e-speak

Migration Guide

Developer Release 3.01
June 2000

A cxcian

© Copyright 2000
HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this document is provided "AS IS" WITH NO EXPRESS OR
IMPLIED WARRANTY:: permission to copy, and distribute this document for any purpose is
hereby granted without fee, provided that the above copyright notice and this notice appear in all
copies, and that the name of Hewlett-Packard Company not be used in advertising or publicity
pertaining to distribution of this document without specific, written prior permission. Hewlett-
Packard Company makes no representations about the suitability of this document for any purpose.

Permission is granted to copy and distribute translations of this document into another language
under the above conditions.

Hewlett-Packard may license the right to copy and distribute modified versions of this document
provided any substantive changes have been approved by Hewlett-Packard.

Contents

Chapter1 Introduction..........ccciiveveneneaea 1

What's new in Developer Release 3.01 1
Changes to the E-speak Engine 2
Client Library Programming APIs 2
Advertising Services i 3
Virtual File System 3
System Managementouuiuinininnnan.. 4
Web ACCESS ... vi i 4
Current Feature Limitations 4
Intended Audience 4
Structure 5
Conventionst 5

Chapter2 TheE-speakEngineccvvvvevenenes 7

Persistencec. 7

Developer Release 3.01 June 2000 i

ii

Chapter 3

Chapter 4

Chapter 5

Secure dynamic firewall 7

Support for Microsoft SQL7.0 8

N = S)

Added Functionality 9
Removed Functionality 11
Added APIs 11
Depricated APIs 36

The E-speak Security Model. 39

Certificates i 39
Simple Public Key Infrastructure 40
Serviceldentity 40
Undeliverable Requests 41
JESI .o 41
XML .o 45

Managed Variable Tables 49

Managed Service Interface 50

Developer Release 3.01 June 2000

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Developer Release 3.01 June 2000

Web ACCeSS. . oo vttt eeeeeeeeeeeeeeessssd?

Which Interface shouldIuse? 58
MigratingJavato XML 59
XML Architecturec.i.. 60

Virtual FileSystem65

The Semantic File System 65
Generic storage Servicesooiiiinaa.. 66
Security 67
Additional Enhancements 67

GloSSAry ¢ v e vt veeeneeneescecenceneesssd9

TermsusedinE-speak 69

Resource Descriptionsccvvvveeee. 77

Resource Specification 77
Resource Description 83
Resourcetype i 85

XML Book Broker Exampleccc00....87

XML Book Broker Example 87

iv

Developer Release 3.01 June 2000

Introduction

This document describes changes in the e-speak architecture for Developer Release
3.01. It provides a road map for programmers migrating from Beta 2.2 to the new
Developer Release 3.0. For detailed documentation on the features, you can also
review the following documents:

e E-speak Programmers Guide defines the interface for e-speak programmers
and system developers building e-speak-enabled applications.

e FE-speak Installation Guide shows how to install e-speak and how to run some
simple applications.

e FE-speak Contributed Services describes several sample applications included
with the distributed software.

e FE-speak Tools Documentation shows how to use tools provided for analyzing
the system.

What’s new in Developer Release 3.01

The new implementation of e-speak offers the following benefits and functionality
for the users:

e Faster Time to Market because of easier API
¢ More flexible discovery

¢ Extended inter operability

Developer Release 3.01 June 2000 1

Changes to the E-speak Engine Introduction

Changes to the E-speak Engine

Added secure dynamic firewall

Faster and more flexible negotiations between multiples e-services for
matching

Increased robustness of mediation

Better scaling of the In-Memory repository discovering resources and data
bases

Support for Microsoft SQL 7.0 added.

Client Library Programming APIs

Greater ability for descriptive information (attributes) from any e-service
application.

The net e-speak infra_client package is being deprecated.
Support of Multi-Valued Attributes.

Support of multiple vocabularies.

More control over advertisement of services by applications
More flexible control over time-outs

More robust methods for application of security policies.

Improved support for detecting interfaces offered by an application

Java Client Library

Improved exceptions reporting in the Service thread

Comparison of two found services for equality in a multi-core situation.

Developer Release 3.01 June 2000

Introduction

Advertising Services

JESI

Advertising

Virtual File

Access control and cryptographic security added.

Clients can discover interfaces supported by the service to be accessed.
API methods added to directly query whether a resource is local or exported
Persistent Scopes added.

Improved performance for larger number of services.

Improvements to the IDL compiler

Support for exporting external resources by Value added.

Selective resource exporting added to reduce time delays.

Services

Multicast model advertising services added
Access permissions added advertised services

Advertising services across communities now available.

System
Event Monitoring enhanced
Cabinet View functionality added
Semantic File System added.

Support for generic storage services added.

Developer Release 3.01 June 2000 3

System Management Introduction

System Management

e More robust set of system management control methods.

Web Access

¢ Greater flexibility in offering Web enabled services including WAP.

Current Feature Limitations

Interceptors are one way. They can only be used to intercept inbound messages and
not the data returned from a service.

Intended Audience

This guide describes changes to the lower-level interfaces of e-speak for:

e Implementors of Client libraries to provide a higher level of abstraction for
e-speak

e Implementors of utilities and tools to manage and manipulate e-speak

e Implementors of e-speak emulation routines that are used in the run-time envi-
ronment for legacy applications

e Implementors of extensions to existing services and resources used by Clients
¢ System administrators who implement policies for security and resource lookup

e Those designing and building their own implementations of e-speak

4 Developer Release 3.01 June 2000

Introduction

Structure

Structure

This specification consists of the following major sections, in the order listed:

An overview of the e-speak architectural changes

A detailed description of the changes categorized by the areas that the changes
affect.

Conventions

There are several document conventions worth noting:

New terms are introduced in the document flow with italics.

Programmatically visible architectural abstractions are written with the first
letter of each word capitalized, such as Protection Domain.

Logical names, method names, and other programmatic labels are written in
Courier font.

Even though e-speak is independent of the programming language, the specifi-
cation uses Java syntax.

Sections describing material outside of the architecture are denoted with the
word “Informational” in the chapter or section title

Developer Release 3.01 June 2000 5

Conventions Introduction

6 Developer Release 3.01 June 2000

The E-speak Engine

This chapter describes changes to the e-speak Engine that are different in Devel-
oper Release 3.01.

Persistence

The database Schema has changed and is no longer comparable with the Version 2.2
Beta Schema.

It is necessary to use the Repository Reset Utility to remove the old repository and
do a Cold Start to create the new repository with the proper schema.

Failure to do so generates a Core Panic with the message:

“Schema Version Mismatch”

Clients interact with the e-speak Core by sending messages to Core-managed
Resources. For example, the Resource Factory registers new Resource metadata.
This section specifies the methods of each Core-managed Resource. It also
describes the internal state that is passed if the Core-managed Resource is exported
by value to another Logical Machine.

Secure dynamic firewall

Support for secure dynamic firewall has been added, as well as support for firewall
transversal.

Developer Release 3.01 June 2000 7

Support for Microsoft SQL 7.0 The E-speak Engine

See Chapter 4, “The E-speak Security Model” for more detailed information on this
feature.

Support for Microsoft SQL 7.0

Developer Release 3.01 adds support for Microsoft SQL 7.0 Database and Oracle,
which was supported in Beta 2.2.

