
Service Framework Guide

Developer Release 3.01
June 2000

COPYRIGHT NOTICE

© 2000 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this document is provided "AS IS" WITH NO EXPRESS
OR IMPLIED WARRANTY: permission to copy, modify, and distribute this document for
any purpose is hereby granted without fee, provided that the above copyright notice and
this notice appear in all copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution of this document without
specific, written prior permission. Hewlett-Packard Company makes no representations
about the suitability of this document for any purpose.

Contents
Chapter 1 Service Bus Java Programmer’s Guide 1

Introduction . 1

Programming Model . 3

Negotiation Library . 18

Chapter 2 An End to End Example.41

About The Example Application . 41

Installing & Running The Example Application 46
Developer Release 3.01 June 2000 i

i i Developer Release 3.01 June 2000

Chapter 1 Service Bus Java
Programmer’s Guide
This chapter describes the E-speak Service Bus package for Java programmers. The
e-speak service bus package (net.espeak.servicebus) is a Java implementa-
tion of the E-speak Service Framework Specification (SFS).

This document contains the following sections:

• Section 1 : Introduction: Describes the E-speak Service Framework Specifica-
tion (SFS).

• Section 2 : Programming Model: Describes the interfaces provided by the
net.espeak.servicebus package and how it allows development of SFS-compli-
ant services in Java.

• Section 3: Matchmaker Service: Describes how a service-provider can advertise
its service-offerings at a matchmaker and how service-consumers can look up
service-offerings.

• Section 4: Negotiation Service: Describes how e-services can negotiate with
each other.

• Section 5: End-to-End Example: Describes an example in which a paper buyer
discovers a paper suplier and completes a business transaction over the Service
Bus.

Introduction A

The Internet has evolved from a platform for serving documents to a platform on
which services, such as book-purchase or bill-payment are offered. Today, these
services are largely implemented as standalone “backend” components and do not
leverage other services offered over the Internet. Our vision is that the Internet will
Developer Release 3.01, June 2000 1

Introduction Service Bus Java Programmer’s Guide
develop into an “e-service” platform where software services can directly interact
with each other to provide richer functionality than each service can provide by
itself. For example, businesses can achieve tighter supply chain integration by
allowing their ERP systems to speak to each other.

The E-speak Service Framework A

Unlike traditional client-server systems, e-service consumers are not directly under
the service-provider’s administrative control. Hence, service-providers cannot
assume that service-consumers will use a common programming language, runtime
platform, or that they can be trusted to behave well. In fact, the service-provider
may not even know its consumer’s identity until it is used. The E-speak framework
allows services written in different languages and running on different platforms to
interact with each other. It does this by using a document-exchange model of inter-
action where each message is an XML document. E-services are programmed to
receive XML documents and to respond with XML documents and can be written
without any dependence on a specific communication protocol. The communica-
tion protocol is configured at deployment-time; hence it is not a development-time
decision.

The E-speak service framework uses the following terminology :

• Service : A service is an end-point that is connected to the service-bus and indi-
cates a single entity from a trust perspective. Each service has a unqiue identifier
(URI) that distinguishes it from other services and is addresible at a (proto-
col-dependent) specific URL.

• Conversation: Each service can support multiple conversations. A conversation
is a logical group of document exchanges. These interactions may have been
grouped together because they form a logical chain of interactions or because
they all need the same trust assumptions. Conversations are analogous to inter-
faces in the object-oriented paradigm.

• Interaction: Each interaction represents a document that is sent across from one
service to another and any responses that may be sent back. An interaction is
similar to the notion of a method call in traditional object-oriented languages.

The E-speak service framework consists of two sets of specifications:
2 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Programming Model
• Basic specifications : These are the basic set of specifications that are required
for services to interact with each other.

• The E-speak Message Schema specifies the low-level tags used to encode
routing and contextual information in documents that are exchanged
between services.

• The E-speak Service Definition Schema specifies how the interface of a
service can be represented in terms of the types of conversations it can
participate in.

• Conversation Specifications: These are a set of standard conversations that are
widely-used and hence provided along with the base set of specifications.

• Matchmaking Conversation : Service-providers enter into this conversation
with a Matchmaker service to advertise their service-offerings, while
service-consumers enter into this conversation with a Matchmaker to lookup
service-offerings that match their interest.

• Negotiation Conversation : This conversation is supported by any two
services that want to negotiate the values of any tag in an XML document.
The negotiation conversation specifies the structure of each counter-offer
document.

• Management Conversation : This conversation takes place between a
management station and the services that it manages.

Please refer to the E-speak Service Framework Specification document
(http://www.e-speak.net) for the details on the above.

Programming Model A

The primary goal of the E-speak service framework specification is to allow
dynamic interaction and management of e-services over the Internet. The specifica-
tion itself only defines the XML schemas for E-speak Messages and for a set of
commonly used Conversations. The actual application logic for the services that
carry out these Conversations may be written in any programming language. It is to
be expected that for each programming language, there will be libraries that help
Developer Release 3.01, June 2000 3

Programming Model Service Bus Java Programmer’s Guide
the developer create and communicate XML documents. The
net.espeak.servicebus package, henceforth referred to as the servicebus
package, is such a class library for Java. This section describes the functionality
provided by the ServiceBus package and illustrates its various aspects with a
running example.

The ServiceBus package A

The servicebus package is a set of Java classes that eases development and
deployment of E-speak services. The functionality provided by the library can be
categorized as follows :

• Transport : of XML documents to designated services using a variety of trans-
port protocols.

• Dispatching : of incoming XML documents to the appropriate application logic.

• State Management : of conversations so that documents are interpreted in the
right context.

• XML utilities : for converting Java objects into XML documents and vice-versa.

Besides the basic infrastracture, the service-bus also provides a set of conversation
libraries that implement commonly-used conversations. These are :

• Introspection Library : to query other services about what conversations they
support.

• Negotiation Library : that allows services to negotiate the fields of any arbi-
trary XML document.

• Matchmaking Library : to talk to a matchmaker that matches service-provid-
ers with consumers.

• Management Library : that allows a management station to manage a service
and monitor its performance. (Note: The Management library is not included

in the current release.)
4 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Programming Model
Basic Concepts A

ServiceBus

The ServiceBus is a singleton object that represents a connection to the underly-
ing communication infrastructure. The ServiceBus has a set of transport adapters
through which it sends and receives Messages. Services connect to the Service-
Bus by binding a callback MessageHandler. The ServiceBus is instantiated by
invoking its init method.

Message

Messages are documents that are exchanged between services. Each Message
has two parts - its Content and its Context. The Content of each Message arriv-
ing at the ServiceBus is a Mime-encoded XML document.

Context

The Context of a message contains all information related to delivery and dispatch
of Messages. To initate a conversation, a client must create a Context in which the
first Message will be sent. Message recepients can look at the Context to deter-
mine the sender’s identity. The Context class also provides functionality needed
to send and receive Messages.

MessageHandler

MessageHandlers are callback objects that are bound to the ServiceBus and
are called when an incoming message arrives for a specific service. A Message-
Handler must implement a handleMessage method which is called by the Servi-
ceBus whenever a message arrives. A MessageHandler may implement the actual
application logic or may in turn dispatch the Message ot other higher-level
MessageHandlers.

Container

Containers are MessageHandlers that receive Messages from lower layers and
dispatch them to higher-level MessageHandlers. The ServiceBus is one exam-
ple of a Container that dispatches Messages based on the name of the Service to
which it is addressed. Besides dispatching, Containers also contain a Context-
Factory that can be used to create Contexts. This feature is used by clients that
want to initiate a conversation.
Developer Release 3.01, June 2000 5

Programming Model Service Bus Java Programmer’s Guide
ServiceContainer

A ServiceContainer is another type of Container - it receives all Messages
destined to a particular service, and dispatches them to different Handlers based on
the Conversation type.

