Cornell University
Computing and Information Science

CS 5150 Software Engineering
Object Oriented Program Design

William Y. Arms

Program Design

The task of program design is to represent the software architecture
in a form that can be implemented as one or more executable
programs.

Given a system architecture, the program design specifies:
e programs, components, packages, classes, class hierarchies, etc.
e interfaces, protocols (where not part of the system architecture)

e algorithms, data structures, security mechanisms, operational
procedures

If the program design is done properly, all significant design
decisions should be made before implementation. Implementation
should focus on the actual coding.

Models for Program Design

Levels of Abstraction
The complexity of a model depends on its level of abstraction
e High-levels of abstraction show the overall system.

e Low-levels of abstraction are needed for implementation, particularly
for:
unusual or complex parts of the system

interfaces
Two approaches

e Model entire system at same level of abstraction, but present diagrams
with different levels of detail.

e Model parts of system at different levels of abstraction. In practice this
is usually an efficient way to use the effort of the design team.

UML Models

UML models (diagrams and specifications) can be used for almost all aspects
of program design.

e Diagrams give a general overview of the design, showing the principal
elements and how they relate to each other.

e Specifications provides details about each element of the design. The
specification should have sufficient detail that they can be used to write
code from.

In heavyweight software development processes, the entire specification is
completed before coding begins.

In lightweight software development processes, an outline specification is
made before coding, but the details are completed as part of the coding
process, using language based tools such as Javadocs.

List of Models in UML

Models used mainly for requirements

* Use case diagram shows a set of use cases and actors and their
relationships.
Models used mainly for systems architecture

e Component diagram shows the organization and dependencies
among a set of components.

e Deployment diagram shows the configuration of processing nodes
and the components that live on them.
Models used mainly for program design

e (lass diagram shows a set of classes, interfaces, and collaborations
with their relationships.

e (Object diagram shows a set of objects and their relationships.

List of Models in UML

Models for interactive aspects of systems
These models can be used for requirements or program design.

e |nteraction diagram: shows set of objects and their relationships
including messages that may be dispatched among them

Sequence diagrams: time ordering of messages

Collaboration diagrams: structural organization of objects that
send and receive messages

e Statechart diagram shows a state machine consisting of states,
transitions, events, and activities.

e Activity diagram (flowchart) shows the flow from activity to activity
within a system.

Class Diagrams

A class is a description of a set of objects that share the same attributes,
methods, relationships, and semantics.

Window) name
origin < attributes [local, instance, and class
size (static) variables]
open()
close() « methods
move()
display()

« responsibilities [optional text]

Note on terminology. This course uses the term methods for the
operations that a class supports. UML uses the less familiar term
operations for this purpose.

The "Hello, World!" Applet

import java.awt.Graphics;
class HelloWorld extends java.applet.Applet {
public void paint (Graphics g) {
g.drawString ("Hello, World!", 10, 10);

Example from: BRJ

The HelloWorld Class

class
name HelloWorld
methods paint()

name

methods

The HelloWorld Class

class

HelloWorld

optional annotation

g.drawString ("HelloWorld", 0, 10)"

Notation: Annotation or Note

NN
some text note

A note is a symbol for attaching constraints and comments to an
element or a collection of elements.

Notation: Relationships

___ >

A dependency is a semantic relationship between two things in
which a change to one may effect the semantics of the other.

child D parent

A generalization is a specialization/generalization relationship
is which objects of the specialized element (child) are
substitutable for objects of the generalized element (parent).

A realization is a semantic relationship between classifiers,
wherein one classifier specifies a contract that another
classifier guarantees to carry out.

The HelloWorld Class

Note that the Applet and
Graphics classes are shown
elided, i.e., just the name is

Applet shown, not the attributes or
/\ operations.
generalization
HelloWorld
dependency
A — Graphics
paint()

Notation: Relationships

0..1 *
employer employee

An association is a structural relationship that describes a set of
links, a link being a connection among objects.

Relationships

ParkinglLot

1...%*

ParkingSpace

location

is_available()

Notation: Interface

O

ISPX

An interface is a collection of methods that specify a service of a
class or component, i.e., the externally visible behavior of that
element.

Notation: Package

]

Business rules

A package is a general-purpose mechanism for organizing elements into
groups.