8 Developer Release 3.01 June 2000

Jesi

This chapter describes the changes to Jesi. The first part of this chapter describes
the added functionality. The second part explains functinality that is removed. The
last part of this chapter explains the added APIs.

Added Functionality

Multiple vocabularies

You can register a service in m7ultiple vocabularies.

You can also do a search in multiple vocabularies.

Multivalued attributes

An attribute can have multiple values.

For example, a printer service can have an attribute "doctypes" which takes values
of "pdf", "doc", and so on.

Interception

This is a mechanism by which you can intercept the calls to and from the engine.
This can be used to build load balancers, caching, auditing mechanisms etc.

Developer Release 3.01 June 2000 9

Added Functionality Jesi

View

View is a snapshot of the repository. You can add or delete services to/from a view.
View can be used for specifying a scope for a lookup.

Find
The following are enhancement to the Find interface.
e There is a cursor mechanism for retrieving a set of entries from the engine.
¢ You can define the query in multiple vocabularies.
¢ You can specify the sorting order and arbitration policy.

e You can specify a view (ESView) to restrict the scope of a lookup.

Threading policy

There are two modes of threading available:
e Specify a thread pool to be used for servicing requests

¢ (Create a separate thread per request.

Categories

Security

Security is now available. See Chapter 4, “The E-speak Security Model” for an over-
view of the new Security features avaiable to Jesi.

Account manager

Account manager can create, delete and validate user accounts.

10 Developer Release 3.01 June 2000

Jesi Removed Functionality

Faster restart

The time to effect a Restart is reduced.

One service handler can be associated with hundredsof services. Previously,
Restart was accomplished by recreating all existing services.

Restart is accomplished by using the service handlers alone.

Removed Functionality

Persistent Scopes

Persistent scopes are removed from this release.

Transient scopes contain all the services created except the folders. This allows for
some optimizations to enhance performance.

Added APIs

Class : ESAccessor

ESAttribute getAttribute(String, ESVocabulary)

Obtain an attribute with name and vocabulary specified.

ESBaseDescription getDescription(ESVocabulary)
Get all the attributes in a vocabulary

ESUID getESUID()

Get the id of the service. Used in events.

ESBaseDescription[] getDescriptions()

Developer Release 3.01 June 2000 11

Added APIs Jesi

Get all the attributes in all the vocabularies for the service

ESVocabulary[] getVocabularies()

Get all the vocabularies for this service.

public int getServiceType()

Get the type of the service. The type is an int as specified in ESCon-
stants.ServiceType. This method is not guaranteed to work always.

void setDescription(ESBaseDescription)

Set one of the descriptions of the service.

void setDescriptions(ESBaseDescription[])

Set all the descriptions of the service.

void setServiceType(int)

Sets the service type of the accessor. Use the types specified in ESCon-
stants.ServiceType

void setServiceOwner()
Sets the current connection to be the owner of the selected service.
void setServiceProxy(ESServiceHandler)

Sets the service handler to act as proxy for this service.

Class : ESAccountManager
boolean addDescription(ESAccountProfile, String, ESProfileDesc)

Add a new description to the account that has been created.

boolean authenticateUser(ESAccountProfile)

Verifies whether the user password in the account matches with the supplied
profile.

12 Developer Release 3.01 June 2000

Jesi Added APIs

String createAccount(ESAccountProfile)

create an account with the specified profile

String[] getAllAccounts()

Get all the accounts that has been created.

boolean deleteAccount(ESAccountProfile)
Delete the account specified by the profile.

Class : ESAccountProfile
ESAccountProfile(String)

Create an account profile.

ESAccountProfile(String, String, String)

Another constructor for account profile

void setPassPhrase(String)
String getPassPhrase()

Set/Get the pass phrase for the account. The user can be validated later with this
pass phrase using authenticateUser method on ESAccountManager.

void setPreferences(ESProfileDescription)
ESProfileDescription getPreferences()

Set/Get the profile description associated with the account.

void setUserESURL(String)
public String getUserESURL()

Set/Get the url associated with the account.

public void setUserInformation(String)

public String getUserInformation()

Developer Release 3.01 June 2000 13

Added APIs Jesi

Set/Get any additional information associated with the account.

void setUserName(String)
public String getUserName()

Set/Get the user name associated with the account.

void setUserType(String)
public String getUserType()
Set/Get the type associated with the account.

Class : ESAttribute
boolean isMultiValued()
Check whether the attribute has multiple values.
Object[] getValues()
Obtain the array of values associated with this attribute.
void addValues(Object[] values)
Add a set of values to existing set

void setValues(Object[] values)

Replace the existing values with new set of values. Note that the change is made
only in the local copy. To get it to the core, you need to do setDescription or a
setAttribute on the accessor

Class : ESBaseDescription

ESBaseDescription(ESConnection, ESXMLFile)
Replaces the old method which had ESXMLFile as the first argument

void addAttribute(ESAttribute)

14 Developer Release 3.01 June 2000

Jesi Added APIs

Add an attribute to the description

Class : ESBaseServiceStub

boolean conforms(String)

Check whether the object conforms to a particular interface.

String getStubInterfaceName()

Get the interface name associated with the service.

Class : ESCategoryFinder
ESAccessor findByFullName(String)

Return the category associated with the string.

ESCategory findRootCategory()
Find the base category.

ESAccessor|[] find(String)

Return array of categories matching the string.

ESAccessor|[] findByKeyword(String)

Return array of categories matching the string

Class : ESCategory

ESCategory createCategory(String, String)

Creation of a category

void setParentCategory(ESCategory)
Set the parent of this category

String getCategoryDescription()

Developer Release 3.01 June 2000 15

Added APIs

Jesi

Get the description of the category

String getCategoryFullName()

Return the full name of the category

String getCategoryName()

Return the base name of the category

ESAccessor[] getSubCategories()
Return all the sub categories of this category
void removeCategory(ESCategory)

Remove a sub category from this category.

void attachCategory(ESCategory)
Attach a category ()

Class : ESConfiguration

16

void setAsyncRecvTimeout(int)
public int getAsyncRecvTimeout()

Set/Get the timeout specified for message reception.

void setAsyncSendTimeout(int)
public int getAsyncSendTimeout()

Set/Get the timeout specified for sending messages.

void setCallTimeout(int)
public int getCallTimeout()

Set/Get the timeout for method invocations.

void setFinderTimeout(int)

Developer Release 3.01 June 2000

Jesi Added APIs

public int getFinderTimeout()
Set/Get the timeout for finders.

int getFinderCacheSize()

int getMaxReadThreads()

int getMinReadThreads()

int getMaxWriteThreads()

int getMinWriteThreads()

int getNumProcessorThreads()
int getReadQueueSize()

int getThreadIncrSize()

int getThreadPolicy()

Getters for various parameters.

Class : ESConnection

ESAccountManager getAccountManager()
Returns the account manager for the connection

ESRemoteConnectionManager getConnectionManager()
Return the manager for remote connections.

ESRemoteServiceManager getRemoteServiceManager()
Return the manager for remote services.

ESVocabulary getDefaultAcctVocabulary()

Return the vocabulary for creating accounts.

ESVocabulary getEvntDistDfltVocab()

Return the default vocabulary for event distributors.