A Simple Example: Echo A

This section uses a simple Echo program as its running example. The example
consists of two parts - the EchoService that echoes back all incoming messages and
an EchoClient that sends messages to it. In the first version of this example,
described below, we assume that the EchoClient knows the URL of the EchoSer-
vice.

EchoService Implementation
import net.espeak.servicebus.*;

/**

* Echo Service simply echoes back the incoming documents

*/

public class EchoService implements MessageHandler {

/**

* Simple message handler displays message and echoes it back

*/

public void handleMessage(Message msg) {

try {

System.out.println(" Received Message :" + msg.getBodyAsString());

// Echo back message to the client

 Context context = msg.getContext();

context.send(msg);

} catch (Exception e) { System.out.println(e); }

}

/** Usage : java EchoService */

public static void main(String[] argv) throws Exception {

ServiceBus serviceBus = ServiceBus.init();

// Bind a EchoService object as the service : “EchoService”.
6 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Programming Model
Binding b = serviceBus.bind("EchoService", new EchoService())

// Print EchoService URL. Will be used by EchoClient.

System.out.println(“EchoService URL is : “ + b.getLocalAddress());

}

}

EchoClient Implementation
import net.espeak.servicebus.*;

import java.net.URL;

import java.io.IOException;

/** EchoClient pings a “Hello World” Message from EchoService */

public class EchoClient {

/** Usage : java EchoClient <URL of EchoService> */

public static void main(String[] argv) throws Exception {

if (argv < 1) {

System.out.println(“Usage: java EchoClient <URL>”);

System.exit(1);

}

URL echoServiceURL = new URL(argv[0]);

ServiceBus serviceBus = ServiceBus.init();

// Bind the “EchoClient” service with a ServiceContainer as the

// MessageHandler. The ServiceContainer can create Contexts.

ServiceContainer sc = new ServiceContainer();

serviceBus.bind(“EchoClient”, sc);

// Open a communication context with EchoService

Context context = sc.createContext(echoServiceURL);

// Construct Message

MessageImpl mesg = new MessageImpl();

mesg.setBody("<hello>Hello World</hello>");

//Send the Message and block until a Message arrives.

try {

 context.send(mesg);

 mesg = context.receive(); // blocking receive

} catch (IOException e) {

System.out.println("Transport Error"); throw e;
Developer Release 3.01, June 2000 7

Programming Model Service Bus Java Programmer’s Guide
}

// Print out the Echoed Message.

System.out.println("Echoed Message :" + mesg.getBodyAsString());

}

}

Conversations A

The EchoService example shown above assumes EchoService responds in exactly
the same way for every incoming document. In practice, a service may support
mulitple types of conversations and do something different with incoming docu-
ments in each conversation. For example, EchoService may support an “EchoCon-
versation” as well as a “ManagementConversation” simultaneously. In such cases, it
is often easier to associate a different MessageHandler for each Conversation type.

The following classes in the Servicebus package are used to support Conversations :

ServiceContainer

ServiceContainers receive all Messages directed to a particular service and
dispatch them to the appropriate MessageHandlers based on the Conversation
name contained in the Message. This ensures that each MessageHandler will only
be sent documents that belong to the Conversation type that it supports.

The ServiceContainer also allows binding a MessageHandler to a specific
MessageId. This is used when the MessageHandler for a particular Conversation
desires to delegate each Conversation instance to a different MessageHandler.

ConversationContainer

A ConversationContainer is a special type of MessageHandler that can be
bound to a ServiceContainer. It receives all documents that belong to a specific
Conversation and dispatches them to different Document handlers. Like other
Containers, a ConversationContainer can be used to initiate Conversations by
creating Contexts. ConversationContainers create ConversationContexts
which are specialized to carry Messages that belong to a specific Conversation type.
8 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Programming Model
Echo Example Revisited A

The following code snippets show how the EchoService and EchoClient programs
can be modified to support an EchoConversation.

New EchoService Implementation
The main method of the previous EchoService example must be changed to support
an EchoConversation. A ServiceContainer bound to the ServiceBus receives all
Messages that are sent to “EchoService”. A ConversationContainer bound to the
ServiceContainer receives all Messages that belong to the “EchoConversation”. The
handleMessage method remains the same.

public static void main(String[] argv) throws Exception {

 ServiceBus sbus = ServiceBus.init();

// Bind a service container to receive messages for “EchoService”

ServiceContainer sc = new ServiceContainer();

sbus.bind("EchoService", serviceContainer);

// Bind a conversation container to get messages for “EchoConversation”

ConversationContainer cc = new ConversationContainer();

sc.bind("EchoConversation", cc);

// Set message handler to receive messages for EchoConversation

cc.setDefaultMessageHandler(new EchoService());

}

New EchoClient Implementation
The EchoClient implementation is also changed. It now uses a ConversationCon-
tainer to create a ConversationContext. All Messages sent out in this Context will
be tagged as belonging to an “EchoConversation”. The following code snippet
shows what the new implementation looks like:

// Create a serviceContainer and bind it to the ServiceBus, as before.

servicebus.bind("EchoClient", sc);

// Create container to receive conversation level messages

// Bind it to the serviceContainer

ConversationContainer cc = new ConversationContainer();

sc.bind("EchoConversation", conversationcontainer);
Developer Release 3.01, June 2000 9

Programming Model Service Bus Java Programmer’s Guide
// Create context to start conversation with EchoService

Context context = cc.createContext(echoServiceURL);

// Construct a Message and send it, as before..

MessageImpl mesg = new MessageImpl();

mesg.setBody("<hello>Hello World</hello>");

context.send(mesg);

Conversation Executors : State Management A

The executor layer allows services to associate a state-machine with their conver-
sations and associate a specific document handler for each state. There are two
XML files that need to be specified in order to conduct a conversation using an
Executor. These are:

1. A state-machine file that defines all the possible states in a given conversation,
and

2. A configuration file that specifies the handlers for each incoming documents in
every state.

Essentially, conversation executors are sophisticated ConversationContainers.
They are bound to a ServiceContainer and receive all Messages that belong to a
specific Conversation. The conversation executor also keeps track of the current
state of the conversation. When a new message comes in, the conversation executor
updates its conversation state passes the incoming document to the handler that is
appropriate in the current state.The new state of a conversation depends its previ-
ous state, the incoming Message and the ConversationContext of the incoming
Message. If the incoming document is invalid in its current state, the Executor sends
back an Error document to the sender.

When a new instance of a conversation executor is created, it is either the initiator
of a conversation or it is responsible for responding to a particular conversation.
Clients can initiate a conversation by invoking the Conversation Executor’s
execute operation.

The following classes are relevant :

ConversationHome
10 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Programming Model
This class provides the mechanisms for creating executors. It accepts properties
that contain the state diagram, the configuration descriptor, the name of the service
and the name of the conversation. It then returns a ConversationExecutor
object that is capable of executing the specified conversation. Like ServiceBus, the
ConversationHome is a singleton object that is responsible for creating all
ConversationExecutors.

ConversationExecutor

ConversationExecutors are created by the ConversationHome to handle a specific
Conversation instance and are configured with a state-machine and with a set of
document-handlers. The Conversation Executor automatically keeps track of the
current state of an ongoing conversation and dispatches Messages to the appropri-
ate Document Handler. To initiate a Conversation, programmers must call the
execute method on a Conversation Executor.

The Introspection Library and Negotiation Library described next, illustrate the use
of ConversationExecutors.

Introspection Library A

Every E-speak service should support the Introspection conversation defined in the
E-speak Service Framework specification. The introspection conversation is very
simple - it specified that any service can be queried for its Properties by sending it
a getServiceProperty document. Further details about the Service can be
obtained by sending it a getProcessDefinition document.

The finite state machine for the introspection conversation has only one state that
accepts both the getServiceProperty request as well as the getProcessDef-
inition request. When the service being introspection receives the getServi-
ceProperty request, it responds with the a ServiceProperty document. When
it receives a getProcessDefinition document, it responds with a Process-
Definition document.

