextToken().tolLowerCase().replaceAll("[*a-2]", "");

if (word.length() > 1 && !stopwords.contains(word)){

//

//
//
//
//
//
//

//

a = public void map(LongWritable key, Text value, OutputCollector<Text, WordinDoc> output, Reporter repl)

Doc ID
First word of d
Next word from

Count of words
Max frequency o
Length of docum

Get next word a

Ignore one char

<

/[2_ Problems &3 @ Javadoq & Declaration}

1 error, 15 warnings, 0 others

Description

@ Errors (1 item)

& Warnings (15 items)
(% The field GraphClean.MapClean.fromURL is never read locally
% The field GraphClean.MapClean.hashFromURL is never read locally
(% The field GraphClean.MapClean.hashToURL is never read locally

A | Resource

GraphClean.java
GraphClean.java
CraphClean.java

Defensive Programming

Murphy's Law:

If anything can go wrong, it will.
Defensive Programming:
e Write simple code.
e Avoid risky programming constructs.
e |f code is difficult to read, rewrite it.

e Incorporate redundant code to check system state after
modifications.

e Test implicit assumptions explicitly, e.g., check all parameters
received from other routines.

Good programming practice eliminates all warnings from source
code.

Dynamic Verification: Stages of Testing

Testing is most effective if divided into stages
User interface testing (carried out separately)

Unit testing
unit test

System testing
integration test
function test
performance test
installation test

Acceptance testing (carried out separately)

Testing Strategies

Bottom-up testing
Each unit is tested with its own test environment. Used for all systems.
Top-down testing

Large components are tested with dummy stubs. Particularly useful for:

user interfaces
work-flow
client and management demonstrations

Stress testing

Tests the system at and beyond its limits. Particularly useful for:

real-time systems
transaction processing

Most systems require a combination of all three strategies.

Methods of Testing

Open box testing

Testing is carried out by people who know the internals of what
they are testing.

Example: Tick marks in a graphing package
Closed box testing

Testing is carried out by people who do not know the internals of
what they are testing.

Example: Educational demonstration that was not foolproof

Testing: Unit Testing

e Tests on small sections of a system, e.g., a single class
e Emphasis is on accuracy of actual code against specification

e Test data is usually chosen by developer(s) based on their
understanding of specification and knowledge of the unit

e Can be at various levels of granularity

e (Can be open box or closed box: by the developer(s) of the unit or by
special testers

If unit testing is not thorough, system testing becomes almost impossible.
If your are working on a project that is behind schedule, do not rush the
unit testing.

Testing: System and Sub-System Testing

e Tests on components or complete system, combining units that have
already been thoroughly tested

e Emphasis on integration and interfaces

e Trial data that is typical of the actual data, and/or stresses the
boundaries of the system, e.g., failures, restart

e (Carried out systematically, adding components until the entire system is
assembled

e (Can be open or closed box: by development team or by special testers

System testing is finished fastest if each component is completely debugged
before assembling the next

Dynamic Verification: Test Design

Testing can never prove that a system is correct.

It can only show that either (a) a system is correct in a
special case, or (b) that it has an error.

e The objective of testing is to find errors or demonstrate that
program is correct in specific instances.

e Testing is never comprehensive.

e Testing is expensive.

Test Cases

Test cases are specific tests that are chosen because they are likely to
find specific problems.

Test cases are chosen to balance expense against chance of finding
serious errors.

e (Cases chosen by the development team are effective in testing
known vulnerable areas.

e (Cases chosen by experienced outsiders and clients will be effective in
finding gaps left by the developers.

e (Cases chosen by inexperienced users will find other errors.

Variations in Test Sets

A test suite is the set of all test cases that apply to a system or
component of a system.

When running tests, there are some errors that occur only under certain
circumstances, e.g., when certain other software is running on the same
machine, when tasks are scheduled in specific sequences, with unusual
data sets, etc.

Therefore it is customary for each test to vary some of the test cases
systematically, and to change the order in which the tests are made,
etc.

Incremental Testing (e.g., Daily Testing)

e Create afirst iteration that has the structure of the final system and
some basic functionality.

e C(Create an initial set of test cases.

e Check-in changes to the system on a daily basis, rebuild entire system
daily.

e Run a comprehensive set of test cases daily, identify and deal with any
new errors.

e Add new test cases continually.