Developer Release 3.01 June 2000 17

Added APIs Jesi

void switchAccount(ESAccessor)
Switch to this account.
void init()

Initialize after switching the account.

Class : ESContractDescription/ESContract

void setConversationScheme(String)
public String getConversationScheme

Set/Get the XML documents/Schemas input/output to the service

void setTermsOfUse(String)
public String getTermsOfUse()

Set/Get the terms of use for this contract

void setLicense(String)
public String getLicense()

Set/Get the license agreements.

Class : ESFolder
ESFolder(ESAccessor)

Construct a folder with an accessor

ESBaseService getService(String, String)

Previously used to return ESService, now returns ESBaseService

Class : ESIceptorControl

boolean addIceptor(ESIceptor, Object)

18 Developer Release 3.01 June 2000

Jesi

Added APIs

Class :

Class :

Adds an interceptor to the chain of interceptors.

boolean removeAlllceptors()

Removes all interceptors from the chain

boolean removelceptor(String)

Remove the iceptor identified by the name from the chain.

void setAccessor(ESAccessor)
public ESAccessor getAccessor()

Set/Get for the associated accessor

void setConnection(ESConnection)
public ESConnection getConnection()

Description :Set/Get the connection.

void setServiceElement(ESServiceElement)
public ESServiceElement getServiceElement()

Set/Get the service element associated with the control.

ESProfileDescription

ESProfileDescription(ESVocabulary)

Constructor. Rest all methods inherited from ESBaseDescription

ESProperty

API : ESProperty(String, String)

Constructor which takes in attribute name and type.

ESProperty(String, String, ESValue, boolean, int, int, int, int)

Developer Release 3.01 June 2000

19

Added APIs Jesi

Construct a property with name, type, default value, multivalued or not, range
kind, minimum range, maximum range, index.

Class : ESQuery
void addVocabularyKey(String, ESVocabulary)

Set this key to represent ESVocabulary in the constraint

void setArbitPolicy(int)
public int getArbitPolicy()
Set/Get the arbitration policy

void addSorter(String, String)
Add a sorting policy specified by the arguments.

void addSorter(int, String)

Add a sorting policy specified by the arguments.

void setView(ESView)

Add a view for searching.

Class : ESRemoteConnectionManager

String openConnection(String)

Open connection to the core specified by the argument.

void closeConnection(String)

Close connection to the core specified by the argument.

String[] getConnections()

Obtain all the connections established by the core.

void exportResource(ESAccessor[], String, int, boolean)

20 Developer Release 3.01 June 2000

Jesi Added APIs

Export the specified services to the specified core.

Class : ESRemoteServiceManager
void importResource(ESAccessor, String, int, boolean)
Import the specified service from the specified core.
void unexportResource(ESAccessor, String)

Unexport the previously exported service

void updateExportedService(ESAccessor, String, int, boolean)
Update the exported service.
void updateImportedService(ESAccessor, String, int, boolean)

Update the imported service.

Class : ESRequest
ESRequest()

Descript9ion : Constructor for the class

ESRequest(String, String)

Constructor takes in an interface name and method name
ESRequest(String, String, ParameterList)

Constructor takes in an interface name, method name and parameter List
ESRequest(Object[])

Constructor taking in an array of objects.

void setParamValue(String, Object)
public Object getParamValue(String)

Set/Get a parameter value

Developer Release 3.01 June 2000 21

Added APIs Jesi

void setReturnValue(Object)
public Object getReturnValue()

Set/Get return values
String getInterfaceName()

Return the interface name.
String getMethodName()

Return the method name.
Object[] getArguments()

Return the arguments as object array.

void setMarshallComplete()

All added params from this point are interceptor specific and are not passed
when the method gets invoked.

addParam(String, Object, String)

Add a parameter (name, value, type)

Class : ESServiceContext

public void setCategory(ESCategory)
public ESCategory getCategory()
Set/Get the default category

Class : ESServiceElement

ESServiceElement(ESConnection, ESServiceDescription[])

Construct a service element with multiple descriptions.

ESServiceElement(ESServiceHandler)

22 Developer Release 3.01 June 2000

Jesi

Added APIs

Construct a service element with a handler.
boolean addIceptor(ESIceptor, Object)

Add an interceptor to the service handling loop.
boolean removeAlllceptors()

Remove all the interceptors in the chain
boolean removelceptor(String)

Remove the interceptor identified by the argument.
ESIceptorControl getlceptorControl()

Return the control object associated with the iceptors.
ESServiceHandler getHandler()

Get the associated handler.
ESServiceDescription[] getDescriptions()

Get the associated descriptions.

void update(ESServiceDescription[])
Update the descriptions

Class : ESServiceHandler

ESServiceHandler (ESAccessor)

Create a service handler with an accessor. This accessor may have been
retrieved from a folder.

ESAccessor getAccessor()

Developer Release 3.01 June 2000 23

Added APIs Jesi

Return the ESAccessor of the handler.

Class : ESServiceStub

boolean addInterceptor(ESIceptor, Object)

Add an interceptor to the interceptor chain

Class : ESServiceStub

boolean removeAlllnterceptors()
Remove all the interceptors in the chain
boolean removelnterceptor(String)

Remove the interceptor as specified by the argument

ESIceptorControl getlceptorControl()

Get the control object associated with the interceptors.

Class : ESValue

API : ESValue(BigDecimal)
ESValue(Date)
ESValue(Double)
ESValue(Long)
ESValue(String)
ESValue(Time)
ESValue(Timestamp)
ESValue(byte)
ESValue(char)
ESValue(double)

24 Developer Release 3.01 June 2000

Jesi Added APIs

ESValue(float)
ESValue(int)
ESValue(long)
ESValue(short)

Used for creating vocabulary properties.

Class : ESViewDescription

ESViewDescription()

Default constructor

ESViewDescription(ESVocabulary)

Constructor which takes in a vocabulary

ESViewDescription(ESConnection, ESXMLFile)

Constructor which takes in a connection and xml description

Class : ESViewElement

ESViewElement(ESAccessor)

Constructor

ESViewElement(ESConnection, ESViewDescription)

Default constructor

ESView register()

Registers a view with the engine.

Class : ESViewFinder

ESViewFinder(ESConnection)

Developer Release 3.01 June 2000 25

Added APIs Jesi

Constructor
ESView find(ESQuery)
find one view
ESView find(ESQuery)

Find multiple views matching the query

ESView][] findNext()

Return the next set of entries.

Class : ESViewStub

boolean contains(ESAccessor)

Check whether the view contains the service
void add(ESAccessor)

Add an accessor to the view

void clear()

Clear the view

void remove(ESAccessor)

Remove the service from the view

Class : ESVocabularyDescription
ESVocabularyDescription(ESConnection, ESXMLFile)

Replaces the constructor where the parameters to the method were ESXMLFile
and ESConnection in that order.

ESVocabularyDescription(ESConnection, ESXMLFile, ESXMLFile)

Constructor to support the new xml schema.

26 Developer Release 3.01 June 2000

Jesi Added APIs

Class : ESServiceDescription
ESServiceDescription(ESConnection, ESXMLFile, ESXMLFile)

Constructor to support the new xml schema.

ESViewDescription(ESConnection, ESXMLFile, ESXMLFile)

Constructor to support the new xml schema.