The following handler, uses a Conversation Executor to conduct the introspection
conversation.

import net.espeak.servicebus.executor.*;

import java.util.Properties;
Developer Release 3.01, June 2000 11

Programming Model Service Bus Java Programmer’s Guide
/** Illustrates a simple Server that can be introspected */

public class IntrospectionServer {

 public static void main(String[] args) throws Exception {

ConversationHome ch = ConversationHome.getConversationHome();

Properties p = new Properties();

p.put("FSM_FILE_NAME", "ProcessDefinition.xml");

p.put("CONFIG_FILE_NAME", "ProcessConfig.xml");

p.put("SERVICE_NAME", "introspection");

p.put("CONV_TYPE", "introspection");

ConversationExecutor ce = (ConversationExecutor) ch.bind(p);

}

}

In the example above, the server essentially waits for introspection requests from
the clients of this service. The finite state machine for the introspection conversa-
tion has only one state that accepts both the getServiceProperty request as well as
the getProcessDefinition request. When the introspections server receives the
GetServiceProperty request, it responds with the a ServiceProperty document.
When the introspection server receives a GetProcessDefinition document, it
responds with a ProcessDefinition document. This is formalized in a an XML file
that looks as follows:

<ProcessDefinition uri="" type="introspection">

<!-- document type declarations -->

 <DocumentType name="GetServiceProperty" id="GetServiceProperty"/>

 <DocumentType name="ServiceProperty" id="ServicePropertySheet"/>

 <DocumentType name="GetProcessDefinition"

id="GetProcessDefinition"/>

 <DocumentType name="ProcessDefinition" id="ProcessDefinition"/>

 <!-- Interaction declarations -->

 <Interaction id="Interaction-GetServiceProperty"

xsi:type="RequestResponse">
12 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Programming Model
 <Input> <DocumentType idref="GetServiceProperty"/> </Input>

 <Output> <DocumentType idref="ServiceProperty"/> </Output>

 </Interaction>

 <Interaction id="Interaction-GetProcessDefinition"

xsi:type="RequestResponse">

 <Input> <DocumentType idref="GetProcessDefinition"/> </Input>

 <Output> <DocumentType idref="ProcessDefinition"/> </Output>

 </Interaction>

 <StateMachine type="XMI">

 <!-- State machine definition in XMI -->

 <XMI version="1.1" >

 <XMI.header>

 <XMI.metamodel xmi.name="UML" href="some url"/>

 </XMI.header>

 <XMI.content>

 <UML:StateMachine>

 <UML:StateMachine.top>

 <UML:CompositeState isConcurrent="false">

 <UML:CompositeState.substate>

 <UML:PseudoState name="Start" kind="initial"

xmi.id="STATE-START">

 <UML:StateVertex.outgoing>

 <UML:Transition xmi.idref="TRANSITION-PROCDEF"/>

 <UML:Transition xmi.idref="TRANSITION-SERVPROP"/>

 </UML:StateVertex.outgoing>

 <UML:StateVertex.incoming>

 <UML:Transition xmi.idref="TRANSITION-PROCDEF"/>

 <UML:Transition xmi.idref="TRANSITION-SERVPROP"/>

 </UML:StateVertex.incoming>

 </UML:PseudoState>

 </UML:CompositeState.substate>

 </UML:CompositeState>

 </UML:StateMachine.top>

 <UML:StateMachine.transitions>

 <UML:transition name="Search" xmi.id="TRANSITION-PROCDEF">
Developer Release 3.01, June 2000 13

Programming Model Service Bus Java Programmer’s Guide
 <XMI.extension xmi.extender="e-speak">

 <ES:Interaction

idref="Interaction-GetProcessDefinition"/>

 </XMI.extension>

 </UML:transition>

 <UML:transition name="Search"

xmi.id="TRANSITION-SERVPROP">

 <XMI.extension xmi.extender="e-speak">

 <ES:Interaction

idref="Interaction-GetServiceProperty"/>

 </XMI.extension>

 </UML:transition>

 </UML:StateMachine.transitions>

 </UML:StateMachine>

 </XMI.content>

 </XMI>

 </StateMachine>

</ProcessDefinition>

In addition to the definition of the finite state machine, the introspection server also
has to set up the config file that determines the handler for each kind of document
in any state. For the introspection request, the config file essentially states that a
new instance of the introspection request handler can be spawned off to handle the
introspection request. The XML for the config looks as follows:

<Config uri="http://www.books.com/config">

 <State name="Start">

 <config-list>

 <config>

 <Interaction id="Interaction-GetServiceProperty"

xsi:type="RequestResponse">

 <Input> <DocumentType idref="GetServiceProperty"/> </Input>

 </Interaction>

 <Handler-List>

 <Handler>
14 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Programming Model
 <Detail language="java"

classname="net.espeak.essf.application.IntrospectionRequestHandler

" newinstance="yes" lifetime="call"/>

 </Handler>

 </Handler-List>

 </config>

 <config>

 <Interaction id="Interaction-GetProcessDefinition"

xsi:type="RequestResponse">

 <Input> <DocumentType idref="GetProcessDefinition"/> </Input>

 </Interaction>

 <Handler-List>

 <Handler>

 <Detail language="java"

classname="net.espeak.essf.application.IntrospectionRequestHandler

" newinstance="yes" lifetime="fsm"/>

 </Handler>

 </Handler-List>

 </config>

 </config-list>

 </State>

</Config>

The creator of the introspection service also implements the introspection request
handler. The servicebus comes with a simple default implementation of the intro-
spection service handler. This service handler responds to two XML messages, the
GetServiceProperty message and the GetProcessDefinition message. It then replies
with the ServiceProprerty document or the ProcessDefinition document. In the
default implementation, the service property and process definition documents are
expected to be in the directory where the service is running. In fact, the actual
implementation of the introspection request handler looks as follows:

package net.espeak.servicebus.appl.introspection;

import net.espeak.util.xml.*;

import net.espeak.servicebus.*;

import net.espeak.servicebus.executor.*;

import java.io.FileInputStream;
Developer Release 3.01, June 2000 15

Programming Model Service Bus Java Programmer’s Guide
import org.w3c.dom.Document;

public class IntrospectionRequestHandler implements MessageHandler {

 public IntrospectionRequestHandler()

 {

 }

 public void handleMessage(Message m) {

try {

 Context context = m.getContext();

 System.out.println("Received introspection request");

 String fileName = null;

 Document d = m.getBodyAsDocument();

 String docType = d.getDocumentElement().getTagName();

 if(docType.equals(ConversationConstants.serviceProp)) {

System.out.println("request for service property");

fileName = "ServiceProperty.xml";

 }

 else {

if(docType.equals(ConversationConstants.processDef)) {

 System.out.println("request for process definition");

 fileName = "ProcessDefinition.xml";

}

 }

 AccessXml axml = new AccessXml(fileName);

 Document doc = axml.getDocument();

 Message repl = (Message) new MessageImpl();

 repl.setBody(doc);

 repl.setContext(context);

 context.send(repl);

 } catch (Exception e) { }

 }

}
16 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Programming Model
A client can invoke the introspection service using either the simple servicebus
level interfaces. For example:

import java.io.FileInputStream;

import java.net.URL;

import net.espeak.servicebus.*;

import net.espeak.util.xml.*;

import org.w3c.dom.*;

public class IntrospectionClient implements MessageHandler {

 private Context context = null;

private IntrospectionClient(URL url) throws Exception {

ServiceBus servicebus = ServiceBus.getServiceBus();

ServiceContainer sc = new ServiceContainer();

servicebus.bind("introspection", sc);

ConversationContainer cc = new

ConversationContainer("introspection");

sc.bind("introspection", cc);

this.context = cc.getContextFactory().createContext(url, this);

 }

 public void send(String s) {

Message m = (Message) new MessageImpl();

m.setBody(s);

m.setContext(this.context);

 try {

 this.context.send(m);

