Cornell University
Computing and Information Science

CS 5150 Software Engineering

System Architecture: Introduction

William Y. Arms

Design

The requirements describe the function of a system as seen by the client.

Given a set of requirements, the software development team must design a
system that will meet those requirements.

In this course, we look at the following aspects of design:

system architecture
program design
usability

security

performance

In practice these aspects are interrelated and many aspects of the design
emerge during the requirements phase of a project. This is a particular
strength of the iterative and incremental methods of software development.

Creativity and Design

Software development

Software development is a craft. Software developers have a
variety of tools that can be applied in different situations.

Part of the art of software development is to select the
appropriate tool for a given implementation.

Creativity and design

System and program design are a particularly creative part of
software development, as are user interfaces. You hope that

people will describe your designs as “elegant”, “easy to
implement, test, and maintain.”

Above all strive for simplicity. The aim is find simple ways to
implement complex requirements.

System Architecture

System architecture is the overall design of a system

e Computers and networks (e.g., monolithic, distributed)

e Interfaces and protocols (e.g., http, ODBC)

e Databases (e.g., relational, distributed)

e Security (e.g., smart card authentication)

e QOperations (e.g., backup, archiving, audit trails)

At this stage of the development process, you should also be selecting:

e Software environments (e.g., languages, database systems, class
frameworks)

e Testing frameworks

Models for System Architecture

Our models for systems architecture are based on UML

The slides provide diagrams that give an outline of the systems, without the
supporting specifications.

For every system, there is a choice of models

Choose the models that best model the system and are clearest to
everybody.

When developing a system, every diagram must have supporting specification

The diagrams shows the relationships among parts of the system, but much,
much more detail is needed to specify a system explicitly.

For example, to specify a web plug-in, at the very least, the specification
should include the version of the protocols to be supported at the interfaces,
options (if any), and implementation restrictions.

Subsystems

Subsystem

A subsystem is a grouping of elements that form part of a system.

e Coupling is a measure of the dependencies between two
subsystems. If two subsystems are strongly coupled, it is hard to
modify one without modifying the other.

e Cohesion is a measure of dependencies within a subsystem. If a

subsystem contains many closely related functions its cohesion is
high.

An ideal division of a complex system into subsystems has low coupling
between subsystems and high cohesion within subsystems.

Component

orderform.java

A component is a replaceable part of a system that conforms to and
provides the realization of a set of interfaces.

A component can be thought of as an implementation of a subsystem.

UML definition of a component

"A distributable piece of implementation of a system, including
software code (source, binary, or executable), but also including
business documents, etc., in a human system."

Components as Replaceable Elements

Components allow system to be assembled from binary replaceable
elements

e A component is bits not concepts

e A component can be replaced by any other component(s) that
conforms to the interfaces

e A component is part of a system

e A component provides the realization of a set of interfaces

Components and Classes

Classes represent logical abstractions. They have attributes (data) and
operations (methods).

Components have operations that are reachable only through interfaces.

Package

]

JavaScript

A package is a general-purpose mechanism for organizing elements into
groups.

Note: Some authors draw packages with a different shaped box:

SN

JavaScript

Node

Server

A node is a physical element that exists at run time and
provides a computational resource, e.g., a computer, a
smartphone, a router.

Components may live on nodes.

Example: Simple Web System

W

Web browser

Lé/ Ll ;

|

Web server

Static pages from server

All interaction requires communication with server

Deployment Diagram

x

PersonalComputer

N

AN

E@ WebBrowser [

\

nodes

components

>

DeptServer

------ >

WebServer
B

Component Diagram: Interfaces

(L]

1
1

WebBrowser f------ooe- @

dependency

interface

1

WebServer

realization

Application Programming Interface (API)

An APl is an interface that is realized by one or more components.

1
- WebServer

O O

Get Post

Architectural Styles

An architectural style is system architecture that recurs in many
different applications.

See: Mary Shaw and David Garlan, Software architecture:
perspectives on an emerging discipline. Prentice Hall, 1996

Architectural Style: Pipe

Example: A three-pass compiler

]

Lexical analysis

]

Parser

]

Code generation

Output from one subsystem is the input to the next.

Architectural Style: Client/Server

Example: A mail system

E@ Mail client | E@ Mail server
(e.g. MS Outlook) (e.g. MS Exchange)

The control flows in the client and the server are independent.
Communication between client and server follows a protocol.