Class : ESContractDescription

ESContractDescription(ESConnection, ESXMLFile, ESXMLFile)

Constructor to support the new xml schema.

Class : ESVocabularyDescription

void addProperty(ESProperty)
Add a vocabulary property as specified by the argument.

Class : ESVocabularyFinder
ESVocabulary[] findNext()

Find the next set of vocabulary in the list.

Class : ESVocabularyStub

ESAccessor[] getServices()

Return all the services in the vocabulary

ESProperty[] getProperties()

Return all the properties in the vocabulary

Developer Release 3.01 June 2000 27

Added APIs Jesi

Class : ESXMLQuery
ESXMLQuery(ESConnection, ESXMLFile, ESXMLFile)

To support the new xml schema

Class : ESAbstractElement
void addPrivateData(String, byte[])
Moved from ESBaseDescription
void addPublicData(String, byte[])
Moved from ESBaseDescription

Class : ESAbstractElement
void setContract(ESContract)

Moved from ESBaseDescription

Class : ESAbstractFinder

void setSecurityLevel(boolean)
public boolean setSecurityLevel()

Set/Get the trust level. Based on this, a decision is made whether to obtain the
stub from the other end. By default, stub is picked from the local address space.

boolean hasMoreResults()

Check whether there are any outstanding results.

void setMaxToFind(int)
public int getMaxToFind()

Set/Get the maximum number to find.

void setCacheSize(int)

28 Developer Release 3.01 June 2000

Jesi Added APIs

Setthe cache size
void setFindInCacheFlag(boolean)
Specify whether to use cache or not.

void setInterfaceVerificationFlag(boolean)

Specify whether the check for whether the correct interface is supported by
service should be made or not.

Class : ESAbstractFinder

void setSearchLevel(int)

Specify whether the search is in local core or to the advertising service.

Class : ESDelegatorImpl

abstract Object getHandler()

Return the object which ultimately handles the request

abstract void handleDone(Object)
Inform the delegator that reply has been sent back.

Class : ESIceptor

public ESIceptor()

Constructor for the class

abstract void initialize(Object)

To be implemented by the sub-classes. This is called by the interceptor control
when the interceptor is initialized first.

boolean invokeNext(ESRequest)

To be called by all the sub-classes, invokes the next interceptor in the chain.

Developer Release 3.01 June 2000 29

Added APIs Jesi

Class : ESServiceHandler

ESServiceHandler (ESAccessor)

Create a service handler with an accessor. This accessor may have been
retrieved from a folder.

ESAccessor getAccessor()

Return the ESAccessor of the handler.

Class : ESServiceStub

boolean addInterceptor(ESIceptor, Object)

Add an interceptor to the interceptor chain

boolean removeAlllnterceptors()

Remove all the interceptors in the chain

boolean removelnterceptor(String)

Remove the interceptor as specified by the argument

ESIceptorControl getlceptorControl()

Get the control object associated with the interceptors.

Class : ESValue

ESValue(BigDecimal)
ESValue(Date)
ESValue(Double)
ESValue(Long)
ESValue(String)
ESValue(Time)

30 Developer Release 3.01 June 2000

Jesi

Added APIs

ESValue(Timestamp)
ESValue(byte)
ESValue(char)
ESValue(double)
ESValue(float)
ESValue(int)
ESValue(long)
ESValue(short)

Used for creating vocabulary properties.

Class : ESViewDescription

ESViewDescription()

Default constructor
ESViewDescription(ESVocabulary)
Constructor which takes in a vocabulary

ESViewDescription(ESConnection, ESXMLFile)

Constructor which takes in a connection and xml description

Class : ESViewElement

ESViewElement(ESAccessor)
Constructor
ESViewElement(ESConnection, ESViewDescription)

Default constructor

ESView register()

Developer Release 3.01 June 2000

31

Added APIs

Jesi

Registers a view with the engine.

Class : ESViewFinder

ESViewFinder(ESConnection)

Constructor

ESView find(ESQuery)

find one view

ESView][] findAll(ESQuery)

Find multiple views matching the query

ESView[] findNext()

Return the next set of entries.

Class : ESViewStub

boolean contains(ESAccessor)

Check whether the view contains the service

void add(ESAccessor)

Add an accessor to the view

void clear()

Clear the view

void remove(ESAccessor)

Remove the service from the view

Class : ESVocabularyDescription

ESVocabularyDescription(ESConnection, ESXMLFile)

32 Developer Release 3.01 June 2000

Jesi Added APIs

Replaces the constructor where the parameters to the method were

ESXMLFile and ESConnection in that order.
ESVocabularyDescription(ESConnection, ESXMLFile, ESXMLFile)

Constructor to support the new xml schema.

Class : ESServiceDescription
ESServiceDescription(ESConnection, ESXMLFile, ESXMLFile)

Constructor to support the new xml schema.

Class : ESViewDescription
ESViewDescription(ESConnection, ESXMLFile, ESXMLFile)

Constructor to support the new xml schema.

Class : ESContractDescription

ESContractDescription(ESConnection, ESXMLFile, ESXMLFile)

Constructor to support the new xml schema.

Class : ESVocabularyDescription

void addProperty(ESProperty)
Add a vocabulary property as specified by the argument.

Class : ESVocabularyFinder
ESVocabulary[] findNext()

Find the next set of vocabulary in the list.

Developer Release 3.01 June 2000 33

Added APIs

Jesi

Class : ESVocabularyStub

ESAccessor[] getServices()

Return all the services in the vocabulary

ESProperty[] getProperties()
Return all the properties in the vocabulary

Class : ESXMLQuery

ESXMLQuery(ESConnection, ESXMLFile, ESXMLFile)

To support the new xml schema

Class : ESAbstractElement
void addPrivateData(String, byte[])
Moved from ESBaseDescription
void addPublicData(String, byte[])

Moved from ESBaseDescription

void setContract(ESContract)

Moved from ESBaseDescription

Class : ESAbstractFinder

void setSecurityLevel(boolean)

public boolean setSecurityLevel()

Set/Get the trust level. Based on this, a decision is made whether to obtain the
stub from the other end. By default, stub is picked from the local address space.

boolean hasMoreResults()

34 Developer Release 3.01 June 2000

Jesi

Added APIs

Class :

Class :

Check whether there are any outstanding results.
void setMaxToFind(int)
public int getMaxToFind()
Set/Get the maximum number to find.
void setCacheSize(int)

Setthe cache size

void setFindInCacheFlag(boolean)

Specify whether to use cache or not.

void setInterfaceVerificationFlag(boolean)

Specify whether the check for whether the correct interface is supported by
service should be made or not.

void setSearchLevel(int)

Specify whether the search is in local core or to the advertisingservice.

ESDelegatorImpl

abstract Object getHandler()

Return the object that ultimately handles the request
abstract void handleDone(Object)

Inform the delegator that reply has been sent back.

ESIceptor

ESIceptor()

Constructor for the class

abstract void initialize(Object)

Developer Release 3.01 June 2000 35

Depricated APIs Jesi

To be implemented by the sub-classes. This is called by the interceptor control
when the interceptor is initialized first.

public boolean invokeNext(ESRequest)

To be called by all the sub-classes, invokes the next interceptor in the chain.