 } catch (Exception e) { e.printStackTrace(); }

 System.out.println("IntrospectionClient does a send");

 }

 public void handleMessage(Message message) {

 this.context = message.getContext();

 AccessXml axml = new AccessXml(message.getBodyAsDocument());

 String s = axml.getText();

 System.out.println("Client receives message " + s);
Developer Release 3.01, June 2000 17

Negotiation Library Service Bus Java Programmer’s Guide
 }

 public static void main(String[] args) throws Exception {

if(args.length < 1) {

 System.out.println("provide name of get property file");

 return;

}

String port = "9000";

URL toAddress = new URL("http://127.0.0.1:" + port

 + "/servlet/ServletAdapter?service=introspection");

System.out.println("Connecting " + toAddress);

 IntrospectionClient client = new

IntrospectionClient(toAddress);

AccessXml axml = new AccessXml(args[0]);

Document doc = axml.getDocument();

Element elem = doc.getDocumentElement();

String text = axml.getText(elem, true);

System.out.println("Sending: ");

System.out.println(text);

 client.send(text);

 }

}

Negotiation Library A

The service framework provides a means for services to attach any negotiators for
the documents that the service may want to negotiate. Each negotiation conversa-
tion conducted by the service is conducted by a negotiator that keeps essentially
acts like a conversation executor for the negotiation conversation. However, the
negotiator can be set up so that it can it can negotiate the contents of any type of
XML document. At this point in time, one can associate with each negotiator, a
counter offer generator that is capable of generating counter offers. For example,
suppose a book selling service wants to set up a negotiator for negotiating the
prices of books. The counter offer generator may look as follows:
18 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
import org.w3c.dom.*;

import net.espeak.util.xml.*;

import net.espeak.servicebus.appl.negotiation.*;

public class Sellerco implements CounterOfferIntf {

 public Sellerco() {

this.numRounds = 0;

this.initPrice = 100.00;

 }

 public Document generateCounterOffer(Document offer) {

if(this.acked) {

 System.out.println("Negotiation Over. Final doc is:");

 System.out.println(new AccessXml(offer).getText());

 System.exit(0);

}

try {

this.numRounds++;

String docType = offer.getDocumentElement().getTagName();

 if(docType.equals("NegotiationOffer")) {

 if(numRounds > 11) {

// if negotiation goes on for too many rounds, we quit

AccessXml axml = new AccessXml("nDisagree.xml");

Document d = axml.getDocument();

return d;

 }

 AccessXml bxml = new AccessXml(offer);

 String bxmlStr = bxml.getText();

 String priceStr =

"NegotiationOffer/NegotiationBody/books/price";

 String numberStr =

"NegotiationOffer/NegotiationBody/books/number";

 Node priceNode = bxml.getNode(priceStr, false);

 Node numberNode = bxml.getNode(numberStr, false);

 String priceVal = null;

 if(priceNode instanceof Element)

priceVal = ((Element)priceNode).getAttribute("value");

 String numberVal = null;
Developer Release 3.01, June 2000 19

Negotiation Library Service Bus Java Programmer’s Guide
 if(numberNode instanceof Element)

numberVal = ((Element)numberNode).getAttribute("value");

 if(Double.valueOf(priceVal).doubleValue() > this.initPrice) {

AccessXml cxml = new AccessXml("nAgree.xml");

Document d = cxml.getDocument();

return d;

 }

 else {

((Element)priceNode).setAttribute("value", "100.00");

return offer;

 }

}

if(docType.equals("NegotiationAgreement")) {

 System.out.println("Negotiation successful");

 System.exit(0);

 // if other party agrees, we ack

}

if(docType.equals("NegotiationDisagreement")) {

 System.out.println("Negotiation successful");

 System.exit(0);

 // if other party disagrees, we ack.

}

}

catch (java.io.IOException ioe) {

 ioe.printStackTrace();

}

return null;

 }

 private int numRounds;

private double initPrice;

 private boolean acked = false;

}

Essentially, the counter offer generating service attempts to get at least 100 units for
the book. It drops the negotiating when the number of rounds has exceeded 11.
20 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
The server for the negotiation looks as follows:

import net.espeak.servicebus.appl.negotiation.*;

import java.util.Hashtable;

import java.util.Properties;

public class Seller {

 public static void main(String [] args) {

Properties sysProps = System.getProperties();

sysProps.put("net.espeak.servicebus.httpservlet.portnum",

 "9000");

Hashtable h = new Hashtable();

h.put("books", "Sellerco");

NegotiatorFactory.setCounterTable(h);

Negotiator n = new Negotiator();

n.setCounterOfferGenerator("books", (CounterOfferIntf) new

Sellerco());

 }

}

Now, a client can invoke the negotiation service and negotiate the contents of a
books document. It can do this by either programming to the negotiation interface,
or it can program directly to the service bus interface. For instance, the client below
interacts with the negotiation server described above, sends offers and responds to
counter offers.

import java.io.FileInputStream;

import java.io.IOException;

import java.net.URL;

import net.espeak.servicebus.*;

import net.espeak.util.xml.*;

import org.w3c.dom.*;

public class NegotiationClient implements MessageHandler {

 private Context context = null;
Developer Release 3.01, June 2000 21

Negotiation Library Service Bus Java Programmer’s Guide
 private NegotiationClient(URL url) throws Exception {

ServiceBus servicebus = ServiceBus.getServiceBus();

ServiceContainer sc = new ServiceContainer();

servicebus.bind("negotiation", sc);

ConversationContainer cc = new

ConversationContainer("negotiation");

sc.bind("negotiation", cc);

this.context = cc.getContextFactory().createContext(url, this);

this.numRounds = 0;

this.initPrice = 50.00;

this.maxPrice = 110.00;

this.increment = 35.00;

 }

 public void send(String s) {

Message m = (Message) new MessageImpl();

m.setBody(s);

m.setContext(this.context);

 try {

 this.context.send(m);

 } catch (Exception e) { e.printStackTrace(); }

 System.out.println("Negotiation does a send");

 }

 public void handleMessage(Message message) {

 this.context = message.getContext();

try {

 Document d =

generateCounterOffer(message.getBodyAsDocument());

Message m = (Message) new MessageImpl();

m.setContext(this.context);

m.setBody(d);

this.context.send(m);

}

catch(IOException ioe) {}
22 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
 }

 public Document generateCounterOffer(Document offer) throws

java.io.IOException {

this.numRounds++;

String docType = offer.getDocumentElement().getTagName();

if(docType.equals("NegotiationOffer")) {

 if(numRounds > 11) {

// if negotiation goes on for too many rounds, we quit

AccessXml axml = new AccessXml("nDisagree.xml");

Document d = axml.getDocument();

return d;

 }

 AccessXml bxml = new AccessXml(offer);

 String priceStr =

"NegotiationOffer/NegotiationBody/books/price";

 String numberStr =

"NegotiationOffer/NegotiationBody/books/number";

 Node priceNode = bxml.getNode(priceStr, false);

 Node numberNode = bxml.getNode(numberStr, false);

 String priceVal = null;

 if(priceNode instanceof Element)

priceVal = ((Element)priceNode).getAttribute("value");

 String numberVal = null;

 if(numberNode instanceof Element)

numberVal = ((Element)numberNode).getAttribute("value");

 if(Double.valueOf(priceVal).doubleValue() > this.maxPrice) {

AccessXml cxml = new AccessXml("nDisagree.xml");

Document d = cxml.getDocument();

return d;

 }

 else {

double nextPrice = this.initPrice +

(numRounds*this.increment);

Double nextP = new Double(nextPrice);

((Element)priceNode).setAttribute("value", nextP.toString());

return offer;
Developer Release 3.01, June 2000 23

Negotiation Library Service Bus Java Programmer’s Guide
 }

}

if(docType.equals("NegotiationAgreement")) {

 System.out.println("Negotiation successful");

 System.exit(0);

 // if other party agrees, we ack

}

if(docType.equals("NegotiationDisagreement")) {

 System.out.println("Negotiation unsuccessful");

 System.exit(0);

 // if other party disagrees, we ack.