Many large software houses, e.g., Microsoft, follow this procedure with a
daily build of the entire system and comprehensive sets of test cases. For a
really big system this may require hundreds or even thousands of test
computers and a very large staff of testers.

Dynamic Verification: Regression Testing

When software is modified, regression testing is used to check that

modifications behave as intended and do not adversely affect the
behavior of unmodified code.

e After every change, however small, rerun the entire testing suite.

Regression Testing: Program Testing

. Collect a suite of test cases, each with its expected behavior.

. Create scripts to run all test cases and compare with expected
behavior. (Scripts may be automatic or have human interaction.)

. When a change is made to the system, however small (e.g., a bug is
fixed), add a new test case that illustrates the change (e.g., a test case

that revealed the bug).

. Before releasing the changed code, rerun the entire test suite.

Incremental Testing: a Small Example

Example

A graphics package consisting of a pre-processor, a runtime package (set
of classes), and several device drivers.

Starting point

A prototype with a good overall structure, and most of the functionality,
but hastily coded and not robust.

Approach
On a daily cycle:

e Design and code one small part of the package (e.g., an interface, a class,
a dummy stub, an algorithm within a class.)

e Integrate into prototype.
e C(Create additional test cases if needed.

e Regression test.

Documentation of Testing

Every project needs a test plan that documents the testing
procedures for thoroughness, visibility, and for future
maintenance. It should include:

e Description of testing approach.
e List of test cases and related bugs.
e Procedures for running the tests.

e Test analysis report

Fixing Bugs

Isolate the bug
Intermittent --> repeatable
Complex example --> simple example
Understand the bug and its context
Root cause
Dependencies
Structural interactions
Fix the bug
Design changes
Documentation changes
Code changes

Create new test case

Moving the Bugs Around

Fixing bugs is an error-prone process
e When you fix a bug, fix its environment
e Bug fixes need static and dynamic testing

e Repeat all tests that have the slightest relevance (regression
testing)

Bugs have a habit of returning

e When a bug is fixed, add the failure case to the test suite for
future regression testing.

Persistence

e Most people work around a problem. The best people track
down the root cause and fix it for ever!

Difficult Bugs

Some bugs may be extremely difficult to track down and isolate. This is
particularly true of intermittent failures.

e Alarge central computer stops a few times every month with no
dump or other diagnostic.

e A database load dies after running for several days with no
diagnostics.

e Animage processing system runs correctly, but uses huge amounts
of memory.

Such problems may require months of effort to track down.

For a fictional example, see: Ellen Ullman, The Bug: a Novel, (Doubleday
2003).

Tracking Down a Difficult Bugs: The Heisenbug

MB Free

-~ Starts at 122MB, Ends at 115 5MB

AN

1000 2000

"SmallAdds-amb.dat”
“LargeAdds-amb.dat”
"ForardSPOQuenes-amb. dat”
"BackwardSPOQuenes-amb dat”

3000

4000
Actions Performed

7000

6000

5000

‘SimplelTQLGuernes-amb.dat”
"“CompoundITOLQuernes-amb. dat"
"SmallDeletes-amb. dat”
“LargeDeletes-amb dat”

Tracking Down a Difficult Bug: Make3D

cv::fastmalloc

Memory usage by function

Bugs in System Software

Even system software from good manufacturers may contain bugs:
e Built-in function in Fortran run-time environment (e° = 0)
e The string-to-number function that was very slow with integers

e The preload system with the memory leak

Bugs in Hardware

Three times in my career | have encountered hardware bugs:
e The film plotter with the missing byte (1:1023)

Microcode for virtual memory management

e The Sun page fault

Each problem was actually a bug in embedded software/firmware

When Fixing a Bug Creates a Problem for Customers

Sometimes customers will build applications that rely upon a bug. Fixing
the bug will break the applications.

e The graphics package with rotation about the Z-axis in the wrong
direction.

e An application crashes with an emulator, even though the emulator is
bug free. (Compensating bug problem.)

e The 3-pixel rendering problem with Internet Explorer.

With each of these bugs the code was easy to fix, but releasing it would
have caused problems for existing programs.

A Note on User Interface Testing

User interfaces need several categories of testing.

During the design phase, user interface testing is carried out with trial
users to ensure that the design is usable. Design testing is also used to
develop graphical elements and to validate the requirements.

During the implementation phase, the user interface goes through the
standard steps of unit and system testing to check the reliability of the
implementation.

Finally, acceptance testing is carried out with users, on the complete
system.