In a peer-to-peer architecture, the same component acts as both a client
and a server.

Architectural Style: Repository

]]
Input
components

Transactions

N
~
N
N
N
N
N
N
N
N
N
\

Repository

Advantages: Flexible architecture for data-intensive systems.

Disadvantages: Difficult to modify repository since all other components
are coupled to it.

Architectural Style: Repository with Storage Access

Layer
Repository
— -
Input g Storage || | Transactions
components ACCess
ad

This is sometimes cal/ed/ — v

a "glue” layer

Data Store

Advantages: Data Store subsystem can be changed without modifying any
component except the Storage Access.

Architectural Style: Model/View/Controller

Example: Control of a unmanned model aircraft

]]]

Controller I Model oo View

Controller: Receives instrument readings from the aircraft and sends controls
signals to the aircraft.

Model: Translates data received from and sent to the aircraft, and
instructions from the user into a model of flight performance. Uses domain
knowledge about the aircraft and flight.

View: Displays information about the aircraft to the user on the ground and
transmits instructions to the model.

Model/View/Controller: Autonomous Land Vehicle

View Model Controller
Model Control
. signals
Controls
Sensors Signal

processing

Model/View/Controller for Web Applications

User interacts with the user interface (e.g., presses a mouse button).

Controller handles input event from the user interface, (e.g., via a
registered handler or callback) and converts the event into appropriate
user action.

Controller notifies the model of user action, possibly resulting in a
change in the model's state (e.g., update shopping cart).

View interacts with the model to generate an appropriate user interface
response (e.g., list shopping cart's contents).

User interface waits for further user interactions.

from Wikipedia 10/18/2009

Model/View/Controller for Web Applications

L]

1 WebBrowser

—] control functions

\

HTTP Input events

Controller

] WebBrowser
j view functions

L

Response HTML

Model

DE— View

Time-Critical Systems

A time-critical (real time) system is a software system whose correct
functioning depends upon the results produced and the time at
which they are produced.

e Ahard real time system fails if the results are not produced
within required time constraints

e.g., a fly-by-wire control system for an airplane must respond
within specified time limits

e Asoft real time system is degraded if the results are not
produced within required time constraints

e.g., a network router is permitted to time out or lose a packet

Time Critical System: Architectural Style - Daemon

A daemon is used when messages might arrive at closer intervals than the
the time to process them.

Spawned
Q Eli Daemon et E@ process

Example: Web server
The daemon listens at port 80

When a message arrives it:
spawns a processes to handle the message
returns to listening at port 80

Architectural Styles for Distributed Data

Replication:
Several copies of the data are held in different locations.
Mirror: Complete data set is replicated
Cache: Dynamic set of data is replicated (e.g., most recently used)

With replicated data, the biggest problems are concurrency and
consistency.

Example: The Domain Name System
For details of the protocol read:

Paul Mockapetris, "Domain Names - Implementation and
Specification". IETF Network Working Group, Request for Comments:
1035, November 1987.

http://www.ietf.org/rfc/rfc1035.txt?number=1035

Architectural Style: Buffering

When an application wants a continuous stream of data from a
source that delivers data in bursts (e.g., over a network or from a
disk), the software reads the bursts of data into a buffer and the
application draws data from the buffer.

a Output
block g

a Input block

Circular buffer

An Old Exam Question

A company that makes sports equipment decides to create a system
for selling sports equipment online. The company already has a
product database with description, marketing information, and prices
of the equipment that it manufactures.

To sell equipment online the company will need to create: a customer
database, and an ordering system for online customers.

The plan is to develop the system in two phases. During Phase 1,
simple versions of the customer database and ordering system will be
brought into production. In Phase 2, major enhancements will be
made to these components.

An Old Exam Question

(a) For the system architecture of Phase 1: /

i Draw a UML deployment diagram.

PersonalComputer

i WebBrowser [

ShoppingServer

i Product DB

A

% Ordering
system

¥

i Customer DB

An Old Exam Question

DB
(a) For the system architecture of Phase 1: E@ Product

ii Draw a UML interface diagram.

E@ WebBrowser >© Ej;l Ordering

system

:

E Customer DB

An Old Exam Question

(b) For Phase 1:

i What architectural style would you use for the customer
database?

Repository with Storage Access Layer
ii Why would you choose this style?

It allows the database to be replaced without changing the
applications that use the database.