}

return null;

 }

public static void main(String[] args) throws Exception {

if(args.length < 1) {

 System.out.println("provide name of get property file");

 return;

}

String port = "9000";

URL toAddress = new URL("http://127.0.0.1:" + port

 + "/servlet/ServletAdapter?service=negotiation");

System.out.println("Connecting " + toAddress);

 NegotiationClient client = new NegotiationClient(toAddress);

AccessXml axml = new AccessXml(args[0]);

Document doc = axml.getDocument();

Element elem = doc.getDocumentElement();

String text = axml.getText(elem, true);

System.out.println("Sending: ");

System.out.println(text);

 client.send(text);

 }

 private int numRounds;

private double initPrice;

private double maxPrice;

private double increment;
24 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
}

The MatchMaker service is a registry where service-providers can describe their
service offerings and service-consumers can lookup them up. In particular the
Matchmaker service provides a means for:

• Creating vocabularies that specify the schema for offer descriptions.

• Accepting service offers in different vocabularies.

• Revoking existing offers.

• Looking up service-offers.

Creating Vocabularies

A vocabulary specifies a set of attributes that can be used to describe an offer. Each
attribute can be refered to by its attribute-name and can contain data of some
specific type. The MatchMakerService comes pre-loaded with a vocabulary called
“MatchMakerVocab”, that defines only attribute for offer descriptions: “Service-

Name” which is of type “String”. In order to register a service description in the
MatchMakerVocab, the service has to send an XML document with two elements,
the offer description element ,which would specify the offer in terms of the Match-
MakerVocab and the value for the attribute “ServiceName” , and the owner element
which would specify the contact information .The clients that do a lookup would try
to contact the service at the address specified in this element.

To create a new vocabulary, a client can send a <CreateVocabulary> document to
the Matchmaker. The schema of the <CreateVocabulary> document is specified in
Appendix X.0 . The following example shows the document sent to the Matchmaker
requesting it to create a car-dealer vocabulary. The vocabulary has attributes such
as manufacturer, model and price that refer to the appropriate attributes of the cars
that the car-dealer sells.

<create-vocabulary>

<resource

xmlns="http://www.e-speak.net/Schema/E-speak.register.xsd" >

 <resourceDes>
Developer Release 3.01, June 2000 25

Negotiation Library Service Bus Java Programmer’s Guide

<vocabulary>http://www.e-speak.net/Schema/E-speak.base.xsd</vocabu

lary>

 <attr name="Name">

 <value>car-dealer </value>

 </attr>

 <attr name="Type">

 <value>Vocabulary</value>

 </attr>

 </resourceDes>

 <attrGroup name="Simple Car dealer vocabulary"

xmlns="http://www.e-speak.net/Schema/E-speak.vocab.xsd">

 <attrDecl name="Manufacturer" required="true">

 <datatypeRef name="string"/>

 </attrDecl>

 <attrDecl name="Model" required="true">

 <datatypeRef name="string"/>

 </attrDecl>

 <attrDecl name="Price" required="false">

 <datatypeRef name="float">

 <default>0.0</default>

 <minInclusive>0.0</minInclusive>

 <maxInclusive>100000.0</maxInclusive>

 </datatypeRef>

 </attrDecl>

 </attrGroup>

</resource>

</create-vocabulary>

Suppose the above XML was in a file named createvocab.xml. The call in a java
program would look as follows:

MMDiscoveryIntf agent = null;

String matchMakerLocator =

new String("http://rgelpc063.rgv.hp.com:9099/servlet” +
26 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
 “/ServletAdapter?service=MatchMakerService");

agent = new MMDiscoveryIntf(matchMakerLocator);

Document reply = agent.createVocabulary("createvocab.xml");

If the request Document was created in memory by the client

application (an object of type org.w3c.dom.Document) the

createVocabulary call would be

Document createVocabRequestDocument ;//in-memory document created by

the client application

Document reply =

agent.createVocabulary(createVocabRequestDocument);

For the BankVocabulary example shown above, the response document would look
as follows :

<create-vocab-reply>

<status>

success

</status>

</create-vocab-reply>

Submitting Offers to a MatchMaker A

A Matchmaker service accepts offers with descriptions that correspond to any
vocabulary that has been registered with the matchmaker. An offer consists of
information that can be used by clients of the matchmaker to search for the offer.
Once an offer is discovered, the public portions of the offer can be returned to the
entity performing the lookup.

For example, if a car-dealer wants to make an offer in both these vocabularies (both
the vocabularies should be present in the MatchMaker repository) the
offer-description would look like this

<offer>

<offer-description>
Developer Release 3.01, June 2000 27

Negotiation Library Service Bus Java Programmer’s Guide
 <Car-Dealer>

 <Manufacturer>Honda</Manufacturer>

 <Model>Accord</Model>

 <Price>20000</Price>

 </Car-Dealer>

 <Automobile-Seller>

 <TypeOfAutomobile>CAR</TypeOfAutomobile>

 <MakeOfAutomobile>Honda</MakeOfAutomobile>

 <Model>Accord</Model>

 <Price>20000<Price>

</Automobile-Seller>

</offer-description>

<owner>

 <url>”http://www.myservice.com:8080”</url>

</owner>

</offer>

Each child element of offer-description refers to a vocabulary name and the
contents of the element have to conform to the schema laid out by the vocabulary.
In addition to the offer description, the offer must also have the owner element. This
element describes the contact point for an entity that is making the offer. Essen-
tially, it is a URL or ESURL that can be used to send messages to the offerer.

The java code for such an invocation looks as follows:

MMDiscoveryIntf agent = null;

String matchMakerLocator =

new String("http://rgelpc063.rgv.hp.com:9099/servlet” +

 “/ServletAdapter?service=MatchMakerService");

agent = new MMDiscoveryIntf(matchMakerLocator);

Document reply = agent.makeOffer("offer.xml");
28 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
Structure of lookup A

The matchmaker also supports the notion of lookups. Clients can submit queries
that are matched up against the offers that get submitted to it. The queries have to
be in the vocabulary that is registered with the matchmaker. For example, suppose
a client wants to look for an offer using car-dealer vocabulary for Honda Accord
cars that are priced less that 25000. The XML for the query looks as follows:

<lookup>

<esquery>

 <from src='url://testclient:88'/>

<where>

 <vocabulary name="car-dealer"/>

 <condition>ManufacturerName='Honda'and

Model='Accord' and Price < 25000.00</condition>

</where>

</esquery>

</lookup>

Currently, the result of lookup is a list of owners of the offers that match the query.
Therefore, the XML document that the client qill receive as a result of sending the
above lookup request looks as follows:

<lookup-reply>

<status>

success

</status>

<url>”http://www.myservice.com:8080”</url>

</lookup-reply>

The sequence of java calls that achieves the above document exchange looks as
follows:

String matchMakerLocator =

new String("http://rgelpc063.rgv.hp.com:9099/servlet” +

 “/ServletAdapter?service=MatchMakerService");

agent = new MMDiscoveryIntf(matchMakerLocator);

Document reply = agent.lookup("lookup.xml");
Developer Release 3.01, June 2000 29

Negotiation Library Service Bus Java Programmer’s Guide
Structure of revoke-offer A

The matchmaker accepts requests for revoke the offers created bythe services.
These requests must contain the “offer-id” that was returned as a reply while creat-
ing the offer. A typical revoke-offer request look like this :

<revoke-offer>

<offer-ID>

tcp://rgelpc063.rgv.hp.com:12346/proc/resource/NameFrame/75/home41

1bed8ee1502d37

</offer-ID>

</revoke-offer>

The above request results in this reply if the request was executed successfully

<revoke-offer-reply>

<offer>

<offer-ID>

tcp://rgelpc063.rgv.hp.com:12346/proc/resource/NameFrame/75/home/4

11bed8ee1502d37

</offer-ID>

<status>success</status>

</offer>

</revoke-offer-reply>

The sequence of java calls that achieves the above document exchange looks as
follows:

String matchMakerLocator =

new String("http://rgelpc063.rgv.hp.com:9099/servlet” +

 “/ServletAdapter?service=MatchMakerService");

agent = new MMDiscoveryIntf(matchMakerLocator);

//if the request document is stored in a file called revokeoffer.xml

Document reply = agent.lookup("revokeoffer.xml");

//or if the request is in memory

Document revokeOfferRequest;//constructed in the memory

Document reply = agent.lookup(revokeOfferRequest);
30 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
Class MMDiscoveryIntf
MMDiscoveryIntf is the interface class for the MatchMaker which is used by all
services to create offers or to do lookups for other services.