Packaging Classes

java
]
HelloWorld [applet package
v
Graphics EE R — awt
—| v
lang

Notation: Active Class

EventManager

eventlist

suspend()
flush()

An active class is a class whose objects own one or more
processes or threads and therefore can initiate control activity.
When instantiated, the class controls its own execution, rather
than being invoked or activated by other objects.

Rational Rose: A Typical Class Diagram

%> Rational Rose - samplel

File Edit Yiew Format Browse Report Query Tools Add-Ins Window Help

=10l x|

DESH 2R agROpRBREBE Fel aam®

(5] samplel

=3 Use Case View

- Main

¢ NewlseCase

.3 Associations

=3 Logical View

AAAAA Main

#-E Claim

#-BE Accident

-2 Associations
#-/ [theAccidentAccident] (theClaim:Claim)

--(C3 Component View

m

2] NewComponent
|69 Deployment View
{038 Model Properties

[Ei Class Diagram: Logical Yiew / Main

Claim

&amount
&date_investigated

®change_date()
investigate_claim()

Accident

&date_occured
& driver1
& driver2

®change_date()
®add_driverl ()
®add_driver2()

For Help, press F1

|Default Language: Java

Specification Fields

4> Class Specification

%> Class Specification

21|

Class |Javadoc| Class Javadoc
— @author {@version
Name I — Generate
o I -l =
o I Finalizer
odifiers
[~ Static Initializer . v
Visibility I~ abstract [~ static = |
I i _] E E I Instance Initializer
ublic A final trictf,
£ e R [V Default Constructor |@see
™ Interface
[V Generate Code " Disable Autosync " Reference
Constructor Visibility I public LI
|§xtends |!mplements @since B @deprecated ~
User Defined Tag
Tag name | Default |
DocComment
= Preview I
| oK I Cancel Apply | Help | oK I Cancel Apply | Help |

Deciding which Classes to Use

Given a real-life system, how do you decide what classes to use?
Step 1. Identify a set of candidate classes that represent the system design.

e What terms do the users and implementers use to describe the system?
These terms are candidates for classes.

e |s each candidate class crisply defined?

e For each class, what is its set of responsibilities? Are the responsibilities
evenly balanced among the classes?

e What attributes and methods does each class need to carry out its
responsibilities?

Deciding which Classes to Use

Step 2. Modify the set of classes
Goals:
e Improve the clarity of the design

If the purpose of each class is clear, with easily understood methods
and relationships, developers are likely to write simple code, which
future maintainers can understand and modify.

e Increase coherence within classes, and lower coupling between
classes.

Aim for high cohesion within classes and weak coupling between
them.

Application Classes and Solution Classes

A good design is often a combination of application classes and
solution classes.

e Application classes represent application concepts.

Noun identification is an effective technique to generate candidate
application classes.

e Solution classes represent system concepts, e.g., user interface
objects, databases, etc.

Noun Identification: A Library Example

The library contains books and journals. It may have several copies of a
given book. Some of the books are reserved for short-term loans only.
All others may be borrowed by any library member for three weeks.
Members of the library can normally borrow up to six items at a time,
but members of staff may borrow up to 12 items at one time. Only

members of staff may borrow journals.

The system must keep track of when books and journals are borrowed

and returned and enforce the rules.

Noun ldentification: A Library Example

The library contains books and journals. It may have several copies of a
given book. Some of the books are reserved for short-term loans only.
All others may be borrowed by any library member for three weeks.
Members of the library can normally borrow up to six items at a time,
but members of staff may borrow up to 12 items at one time. Only

members of staff may borrow journals.

The system must keep track of when books and journals are borrowed

and returned and enforce the rules.

Candidate Classes

Noun Comments Candidate
Library the name of the system no
Book yes
Journal yes
Copy yes
ShortTermLoan event no (?)
LibraryMember yes
Week measure no
MemberOfLibrary repeat of LibraryMember no
ltem book or journal ves (?)
Time abstract term no
MemberOfStaff yes
System general term no
Rule general term no

Relations between Classes

Book

Journal

Copy
LibraryMember
ltem
MemberOfStaff

is an
is an
is a copy of a

is a

ltem
ltem
Book

LibraryMember

Is Item needed?

Methods

LibraryMember borrows Copy

LibraryMember returns Copy
MemberOfStaff borrows Journal

MemberOfStaff returns Journal

[tem not needed yet.