Depricated APIs

The following APIs are depricated and most will be removed with the next release:

Class : ESAccessor

public ESAttribute[] getAttributes()

The attributes can belong to multiple vocabularies. Use getDescriptions() method
instead to get the vocabulary information also.

public Object getAttribute(String)

This returns the value of the attribute. Use getAttribute(String, ESVocabulary)
instead

void setAttributes(ESAttribute[] list, ESVocabulary vocab)

Use setDescription(ESBaseDescription) method instead.

Class : ESBaseDescription

AttributeSet getAttributeSet()

This method is intended for internal use. This method will be removed in the next
version.

Class : ESConnection

ESConnection()

36 Developer Release 3.01 June 2000

Jesi Depricated APIs

This constructor connects to default port and default host. Use ESConnec-
tion(Properties) for better flexibility.

ESConnection(String, int, String)
Use ESConnection(Properties) for better flexibility
ESShell getShell()

This method should not be used by application developer. This is used for internal
purposes. This API will be removed in the next version.

Class : ESContractDescriptior

void setInterfaceDefinition(String)

For better platform portability, use setInterfaceDefintion(byte[])instead.

Class : ESFolder

public ESFolder(ESConnection, ESServiceDescription, boolean)

Use ESFolder(ESConnection, ESServiceDescription, String, boolean) for better
control on folder names.

public void setName(String)

Suggested use is to do a getParent() and do a rename()

Class : ESQuery
ESQuery(ESVocabulary)
Use ESQuery(ESVocabulary, String)
SearchRecipe getRecipe()

This method is used for internal manipulations. This methodwill be removed in
the next version.

String getConstraint()

Developer Release 3.01 June 2000 37

Depricated APIs Jesi

This method is used for internal manipulations. This methodwill be removed in
the next version.

Class : ESServiceContext

ESCommunity getCurrentCommunity()

Use getCommunity() instead

Class : ESServiceElement

ESServiceElement(ESConnection, String)
Use ESServiceElement(ESConnection, ESServiceDescription) instead.
void update(ESServiceDescription)

Use update(ESServiceDescription[]) instead.

Class : ESServiceMessenger

Object[] sendSynchronous(Object)

Method for internal use. Use public Object sendSynchronous (ESAccessor,
Object) instead.

Class : ESVocabularyDescription
ESVocabularyDescription(ESXMLFile, ESConnection)

For sake of consistencys, this is changed to ESVocabularyDescription (ESConnec-
tion, ESXMLFile).

38 Developer Release 3.01 June 2000

The E-speak Security Model

This chapter describes the new Security features in e-speak Developer Release 3.01.

E-speak security implements a global distributed single sign on using Public Key
Infrastructure.

All entities in e-speak (users, services, cores etc.) now need to be identified by
public keys. Verification takes place by insuring the entity knows the private key
corresponding to the public key given.

Any entity can generate a key pair. For services to be used, a certificate (or certifi-
cates need to be obtained, granting access rights to the services

Certificates

E-speak certificates are signed (authenticated statements) linking the public key to
a name or attribute, which typically states the access rights.

To make an access control decision, a service does the following

¢ Examine the attribute in the certificate to see what access rights it grants
¢ Checks the entity making the request know the corresponding private key.
e Verifies the certificated has been issued (is signed by) and entry it trusts.

E-speak certificates are issued by Certificate Issuers (CI) which can issue two kinds
of certificates.

e Name Certificates

e Attribute Certificates

Developer Release 3.01 June 2000 39

Simple Public Key Infrastructure The E-speak Security Model

E-speak implements a split trust model. A service can trust a CI to issue certificates
to only a subset of the services operations and the services does not have to trust
every CI.

Simple Public Key Infrastructure

E-speak is an implementation of Simple Public Key Infrastructure (SPKI). It speci-
fies a structure and a set of operations on attributes and name certificates.

These attributes are called tags and are further explained in the section on Jesi.

Certain tags E-speak Tags are defined and checked for e-speak operations.

Service Identity

The servicelD is intended for use by applications to identify services without using
the resource name or access path (ESNames)

The serviceld field is a resource tag used to identify the service to the resource
handler.

If no servicelD is specified, the core substitutes a default serviceld.

The benefits of using a Serviceld are as follows:

40

Services ESNames can be changed without affecting authorization.
Authorization can be revoked by changing serviceld without changing ESName.
Service identity can be managed independently of persistence

In a replicated service, replicas can all have the same identity.

Developer Release 3.01 June 2000

The E-speak Security Model Undeliverable Requests

Undeliverable Requests

JESI

New in Developer Release 3.0 is that this condition is ignored for security reasons
and no exception is thrown. Instead applications must wait for a time out.

Allowing unauthenticated errors to be acted on allows for denial of service attacks
on the e-speak core.

Resource masks

Tags

The default behavior when security is enabled is to require authorization for all
operations. The masks are used to control this.

If a mask is set, operations matching the mask are permitted whether the
requestor is authorized or not.

There are two masks:
e Metadata mask
* Resource mask

Masks are specified as tags.

Tags are given in BNF format.
The basic method tag format is
(net .espeak.method <interface name> <method names)

In the metadata mask, the interface name is the core interface being specified, and
the method name is the operation in that interface.

Developer Release 3.01 June 2000 41

JESI The E-speak Security Model
For metadata, the interface is likely to be ResourceManipulationInterface, and the
method name one of its methods.

In the resource mask for a JESI service, the interface name is the fully-qualified
name of the interface class.

The method name is the name of the method in the interface, plus the concatenated
argument types. This allows overloaded methods to be distinguished.

The metadata mask is used by the in-core meta resource when performing metadata
operations.

The resource mask is passed to the service handler by the core for the service
handler to use when performing operations on the service itself.

The masks are completely general tags, so the mask tag itself, or any of its fields,
may use the tag matching features such as sets, prefixes and ranges. The interface
and method names, for example, do not have to be string literals, they can be sets
or prefixes.

This tag masks method foo in interface net.espeak.examples

ExampleIntf: (net.espeak.method net.espeak.examples.ExampleIntf foo)
This tag masks all methods beginning with foo:

(net .espeak.method net.espeak.examples.ExampleIntf (* prefix foo))
This tag masks methods foo and bar:

(net .espeak.method net.espeak.examples.ExampleIntf (* set foo bar))
Methods with prefix foo or bar:

(net .espeak.method net.espeak.examples.ExampleIntf

(* set (* prefix foo) (* prefix bar)))

All methods in the interface:

(net .espeak.method net.espeak.examples.ExampleIntf)

This is equivalent to

(net .espeak.method net.espeak.examples.ExampleIntf (*)) since
missing trailing elements match anything.

42 Developer Release 3.01 June 2000

The E-speak Security Model JESI

Methods foo in Interface A and bar in Interface B:

(* set (net.espeak.method Interface A foo)
(net .espeak.method Interface B bar))

All methods:

(net .espeak.method)
or simply

(*)

When we introduced method tags above, we skipped some details. The full form of
the method tag is actually:

(net .espeak.method <interface name> <method name> <services)

In the normal case, the service handler is only interested in its own operations, so
it does not care what the service field is. Since omitting a trailing field is equivalent
to giving it the value (*), we omitted this detail above.