The services can use one of the following two constructors for instantiating it

- MMDiscoveryIntf() - the default constructor which uses the value of the system
property

net.espeak.servicebus.matchmaker.url as the location URL for the MatchMak-
erService . This property is loaded by default by the ServiceBus infrastucture when
ServiceBus.getServiceBus() is invoked.

- MMDiscoveryIntf (String matchMakerLocation) - uses the parameter passed
as the

MatchMakerService location.

Once this object has been instantiated , methods can be invoked upon it to talk to
the MatchMakerService ,as shown in the examples above.

Class SampleMatchMakerRequest

This is a reference class that provides sample methods for creating request docu-
ments and parsing the reply documents that are interexchanged with the Match-
MakerService. This class uses the MatchMakerVocab as the vocabulary for all
requests.

Echo example revisited A

Consider a simple example of a service that echoes the messages that are sent to it.
This example just illustrates how a service is supposed to be set up. This simple
service receives XML documents, converts them into objects and sends the object
back in a reply message. On its startup , this service first creates an offer for itself
with the MatchMakerSerivice . This offer is based upon the vocabulary called
MatchMakerVocab and the attribute ServiceName is set to EchoService. The
client (called EchoClient) does a lookup at the MatchMaker quering for offers under
MatchMakerVocab where the attribute ServiceName==EchoService .The contact
information (for the owner element) is obtained from the call Binding.getLocal-
Address().toString(), binding is returned when a serivce does a bind() with the
Developer Release 3.01, June 2000 31

Negotiation Library Service Bus Java Programmer’s Guide
ServiceBus.The MatchMakerService returns the lookup results , which is a list of
contact URLs of the matched services, to the client. The client then tries to send a
message to the URLs returned.

package matchmaker.echo;

import net.espeak.servicebus.*;

import net.espeak.servicebus.mminterface.MMDiscoveryIntf;

import net.espeak.servicebus.mminterface.SampleMatchMakerRequest;

import sun.servlet.http.HttpServer;

import org.w3c.dom.*;

public class EchoService implements MessageHandler {

 /**

 * The MatchMaker agent this should be instantited after loading

the properties.

 */

 private static MMDiscoveryIntf theMatchMakerAgent;

 /**

 * initializes the MMDiscoveryIntf object

 * This method should be called after loading the

servicebus.properties

 */

 public static void initMatchMakerAgent()

 throws Exception{

 theMatchMakerAgent =new MMDiscoveryIntf();

 }

 /**

 * Message handler to process messages send to echoservice.

 * This simple message handler displays message on the screen and

 * echos the request back to the client.

 * @param msg

 */

 public void handleMessage(Message msg) {
32 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
 try {

 Context context = msg.getContext();

 // Echo back message to the client

 context.send(msg);

 } catch (Exception e) {

 System.out.println(e);

 }

 }

 /**

 * @param argv - This param if specified would override the System

property servicebus.propertyfile and would be used by the servicebus

infrastructure to load the properties.

*/

 public static void main(String[] argv) {

 try{

 // Get service bus

 ServiceBus serviceBus =null;

 if (argv.length > 0){

 ServiceBus.init(argv[0]);

 }

 serviceBus= ServiceBus.getServiceBus();

 initMatchMakerAgent();

 // Register EchoService with message handler

 Binding binding = serviceBus.bind("EchoService", new

EchoService());

 //create an offer document , the contact address (for

the owner element) is obtained by the

binding.getLocalAddress().toString() call.

 Document

offerDocument=SampleMatchMakerRequest.createMakeOfferRequest(bindi

ng.getLocalAddress().toString(),"EchoService");

Developer Release 3.01, June 2000 33

Negotiation Library Service Bus Java Programmer’s Guide
 //send a makeOffer request

 Document

reply=theMatchMakerAgent.makeOffer(offerDocument);

 //parse the reply document

 String

offerid=SampleMatchMakerRequest.parseMakeOfferReply(reply);

 if (offerid !=null && !(offerid.equals("-1"))){

 System.out.println("Successfully created an offer

for EchoService with an offer -id of");

 System.out.println(offerid);

 }

 else {

 System.out.println("Can't create an Offer ..exiting");

 System.exit(0);

 }

 }catch(Exception e){

 System.out.println("Caught an exception

..."+e.getMessage());

 System.exit(0);

 }

 } //end of main

}//end of EchoService

The Client side code looks like ::

package matchmaker.echo;

import net.espeak.servicebus.*;

import net.espeak.servicebus.util.*;

import net.espeak.servicebus.mminterface.MMDiscoveryIntf;

import net.espeak.servicebus.mminterface.SampleMatchMakerRequest;

import java.util.Hashtable;

import java.util.Vector;
34 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
import java.net.URL;

import java.io.IOException;

import org.w3c.dom.*;

public class EchoClient {

 /**

 * The MatchMaker agent this should be instantited after loading

the properties.

 */

 private static MMDiscoveryIntf theMatchMakerAgent;

 /**

 * initializes the MMDiscoveryIntf object

 * This method should be called after loading the

servicebus.properties as it needs the matchmaker url .

 */

 public static void initMatchMakerAgent()

 throws Exception{

 theMatchMakerAgent =new MMDiscoveryIntf();

 }

 /**

 * the main method for EchoClient

 *

 * @param argv - optional param - The property file which would

override the System Property servicebus.propertyfile

 * The property file must contain

entries for these 2 properties

 * -

net.espeak.servicebus.httpservlet.portnum = the listner port for

this application

 * - net.espeak.servicebus.matchmaker.url

= the url of the MatchMakerService

 */

 public static void main(String[] argv) {

 try {
Developer Release 3.01, June 2000 35

Negotiation Library Service Bus Java Programmer’s Guide
 // Get service bus

 ServiceBus servicebus =null;

 //ServiceBus.init loads the propertyfile - if specified

 if (argv.length > 0)

 ServiceBus.init(argv[0]);

 servicebus= ServiceBus.getServiceBus();

 //initializes the MMDiscoveryIntf that talks to the

MatchMaker Service

 initMatchMakerAgent();

 // Create service container

 ServiceContainer sc = new ServiceContainer();

 // Register EchoClient with service container.

 Binding binding = servicebus.bind("EchoClient", sc);

 //create the lookup request

 Document

request=SampleMatchMakerRequest.createLookupRequest("EchoService")

;

 //send a lookup request

 Document reply=theMatchMakerAgent.lookup(request);

 //parse the reply sent by the MatchMaker , exit if there

is no match found.

 Vector

listOfUrls=SampleMatchMakerRequest.parseLookupReply(reply);

 String echoService=null;

 if (listOfUrls.size() <=0){

 System.out.println("No Match Found for EchoService");

 System.out.println("End of echo sample !");

 System.out.println("Press Ctrl-C to end program");

 return;
36 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
 }

 else{

 //try to talk to the first URL of the list returned

 echoService=(String)listOfUrls.elementAt(0);

 }

 // Convert echoservice string to URL

 URL toAddress = null;

 try {

 toAddress = new URL(echoService);

 } catch (java.net.MalformedURLException e) {

 System.out.println("Echo service address is not valid

URL");

 }

 // Note:: Use binding.getLocalAddress to get your address.