An Old Exam Question

(b) For Phase 1:

iii Draw an UML diagram for this architectural style showing its use in
this application.

Customer DB

— —

Input g Storage | | | Ordering

components Access System
optional v

Data Store

System Design Study 1
Extending the Architecture of the Web

The basic client/server architecture of the web has:

e aserver that delivers static pages in HTML format

e aclient (known as a browser) that renders HTML pages
Both server and client implement the HTTP interface.

Problem

Extend the architecture of the server so that it can configure
HTML pages dynamically.

Web Server with Data Store

L= S
\ I \ d w > Data
Web browser Server

Advantage:

Server-side code can configure pages, access data, validate
information, etc.

Disadvantage:

All interaction requires communication with server

Architectural Style: Three Tier Architecture

E Presentation |)Q__Ei Application
tier tier

----- O—2

Database
tier

Each of the tiers can be replaced by other components that

implement the same interfaces

Component Diagram

These components might be

located on a single node

RN

R Q% WebServer

HTTP

Database
Server

Three Tier Architecture: Broadcast Searching

User Y E'-
‘é/ % _______ E User interface Databases

\’ / \ service

T2 ——

This is an example of a multicast protocol.

The primary difficulty is to avoid troubles at one site
degrading the entire system (e.g., every transaction
cannot wait for a system to time out).

System Design Study 1 (continued)
Extending the Architecture of the Web

Using a three tier architecture, the web has:

e aserver that delivers dynamic pages in HTML format

e aclient (known as a browser) that renders HTML pages
Both server and client implement the HTTP interface.
Problem 2

Every interaction with the user requires communication between the
client and the server.

Extend the architecture so that simple user interactions do not need
messages to be passed between the client and the server.

Extending the Web with Executable Code that can be Downloaded

html =
|_-& %l Java gg Dat
\\‘ I \ Script | - —> atd
Server

Web browser

Executable code in a scripting language such as JavaScript can be
downloaded from the server

Advantage:
Scripts can interact with user and process information locally

Disadvantage:
All interactions are constrained by web protocols

Web Browser with JavaScript

Web Browser

]
HTMLRender
e
JavaScript i
1 v

HTTP

In this example, each
package represents a
related set of classes.

System Design Study 1 (continued)
Extending the Architecture of the Web

Using a three tier architecture with downloadable scripts, the web
has:

e aserver that delivers dynamic pages in HTML format

e aclient (known as a browser) that renders HTML pages and
executes scripts

Both server and client implement the HTTP interface.
Problem 3

Every interaction between the client and a server uses the HTTP
protocol.

Extend the architecture so that other protocols can be used.

Web User Interface: Applet

& Applets , Hw
5 e gs
=
Web browser
Web server

e Any executable code can run on client
e (Client can connect to any server

e Functions are constrained by capabilities of browser

Applet Interfaces

XYZInterface

(L]

1
1

WebBrowser

(L]
LM

XYZServer

WebServer

System Design Study 1 (continued)
Extending the Architecture of the Web

These examples (three tier architecture, downloadable scripts, and
applets) are just some of the ways in which the basic architecture
has been extended. Here are some more:

Protocols:
HTTP, FTP, etc., proxies

Data types:

helper applications, plug-ins, etc.
Executable code:

Server-side code, e.g., servlets, CGl

Style sheets:
CSS, etc.

System Design Study 2
Data Intensive Systems

Examples

Electricity utility customer billing (e.g., NYSEG)
Telephone call recording and billing (e.g., Verizon)
Car rental reservations (e.g., Hertz)

Stock market brokerage (e.g., Charles Schwab)
E-commerce (e.g., Amazon.com)

University grade registration (e.g., Cornell)

Data Intensive Systems

Example: Electricity Utility Billing

Requirements analysis identifies several transaction types:
e Create account / close account

e Meter reading

e Payment received

e Other credits / debits

e Check cleared / check bounced

e Account query

e Correction of error

e etc, etc, etc,,

System Design Study 2 (continued)
First Attempt

o & O

— L '

Transaction Data input Master file

Each transaction is handled as it arrives.

Bill

Criticisms of First Attempt

Where is this first attempt weak?