When a message invoking an operation is received, the service handler extracts the
interface and method from it, and gets the service identifier from the information
passed to the handler by the core. The service handler then constructs a method tag
using this data and queries the service authorizer to see if the tag is authorized.

The authorizer first checks to see if the tag matches the resource mask, and if it
does, the operation is permitted. If the tag does not match the resource mask, the
authorizer uses the current security session to see if the tag is authorized.

Normal tag matching rules are used throughout, which is why we were able to omit
the service part of a mask tag above.

General tags can be constructed using the following method in ESSecurityEnv:
ADR createTag(String s) throws IOException

The IOException subclass net.espeak.security.adr.ADRParseException is thrown
on a parse error.

The parameter s is a string containing the input syntax for the tag.

Method tags can be created using ADR createMethodTag(String interfaceName,
String methodName, ADR service)

Developer Release 3.01 June 2000 43

JESI The E-speak Security Model
For the purposes of resource masks, it is usual to use a tag containing simply (*) as
the service parameter.

NOTE: In advanced applications the service may want to set the service
parameter to its service id, but this is not necessary.
After a mask tag has been constructed, it is used in ESAbstractElement methods:
void setResourceMask (ADR tag) throws ESException
void setMetadataMask (ADR tag) throws ESException
Before a service is registered these simply affect the local state. After registration,
these set the local state and update the service metadata.
Masking can be turned on or off using ESAuthorizer:
void setMasking(Boolean x)
When masking is off, the resource mask is ignored by the service authorizer even if
set.
NOTE: Setting masking off in the authorizer has no effect on the resource
metadata, or the in-core meta resource handling metadata operations.
Masking can be turned off completely, in the core and handler, by setting a mask to
null.
ESConnection has methods for controlling the default resource and metadata
masks used when services are registered:
void setDefaultResourceMask (ADR mask)
ADR getDefaultResourceMask ()
void setDefaultMetadataMask (ADR mask)
ADR getDefaultMetadataMask ()
void setMasks (ADR metadataMask, ADR resourceMask)
After a default mask is set, all resources registered use it until it is changed.
NOTE: Unless the default masks are set explicitly, ESConnection use null for them,
causing authorization to be checked for all operations.
44 Developer Release 3.01 June 2000

The E-speak Security Model XML

XML

Developer Release 3.01 June 2000 45

XML The E-speak Security Model

46 Developer Release 3.01 June 2000

Management

Two concepts that underpin the manageability of e-speak Resources and e-speak-
Clients.

e Managed State: a defined service state embodying the life cycle of a service.

e Managed Variable Table: sets of values that can be affected by a manager for the
purposes of configuration and control.

State Descriptions

Initializing
The internal dynamic state of the service is being constructed, for example: a policy
manager is being queried for configuration information and resources are being

discovered via search recipes or yellow pages servers. When the service finishes
this work, it moves asynchronously into the ready or error states.

Ready

The service is in a ready to run situation, this state is also equivalent to a stopped or
paused state.

Running

The service is running and responding to methods invoked on its operational inter-
faces. If an error occurs which implies that the service cannot continue to run it
should move into the error state.

Developer Release 3.01 June 2000 47

Management

Inputs

48

Error

The service has some problem and is awaiting management action on what to do
next.

Closed

The service has removed/deleted much of its internal state and awaits either a cold-
Reset or remove transitions.

An input is the trigger that causes a state transition to occur. In any given state there
is a defined set of permissible inputs that are available, i.e. only those that are
depicted in the diagram as leaving the current state and connecting with the next
state. To attempt to perform any other transition is illegal. Note that many inputs
can have the same name (e.g. error) yet there is no ambiguity as long as the origi-
nating state is different.

Clients can provide any input with impunity. However a management agent can
request only provide external inputs. For example, the manager might reasonably
request that a client perform a warm reset, but not to become ready, the client alone
can provide this input, i.e. when it's internal initialization process has completed.

The available inputs are as follows.

e start: move into the running state. Start to handle invocations on operational
interfaces.

e stop: move into the ready state. Stop handling invocations on operational inter-
faces.

¢ ready: move into the ready state having finished initialization.
e error: move into the error state, this transition is valid from any state.

e shutdown: clean up any internal state required and move into the closed state.
This transition should not cause the deregistering of resources from the reposi-

tory.

Developer Release 3.01 June 2000

Management

Managed Variable Tables

e coldReset: cause a from complete reinitialization of the service and move into
the initializing state. The only exemption is that resources that are already regis-
tered should not be reregistered.

e warmReset: cause a partial reinitialization of the service i.e. retaining some of
the existing service state move into the initializing state.

e remove: cause the service to remove itself from existence. Any non-persistent
resources should be deregistered from the repository.

Managed Variable Tables

A managed variable table is at it's simplest a table of name/string value pairs that
exist within the client but to which a manager has some level of access. Thus a
management agent can control those aspects of a services behavior that is affected
by those variables to which it has access.

There is a degree of configurability associated with managed variables and their
variables that permit something more sophisticated than the simple get and set
operations one would expect to find.

Each table itself has a name to distinguish it from other tables. As we shall see later,
the managed service model itself provides for two such tables.

There is a restriction on variable table usage: each name in a variable table must be
unique within that table. It is not possible to implement lists by having many entries
with the same name.

Configuration Parameter Table

The configuration parameter table is an instance of a managed variable table with a
reserved name that identifies it as such. The table holds generic configuration data
for the client.

Developer Release 3.01 June 2000 49

Managed Service Interface Management

Resource Table

The resource table is another instance of a managed variable table, identical in
behavior to the configuration parameter table except that the names in the client's
table refer to other services with which the client has some relationship. For exam-
ple, if a particular client makes use of a mail service then this relationship can be
made visible to a management agent through the resource table. Thus a manage-
ment agent might reconfigure the client to use an alternative but equivalent service.
While there might seem no obvious need to separate out this particular aspect of
configuration, doing so makes it possible for a management agent to discover the
topology and integrity of a network of connected services without the need for
service specific interpretation of the variable table (all entries in the resource table
are resources).

The name used for an entry in a resource table can be any symbolic name the client
chooses, while the value must be the valid e-speak ESName of the actual service.

Managed Service Interface

50

All e-speak Resources that are manageable implement the ManagedService inter-
face. This applies whether the Resources are external to the e-speak Core, or
Core-managed.

interface ManagedServiceIntf {
String getName ()
throws ESInvocationException;

String getDescription ()
throws ESInvocationException;

String getOwner ()
throws ESInvocationException;

String getUptime ()
throws ESInvocationException;

Developer Release 3.01 June 2000

Management Managed Service Interface

String getVersion()
throws ESInvocationException;

String getErrorCondition ()
throws ESInvocationException;

String getStaticInfol()
throws ESInvocationException;

void coldReset ()
throws IllegalStateTransition,ESInvocationException;

void warmReset ()
throws IllegalStateTransition,ESInvocationException;

void start ()
throws IllegalStateTransition, ESInvocationException;

void stop ()
throws IllegalStateTransition, ESInvocationException;

void shutdown ()
throws IllegalStateTransition, ESInvocationException;

void remove ()
throws IllegalStateTransition, ESInvocationException;

int getState()
throws ESInvocationException;

VariableEntry[] getVariableEntries()
throws ESInvocationException;

String[] getVariableNames ()
throws ESInvocationException;

Developer Release 3.01 June 2000 51

Managed Service Interface Management

52

VariableEntry getVariableEntry (String name)
throws ESInvocationException, NoSuchVariableName;

void setVariable (String name, String value)
throws ESInvocationException;

ResourceEntry[] getResourceEntries()
throws ESInvocationException;

String[] getResourceNames ()
throws ESInvocationException;

ResourceEntry getResourceEntry (String name)
throws NoSuchVariableName, ESInvocationException;

void setResource (String name, ESName resource)
throws ESInvocationException;

}

The method getName return String containing the service name. This name should
be used when registering the service resource in the service vocabulary.