 // Create new context to connect with echo service

 Context context =

sc.getContextFactory().createContext(toAddress);

 MessageImpl mesg = new MessageImpl();

 // Create hello world message

 mesg.setBody("<hello>Hello World</hello>");

 try {

 context.send(mesg); // send

 } catch (IOException e) {

 System.out.println("Could not send message");

 }

 Message m = context.receive(); // blocking receive

 System.out.println("Received message in Echo Client - ");

 System.out.println(m.getBodyAsString());

 System.out.println("End of echo sample !");

 System.out.println("Press Ctrl-C to end program");

 } catch (Exception e) {

 e.printStackTrace();
Developer Release 3.01, June 2000 37

Negotiation Library Service Bus Java Programmer’s Guide
 }

 }

}

Running the MatchMakerService A

Setting the Classpath
The following items need to be in the classpath for running the MatchMakerService

• xerces.jar

• jsdk.jar

• cryptix.jar (This file is currently under $ESPEAK_HOME$/extern/cryptix)

• $ESPEAK_HOME$/lib

• $ESPEAK_HOME$/contrib/lib

It is important to keep xerces.jar at the beginning of your CLASSPATH to avoid any
conflicts with other DOM parsers that may be in your CLASSPATH.

Setting the Path
The $ESPEAK_HOME$/lib should be in the $PATH . This is needed for the eccS-
tubs.dll.

Setting the Configuration Parmeters
The following needs to be set for the ESpeak-core instance :

In the config file espeak.cfg , under the Security Properties section

- set net.espeak.security.activate=off

The MatchMakerService uses the following two system properties
38 Developer Release 3.01, June 2000

Service Bus Java Programmer’s Guide Negotiation Library
net.espeak.servicebus.htppservlet.portnum -to start the listener to listen to
requests

net.espeak.servicebus.matchmaker.backendagent - the backend reposi-
tory(agent) , currently the only value supported for this property is “escore” which
represents an espeak-core.

net.espeak.servicebus.matchmaker.backendhost - the host where the back-
end repository (espeak-core) is running.This attribute needs to be the full name of
the host (name as well as domain) even if the core is running on the same machine
(e.g. instead of localhost , specify

myMachineName.myDomain.com)

net.espeak.servicebus.matchmaker.backendport - the port on which the
backend

repository(espeak -core) is listening.

net.espeak.servicebus.matchmaker.backendprotocol - protocol used to talk
to the backendagent currently the only value supported for this property is “tcp”.

these properties are defined in a file called “matchmaker.properties” which the
MatchMakerSerivce tries to load from the current directory ,if no argument is
specified while running it. This file has to be in the current directory from where the
MatchMakerService is started , otherwise the full path of the propertyfile has to be
passed as an argument. This file is currently located in
<espeak_home>/contrib/lib/samples/matchmaker

Running the Program
Before starting the MatchMakerService make sure the ESpeak core is

running with security turned off and the matchmake property file reflects

the correct settings for the same.

The MatchMakerService canbe started by the following command

<JRE> net.espeak.servicebus.matchmaker.MatchMakerService [prop-

erty-file-path]

where property-file-path is an optional parameter which specifies the path of the
propertyfile that overrides the default property-file “matchmaker.properties”.
Developer Release 3.01, June 2000 39

Negotiation Library Service Bus Java Programmer’s Guide
40 Developer Release 3.01, June 2000

Chapter 2 An End to End Example
This chapter shows an example application that utilizes the E-speak Service Bus
Interface (S-Bus). The chapter contains the following sections:

• About The Example Application: Its design and the business workflow it
performs

• Installing & Running The Example Application: What software components
you need in order to run the example and how to configure them.

• Where To Go To Download The Example: The URL and instructions for down-
loading the example application.

About The Example Application B

The example application is a web-based demonstration of a “Buy Paper” conversa-
tion. There are three participants in the conversation: the Paper Buyer, the Paper
Seller, and the MatchMaker.

Both the Paper Buyer and the Paper Seller participants are full-fledged web appli-
cations. They each are implemented using Java Web Server technologies -- Java
Server Pages, HTML, JavaBeans, and Servlets. The MatchMaker is an external
service that these two applications use to discover each other.

The Business Process
The example application demonstrates a complete business transaction. This trans-
action involves a number of steps -- each of which involves an exchange of XML
documents. The individual steps in the business transaction can be grouped into 4
phases:
Developer Release 3.01, June 2000 41

About The Example Application An End to End Example
Phase 1 “Discovery” -- During this phase, the Paper Buyer posts an RFQ (request
to purchase paper) to the MatchMaker. The MatchMaker then remembers that the
Paper Buyer would like to purchase paper. After the Paper Buyer has posted its
RFQ, the Paper Seller application queries the MatchMaker for any potential custom-
ers who have posted RFQ’s for paper. In response to the query, the MatchMaker
sends the Paper Seller the URL for the Paper Buyer. (From this point forward, the
MatchMaker drops out of the conversation and the Paper Seller and Paper Buyer
can communicate directly.)

Phase 2 “Price Negotiation” -- During this phase the Paper Buyer and the Paper
Seller negotiate a price for the paper. The first step involves the Paper Seller send-
ing the Paper Buyer a “quote.” The Paper Buyer then responds with a “proposed
purchase order” based upon the quote and any discounts the Paper Buyer is
attempting to obtain. The Paper Seller then either agrees to the Paper Buyer’s
proposal or sends a new quote to the Paper Buyer. These steps repeat until the
Paper Seller accepts a “proposed purchase order” sent by the Paper Buyer.

Phase 3 “Forming A Contract” -- Once the Paper Buyer and Paper Seller have
agreed on a price, the Paper Seller sends the Paper Buyer a digitally signed
“contract.” The Buyer then acknowledges the contract.

Phase 4 “Invoicing, Payment & Fulfillment” -- After the contract has been
formed between the Paper Buyer and the Paper Seller, The Paper Seller fulfills the
order and ships the paper and sends shipping documentation on to the Paper Buyer.
Then the Paper Seller sends an “invoice” to the Paper Buyer. The Paper Buyer
processes the invoice and sends a “Payment” document to the Paper Seller. The
Paper Seller then processes the payment and finally sends a “receipt” document
back to the Paper Buyer.

Application Design
Both the Paper Buyer and Paper Seller applications are constructed using the same
layered architecture. The architecture consists of these parts:

ServiceBus -- This “bus” provides the mechanism by which the Paper Buyer and
Paper Seller applications communicate with one another as well as with the Match-
Maker. (The ServiceBus is discussed in detail in Chapter 1.)
42 Developer Release 3.01, June 2000

An End to End Example About The Example Application
MessageHandler (called “DocumentAdapter” in these applications) -- Each
of the applications have a single instance of this component. The DocumentAdapter
receives all incoming messages that were received from the ServiceBus. It then uses
Java “reflection” and a mapping between XML Element names and document
handler functions (there is one document handler function for each different XML
document expected by the application) to invoke the appropriate function on the
Application Object -- passing the received message as a parameter to the function.

Application Object -- Each of the applications has a single instance of this compo-
nent. The Application Object contains a reference to a Workflow Object and main-
tains the current “state” of the application. It also provides a document handler
function for each XML document it expects to receive. The Application Object also
contains an “action” function for each web FORM that it expects to receive from the
browser. The document handler functions and the “action” functions are all “pass
through” calls into the Workflow Object -- they let the Workflow Object decide what
is the “current” step and then invoke that step’s business logic.

Workflow Object -- Each Application Object (and thus, each application) contains
one of these components. This component implements the Finite State Machine
that describes the application’s business workflow. Each state in the workflow is
represented by a WorkflowStep object. Each WorkflowStep object contains the
business logic for a single step in the workflow.