All activities are triggered by a transaction

A bill is sent out for each transaction, even if there are several
per day

Bills are not sent out on a monthly cycle
Awkward to answer customer queries
No process for error checking and correction

Inefficient in staff time

System Design Study 2 (continued)
Batch Processing: Edit and Validation

|
l errors
Batches of ‘E& Edit & Batches of
incoming > I\ validation "validated
transactions transactions

Data input
read only

Master file

Deployment Diagram: Validation

————— -%Datalnput -———E EditCheck —————--———-————>Q

ValidData

V

Eii MasterFile
Check

System Design Study 2 (continued)
Batch Processing: Master File Update

Reports

A

Validated __ | Sort by S e I
transactions account - >
in batches Batches of Master file
input data update Bills
-

Checkpoints and
audit trail

System Design Study 2 (continued)
Benefits of Batch Processing with Master File Update

e All transactions for an account are processed together at
appropriate intervals, e.g., monthly

e Backup and recovery have fixed checkpoints
e Better management control of operations
e Efficient use of staff and hardware

e Error detection and correction is simplified

Architectural Style: Master File Update (basic)

] 1]]
Data input and Master file Mailing and
L % Sort t-----> >
validation update reports
Advantages:

Efficient way to process batches of transactions.
Disadvantages:

Information in master file is not updated immediately. No good way to
answer customer inquiries.

Example: billing system for electric utility

System Design Study 2 (continued)
Online Inquiry

A customer calls the utility and speaks to a customer service

representative.
I’L/ D Customer Service
| |\, / \ Representative
!
| read only
New l
transaction -

Master file

Customer service department can read the master file, make annotations,
and create transactions, but cannot change the master file.

Online Inquiry: Use Case

AnswerCustomer

<uses>>

o

/\

CustomerRep NewTransaction

The representative can read the master file, but not make changes
to it.

If the representative wishes to change information in the master

file, a new transaction is created as input to the master file update
system.

Architectural Style: Master File Update (full)

] 1]]
Data i Master file Mailing and
|'npu.t and)E Sort > o g

validation update reports
A :
’ 1 ¥
________________________ Customer

services
Advantage:

Efficient way to answer customer inquiries.
Disadvantage:
Information in master file is not updated immediately.

Example: billing system for electric utility

System Design Study 2 (continued)
Real Time Transactions

Example: A small bank
e Transactions are received by customer in person, over the
Internet, by mail or by telephone.

e Some transactions must be processed immediately (e.g.,
cash withdrawal), others are suitable for overnight
processing (e.g., check clearing).

e Complex customer inquiries.

e Highly competitive market.

Real-time Transactions & Batch Processing

Real-time Batch data

transactions Input

& O
!éﬁ/u\ 1L \

This is a combination of the
Repository style and the Master
File Update style

Customer &
account database

System Design Study 2 (continued)
Practical Consideration

e (Can real-time service during scheduled hours be combined with
batch processing overnight?

e How will the system guarantee database consistency after any type
of failure?
reload from checkpoint + log

detailed audit trail
e How will transaction errors be avoided and identified?
e How will transaction errors be corrected?
e How will staff dishonesty be controlled?

These practical considerations may be major factors in the choice of
architecture.

System Design Study 2 (continued)
Data Intensive Systems

Many data intensive systems, e.g., those used by banks, universities,
etc. are legacy systems. They may have been developed forty years
ago as batch processing master file update systems and been
continually modified.

e Recent modifications might include customer interfaces for the
web, smartphones, etc.

e The systems will have migrated from computer to computer, across
operating systems, to different database systems, etc.

e The organizations may have changed through mergers, etc.

Maintaining a coherent system architecture for such legacy systems is
an enormous challenge, yet the complexity of building new systems is
so great that it is rarely attempted.

System Design: Non-Functional Requirements

In some types of system architecture, non-functional requirements
of the system may dictate the software design and development
process.

Continuous Operation

Many systems must operate continuously

e Software update while operating

e Hardware monitoring and repair

e Alternative power supplies, networks, etc.

e Remote operation

These functions must be designed into the fundamental architecture.

Testing

Example: Testing multi-threaded and parallel systems
Several similar threads operating concurrently:

e Re-entrant code -- separation of pure code from data for each
thread
e May be real-time (e.g., telephone switch) or non-time critical

The difficult of testing real-time, multi-threaded systems may
determine the entire software architecture.

e Division into components, each with its own acceptance test.

Time-Critical Systems

Developers of advanced time-critical software spend much of
their effort developing the software environment:

e Monitoring and testing -- debuggers

e C(Crash restart -- component and system-wide

e Downloading and updating

e Hardware troubleshooting and reconfiguration

etc., etc., etc.