The method getDescription returns a human readable description of the service for
display on a management console.

The method getOwner returns a string indicating the owner of the service.

The method getUptime gets the time for which the service has been running. The
format of the string is “years.days.hours.minutes.seconds”.

The method getVersion returns a string indicating the version of the service.

The method getErrorCondition returns a string indicating the error condition. This
returns null if the service is not in an error state.

The method getStaticInfo returns an XML document of the following form.

<staticInfo>
<name>the name of the resource </name>

<owner> the name nameof the onwning service </owners

Developer Release 3.01 June 2000

Management

Managed Service Interface

<description> the decription here </descriptions>
<version> the version string </version>

<uptime> the uptime string </uptimes>
</staticInfo>

The coldReset transistion function cause the service to move into the initializing
state and completely reinitialize. The exception IllegalStateTransitionException is
thrown if the state is not in the ready, error or closed states.

The warmReset transistion function cause the service to move into the initializing
state and partially reinitialize.The exception IllegalStateTransitionException is
thrown if the state is not in the ready or error states.

The start transistion function cause the service to move into the running state and
service client requests. The IllegalStateTransitionException exception is thrown if
the state is not in the ready state.

The stop transistion function cause the service to move into the ready state and stop
serving client requests. The exception IllegalStateTransitionException is thrown if
the state is not in the running state

The shutdown transistion function clean up any internal state required and move
into the closed state. This transition should not cause the deregistering of resources
from the repository. The exception IllegalStateTransitionException is thrown, if the
state is already in the closed state.

The remove transition function causes the service to remove itself from existence.
Any non-persistent resources should be deregistered. The exception IllegalStateT-
ransitionException is thrown if the state is not in the closed state.

The method getState return the current state: an integer value from 0 to 4.
The value returned is interpreted as follows.

e Initializing(0) - the service is constructing its internal data structures and finding
other services which is needs to function.

e Ready(1) - the service is fully constructed and ready to run.

¢ Running(2) - the service is running and handling methods on its operational
interfaces.

Developer Release 3.01 June 2000 53

Managed Service Interface Management

¢ C(Closed(3) - the service has deleted much of its internal state and closed any open
connections to files or other services.

e Error(4) - The service has encountered an error preventing the service from
continuing to operate.

The Variable table

Each manageable Resource maintains a table of name value pairs, which contains
whatever information that Resource wishes to expose to the management agent.
The table entries can be either read only or read write.

class VariableEntry {
String name;
String value;
int updateType;

}

The updateType is interpreted as follows (Dave Stephenson needs to provide
this information - E-mail sent awaiting response.)

The method getVariableEntries returns the table as an array of VariableEntry's.
Each VariableEntry object contains the name, the value & update information.

The method getVariableNames returns an array of strings - one element in the array
for each variable.

The method getVariableEntry returns the entry in the table for variable identified in
the parameter name.

The method setVariable sets the variable identified by the parameter name to the
string in the value parameter.

The Resource Table

The managed Resource maintains a table of name-Resource pairs. This table
contains all the Resources that the element depends on i.e. uses. The table entries
can be either read only or read write.

54 Developer Release 3.01 June 2000

Management

Managed Service Interface

class ResourceEntry {
String name;
ESName resource;
int updateType;

}

The method getResourceEntries returns the table as an array of ResourceEntry.
Each entry contains a string that name for the resource, the ESName of the resource
(URL) and the update information. The updateType is interpreted as (Need infor-
mation from David Stephenson. Mail sent awaiting response.)

The method getResourceNames returns an array of strings, one element for each
entry in the resource table.

The method getResourceEntry(String name) returns the entry in the table for the
named resource.

The method setResource sets the Resource identified by the name parameter to the
ESName supplied in the resource parameter.

Developer Release 3.01 June 2000 55

Managed Service Interface Management

56 Developer Release 3.01 June 2000

Web Access

This chapter briefly describes the new Web Access feature which allows program-
mers to construct HTML and SSL interfaces to the e-speak engine.

Web Access enables users to interact with the e-speak core or services through
standard web browsers, by returning HTML or XML documents in HTML or XML

Web Access is based on XML (Extensible Markup Language)

Web access provides the interface for e-speak to standard environments in the
Internet and XML-based e-Services solutions. Of particular interest are:

e Provide access to e-speak services through standard web browsers,
¢ Enable e-speak services acting as services in the web (web services),

¢ Allowing invocation of standard, non-e-speak enabled web services from
e-speak clients,

e Provide access from and to XML-based e-speak services,

e Allow e-speak services to interact based on the XML document exchange model
using various transports (HTTP, TCP, VPN connections).

The architecture of Web Access is defined in the Web Access Architecture Docu-
ment. Web Access internally uses “e-speak XML"1 to represent “content”.

The term “content” refers here to all kinds of information related to e-speak,
processed by Web Access and the e-speak core. It captures functions of the e-speak
core.

Examples are search queries in order to find e-speak services, vocabulary descrip-
tions, e-speak management information, service invocations and results passed
back to requesting services and so forth.

1 “e-speak XML refers to XML in accordance with the e-speak DTD/Schema definition

Developer Release 3.01 June 2000 57

Which Interface should I use? Web Access

“Content representation” (encoding) is different at different stages in the
system, and content needs to be transformed to interface with external systems.

The connection points to external systems are referred to as “adapters” (inbound)
and “agents” (outbound).

For instance, when a user requests a service discovery through a web browser, this
query arrives in Web Access as a HTTP FORM POST request. This representation of
the query content needs to be transformed into internal e-speak XML for further
processing.

Reversely, the result represented in e-speak XML needs to be transformed into
HTML as expected by the browser an sent back in the HTTP reply message. Prima-
rily for the browser interface, content needs to be presented visually. “Content
presentation” is a special kind of a transformation and is based on XSL style
sheet transformations.

Which Interface should I use?

58

Often, the first question to arise is whether to use the Web Access (XML) base inter-
face or Jesi (Java) based interface. Both provide similar functionality but with
totally different paradyms.

The Java Model is oriented toward traditional API interfaces.
Services are described by having an API or a set of APIs.

The client can make calls to discover services, retrieve a stub object and then
invoke the services. These are typically synchronous methods with calls to methods
producing results which the client waits on.

The XML Model, on the other hand, is a document based interface that is funda-
mentally asynchronous.

Services are described not by a set of APIs, but by a Schema which describes a set
of XML documents which those services can understand.

To find a service, a document defining the query for Services is sent to Web Access
which then returns a document describing the Services which fit the query criteria.

Developer Release 3.01 June 2000

Web Access Migrating Java to XML

Considerations

Computational Services

Computational Services fit well with the API style (Java) Model. For instance, the
Virtual File System is based on the Java model and exposes a core set of functional
methods (Read, Write, Open, Close) which can be invoked by a client.