A Possible Class Diagram

MemberOfStaff LibraryMember
>
1 1
on loan on loan
k
0..12 0..
Journal Copy is a copy of

Book

1.* 1

From Candidate Classes to Completed Design

Methods used to move to final design

Reuse: Wherever possible use existing components, or class libraries. They
may need extensions.

Restructuring: Change the design to improve understandability,
maintainability, etc. Techniques include merging similar classes, splitting
complex classes, etc.

Optimization: Ensure that the system meets anticipated performance
requirements, e.g., by changed algorithms or restructuring.

Completion: Fill all gaps, specify interfaces, etc.
Design is iterative

As the development process moves from preliminary design to
specification, implementation, and testing it is common to find weaknesses
in the program design. Be prepared to make major modifications.

Rough Sketch: Wholesale System

Design is empirical and iterative. The following very artificial
example, gives an idea of the process.

Example

A wholesale merchant supplies retail stores from stocks of
goods in a warehouse. A comprehensive set of requirements
have been identifier, and a preliminary software architecture
defined, but the relationships among the various objects in
the system have not been determined.

What classes would you use to model this business?

Rough Sketch: Wholesale System

Noun identification has found a large number of candidate classes.
Here are some of them.

RetailStore

Order

Merchant

Warehouse Product

Invoice

Shipment

Rough Sketch: Wholesale System

, Merchant
RetailStore Shipment
name Warehouse
address
contactinfo
_ , Order
financiallnfo T
Responsibilities
Product track status of shipped
products
Reversal
voice damaged() Add some more detail to
return() some of the classes.
wrongltem()

Add a Reversal candidate
class.

Rough Sketch: Wholesale System

RetailStore association
1 £ 3
Transaction
Payment
Invoice

Compare the candidate classes to a scenario that describes a common
transaction type: an order from a retail store

Which class is responsible for the financial records for a store?

Rough Sketch: Wholesale System

Shipment

goodsShippe

?

?

adornments

+ public
- private

?

/ RetailStore

invoiceRecord

Invoice

invoiceNumber |- >‘ PartsList

+goodsShipped()
-sendlnvoice()

Compare the candidate classes to a scenario that describes a different
aspect of a common transaction type: a shipment to a retail store.

Lessons Learned

Design is empirical. There is no single correct design.
During the design process:
e Eliding: Elements are hidden to simplify the diagram

e |Incomplete: During the early part of the design process,
elements may be missing.

e |nconsistency: During the early part of the design process, the
model may not be consistent

The diagram is not the whole design. Diagrams must be backed up
with specifications.

Modeling Dynamic Aspects of Systems

Interaction diagram: shows set of objects and their relationships
including messages that may be dispatched among them

e Sequence diagrams: time ordering of messages

Interaction: Informal Bouncing Ball Diagrams

Example: execution of an HTTP get command,
e.g., http://www.cs.cornell.edu/

domain name ---——-*

service [TR

HTTP get ———

Client Servers

UML Notation for Classes and Objects

Classes Objects
AnyClass anObject:AnyClass
attributel or
attribute2
method1() :AnyClass
method?2()
or
or anObject
AnyClass The names of objects are underlined.

Notation: Interaction

display

»
»

An interaction is a behavior that comprises a set of messages
exchanged among a set of objects within a particular context to
accomplish a specific purpose.

call

return

send

create object

destroy object

Actions on Objects

returnCopy(c)
-
okToBorrow() local
47
status
_________________________ _>
notifyReturn(b) asynchronous signal
~
<<create>>
'»\
stereotypes
<<d estroy>>/ P

o

Sequence Diagram: Borrow Copy of a Book

libMem:

% LibraryMember
\ .

BookBorrower

borrow(theCopy)
>

<

theBook:Book

theCopy:Copy

okToBorrow

borrow

In a sequence
diagram,
time runs
downwards

Sequence Diagram: Change in Cornell Program

% .MEngStudent

Cornellian

1: getName()

1.1 : name ﬂ
-~ |

2: <<create>> PhDStuthIent(name)

> :PhDStudent

3: <<destroy>>

sequence numbers added to messages

Sequence Diagram: Painting Mechanism

:Thread

:Toolkit :ComponentPeer

target:HelloWorld

run

run

callbackLoop

.

handleExpose

>

paint