Workflow Step -- The Workflow Object contains of a collection of WorkflowStep
objects -- one for each StateVertex in the Finite State Machine for the business
transaction. Each of these steps contains the business logic for a single step in the
workflow.

JavaServerPages & HTML -- The user interface portion of each application is
comprised of primarily Java Server Pages and a few HTML pages.
Developer Release 3.01, June 2000 43

About The Example Application An End to End Example
Diagram: XML Document Being Delivered To An Application B

This diagram shows the flow of data from the ServiceBus into the application and
finally to the web browser.

W
eb

 S
er

ve
r

Java Web Server / JVM

Java Server
Pages

“Action”
Step

“Action”
Step

“Action”
Step

“Receive”
Step

“Receive”
Step

Application
Object

doAction()

doAction()

doAction()

doReceive()

doReceive()

Workflow Steps

Convers.
Context

Service
Fmwk.
Servlet

ServiceBus

receive()

Document
Adapter

“action”
methods

“document handler”
methods

send()

Application Client

Remote
“Business Partner”

Parse XML

1.

2.

3.
4.

5.

6.

7.
44 Developer Release 3.01, June 2000

An End to End Example About The Example Application
Diagram: Application Sends An XML Document B

This diagram shows the flow of data from the web browser, into the application,
and then onto the ServiceBus.

W
eb

 S
er

ve
r

Java Web Server / JVM

Java Server
Pages

“Action”
Step

“Action”
Step

“Action”
Step

“Receive”
Step

“Receive”
Step

Application
Object

doAction()

doAction()

doAction()

doReceive()

doReceive()

Workflow Steps

Convers.
Context

Service
Fmwk.
Servlet

Service Bus

receive()

Document
Adapter

“action”
methods

send()

Application Client

Remote
“Business Partner”

Make XML

XML

XML

1.
2.

3.

4.

5.

6.

“document handler”
methods
Developer Release 3.01, June 2000 45

Installing & Running The Example Application An End to End Example
Installing & Running The Example Application B

This Example has been tested on two web server platforms running under Windows
NT 4.0. The two platforms are:

• Javasoft's reference implementation of the Java 2 Enterprise Edition environ-
ment

• Apache and the Tomcat 3.0

This section discusses installing and configuring the Example under both environ-
ments.

Compiling The Example
If you have the ".java" files for the application (these will be placed into the java web
server's "classes" subdirectory) but not the ".class" files, compile them using the
JDK 1.2.2 or later.

When you compile the source, make sure you have included in your class path

• jar file(s) containing the "javax.servlet" and "javax.servlet.http" packages (Serv-
let API).

• essf.jar file and/or classpath containg net.espeak.essf.* pcakages i.e., Service
Framework (ESSF) implementation

• webmacro.jar file (stable release dated 22 December 1999 or later from
www.webmacro.org).

• xerces.jar (Apache XML parser from xml.apache.org).
46 Developer Release 3.01, June 2000

An End to End Example Installing & Running The Example Application
Installing Under Java 2 Enterprise Edition

The steps below assume you have an environmental variable %J2EE_PATH% point-
ing to where you have J2EE installed.

1 Copy following jar files and/or classes to %J2EE_PATH%\lib\system\ subdirec-
tory.

• webmacro.jar from WebMacro (www.webmacro.org)
NOTE: Use stable release dated 22 December 1999 or later from WebMacro

• essf.jar and/or it's classes

• jsdk.jar
(NOTE: ESSF needs jsdk.jar (JSDK 2.0))

• xerces.jar (Apache XML Parser) from Apache (xml.apache.org)

2 Copy all the ".class" files into the %J2EE_PATH%\lib\classes subdirectory.

3 Copy the application's WebMacro template (.wm) files to the
“%J2EE_PATH%\lib\classes \endtoend_wmfiles” subdirectory.

4 Copy the "CurrentScreenApplet.class" file into the
“%J2EE_PATH%\public_html” subdirectory.

5 Copy all the ".html", ".jsp", ".jpg", and ".gif" files into the
“%J2EE_PATH%\public_html” subdirectory.

6 Copy the WebMacros jar file (webmacro.jar) and the WebMacro.properties file
into the “%J2EE_PATH%\lib\system” subdirectory. After Copying
WebMacro.properties file edit the file and append to "TemplatePath" the path
to WebMacro teampate (.wm) files the application i.e.,
“%J2EE_PATH%\lib\classes\endtoend_wmfiles”. Read the comments in the file
for appropriate pathseparators, delimiters.

7 Modify the "SYSTEMJARS" entry in the "setenv.bat" file in the
%J2EE_PATH%\bin subdirectory.

• Prepend this to the start of SYSTEMJARS:
%J2EE_PATH%\lib\system\lib\xerces.jar
Developer Release 3.01, June 2000 47

Installing & Running The Example Application An End to End Example
• Append this to the end of SYSTEMJARS:
%J2EE_PATH%\lib\system\webmacro.jar

• Append this to the end of SYSTEMJARS: %J2EE_PATH%\lib\system\essf.jar

• Append this to the end of SYSTEMJARS: %J2EE_PATH%\lib\system\jsdk.jar

8 Start the J2EE server by entering this command from the “%J2EE_PATH%\bin”
directory:

j2ee -verbose <Enter>. (This opens the server up in "verbose" mode - so
you can see any trace statements and exceptions that may occur.)

NOTE: NOTE: Each time before you restart the server, look into the
"c:\j2sdkee1.2\repository" directory for a subdirectory for your machine. Delete
all files from the "web" subdirectory (these are the compiled JSP pages). If you
don't "clean out the cache" like this, you may encounter a server crash when you
start up the J2EE server.

Installing Under Apache & Tomcat B

The steps below assume you have an environmental variable %TOMCAT_HOME%
pointing to where you have Tomcat is installed.

1 Copy following jar file and/or classes to the %TOMCAT_HOME%\lib subdirec-
tory.

• webmacro.jar from WebMacro (www.webmacro.org) NOTE: Use stable
release dated 22 December 1999 or later from WebMacro

• essf.jar and/or it's classes, jsdk.jar NOTE: ESSF needs jsdk.jar (JSDK 2.0)

• xerces.jar from Apache (xml.apache.org)

2 Create a subdirectory called "endtoend" under the subdirectory
%TOMCAT_HOME%\webapps.

3 Create a subdirectory called "Web-inf" underneath the
%TOMCAT_HOME%\webapps\endtoend subdirectory you just created.
48 Developer Release 3.01, June 2000

An End to End Example Installing & Running The Example Application
4 Create a subdirectory called "classes" underneath the
%TOMCAT_HOME%\webapps\endtoend\Web-inf subdirectory you just created.

5 Modify the Tomcat server's deployment descriptor file "server.xml". This file is
in the following directory: %TOMCAT_HOME%\conf. You should add a new
"Context" element into "server.xml" that represents the End-to-End Example.
To do this add the following to the file:

<!-- End to End Example Entry for Tomcat -->

<Context path="/endtoend" docBase="webapps/endtoend" debug="0"

 reloadable="false" >

</Context>

<Context path="/servlets" docBase="webapps/endtoend " debug="0"

reloadable="false" >

 </Context>

<Context path="/servlet" docBase="webapps/endtoend " debug="0"

reloadable="false" >

</Context>
Developer Release 3.01, June 2000 49

	Contents
	Service Bus Java Programmer’s Guide
	Introduction
	The E-speak Service Framework

	Programming Model
	The ServiceBus package
	Basic Concepts
	A Simple Example: Echo
	Conversations
	Echo Example Revisited
	Conversation Executors : State Management
	Introspection Library

	Negotiation Library
	Submitting Offers to a MatchMaker
	Structure of lookup
	Structure of revoke-offer
	Echo example revisited
	Running the MatchMakerService

	An End to End Example
	About The Example Application
	Diagram: XML Document Being Delivered To An Application
	Diagram: Application Sends An XML Document

	Installing & Running The Example Application
	Installing Under Apache & Tomcat