Business Services

Informational, business or broker type services fit well with the document mode.
For instance the Book Broker Example included in the Appendices is a perfect
example of a service that is ideally suited to Web Access.

Interface Knowledge

The API Model typically assumes that the programmer has knowledge of the exact
interface at programming time, usually through importing the IDL definitions at
compile time to generate the stubs needed. This means that the interface must
remain immutable though the life of that version of the client. If the interface
changes or is extended, the clients must be recompiled to handle or take advantage
of the changes.

Changes or extensions in the document model can be discovered by the Client when
it downloads the Schema. On the one hand the document model requires some addi-
tional effort in parsing the Schema and handling different formats for documents,
but on the other hand this allows greater flexibility for the Client software since it
is possible to handle a wider range of changes with recompiling.

Migrating Java to XML

Considerations when Migrating an e-speak 2.2 client or server to Web Access are
mapping the Java APIs that were used to the schema.

Developer Release 3.01 June 2000 59

XML Architecture Web Access

Since all the APIs are exposed, it is actually possible to create an XML document
that caused the Java APIs to be called and the results passed back as another docu-
ment. This is not really using the attributes of XML, however it allows you more flex-
ibility because you are not tied to the IDL compiler, but can change your generated
document if the API interface changed. Unfortunately, it requires you to still know
all the interfaces and their parameters.

The pure document approach requires that you only know the schema and create
documents that refer to the schema.

In some cases, a service can publish its schema and you create an XML document
to request the Schema. This can be helpful if you find several services that satisfy
your query and they have different schemas.

Finally, keep in mind the asynchronous nature of XML. Not every request returns a
document, In Java, each request returns some value which leads to all synchronous
operations. Web Access only returns a document if the originating document gener-
ates a request that requires it.

XML Architecture

XML offers a robust solution as the underlying architecture for data in three-tier
architectures. XML can be generated from existing databases using a scalable
three-tier model. With XML, structured data is maintained separately from the busi-
ness rules and the display. Data integration, delivery, manipulation, and display are
the steps in the underlying process as summarized in the following diagram.

Three-tier Web architecture for flexible Web applications.

XML TYPE Layer

60

This layer provides the interface for mapping “arbitrary” XML into e-speak XML
following the e-speak DTD/Schema. The Content Transformation Layer transforms
content into XML. For cases, where content is already represented in XML, which
is not e-speak XML, the XML TYPE Layer needs to transform this XML into e-speak
XML by performing some transformation. These cases occur when e-speak inter-

Developer Release 3.01 June 2000

Web Access

XML Architecture

acts with other XML-based systems such as BizTalk. The Content Transformation
Layer only extracts XML from messages, and because content is already repre-
sented in XML, not apply any further transformation.

XML TYPE transformations are not within the scope of this document.

Functional Definition of E-speak Content

Content refers to e-speak functions accessible by services connecting to e-speak.
Currently supported functions are:

login

logout

register a service (based on a description and a URL)
unregister a service (based on a description or URL)
register / unregister a user

discover services (according to a description delivering all attributes and
values)

define a vocabulary (based on a list of attribute [name, type] pairs)

discover a vocabulary (based on a description in the default vocabulary deliv-
ering all attributes and types)

remove a vocabulary (based on description using the default vocabulary or
URL)

invoke a service (based on an API description)

(send an asynchronous message?).

Based on these basic functions e-speak provides, content representations can be
defined:

in e-speak XML (from an e-speak service, or to an e-speak service)

in general XML (for interaction with other XML-based services or frameworks)

Developer Release 3.01 June 2000 61

XML Architecture Web Access

e for web browser interaction (HTML FORM - FORM POST request -- HTML
result)

¢ from inbound HTTP services using FORM POST requests

e for interaction with a standard web site (send HTTP request -- get HTML
result)

e for interaction from an e-speak web servers

There is a representation matrix based on these dimensions.

=

| =

= =
= o)
= < Z
< o =
— Q (=} —
o » =) = o

— = 1) >

B Iy o > ® °>) 5
= = 2 =0 o = o =
= ° o=) S = =)
50 =) 50 = Kz S (= =
2 g el = ES) ES 2 o=
e-speak XML X X X X X X

web browser X X X X X X X X

inbound HTTP
POST requests

outbound HTTP

requests

Figure 1 Content Representation Matrix

The content representation matrix also defines transformations which are possible
to be done. If a transformation is requested not being defined in the content repre-
sentation matrix, an TransformationException is thrown by the transform()
method in the Transformation classes.

62 Developer Release 3.01 June 2000

Web Access XML Architecture

interface ContentTransformationIntf

Content transform(Content ct) throws TransformationException;

Developer Release 3.01 June 2000 63

XML Architecture Web Access

64 Developer Release 3.01 June 2000

Virtual File System

This chapter describes changes to the Virtual File System which entail the addition
of the Semantic File System, Generic Store services and Security.

In addition, many minor enhancements have been incorporated to augment the
robustness and functionality of the Virtual File System.

The Semantic File System

Addition of the SFSFolder. The Semantic File System folder allows the caller to
display a subset of the files in their cabinets based upon the semantics of the files.
By this we mean that a SF'SFolder specifies a constraint to describe which files
should appear in that folder.

For example, a constraint might be of the form:
"all files modified since May 5th, 2000 greater than 1000 bytes long"
When this folder is opened, only files that match this constraint appear in the folder.

This becomes more interesting if there are more attributes associated with each file.
There are two new mechanisms for doing this.

The first is the file store will lookup a service that can "filter" the file type being
processed. For example, if the file is a Microsoft Word Document, the file store
looks for a service that processes Word Documents. If it finds one, it passes the VFS
file to this service for processing.

Included in this release is an example filter service for Microsoft Office documents
which extracts the Microsoft provided properties of the office document. Attributes
such as Last Author, Page Count, etc., and extracted and stored as attributes to the
VFS file.

Developer Release 3.01 June 2000 65

Generic storage services Virtual File System

Now, using the SFSFolder you can create more interesting constraints such as:
"all files written by "my name" having more than 10 pages".

The second mechanism is for the application to associate a custom vocabulary and
attribute set with each file. This can be done through the standard J-ESI interfaces
to add attributes to a resource.

The VFS Browser uses this approach to allow the user to create a private vocabu-
lary and set attributes within this vocabulary.

See the SF'SFolder class in the package vfs.clientapi.

Generic storage services

66

The original VF'S was a Virtual File System.

But often the issue arises where users wanted to store more generic "documents"
into the same folder structure provided by VFS?

The solution was to provide set of abstract classes with the necessary interfaces to
communicate with the Virtual File System.

e VFSObject
e VFSStore

We've also created concrete classes which extend these abstract classes to re-
implement the File and FileStore objects. But now you can use these as examples
for creating your own store and objects.

For example, you may want to expose records in a database using VF'S.

You can create a new store which manages the rows in a table and a new Row class
that manages the contents of the row. The package vfs.server now contains the
abstract classes and vfs.server.filestore contains the implementation for the file
store service.

Developer Release 3.01 June 2000

Virtual File System

Security

Security

VF'S now uses the security features of e-speak to control access to folders and
objects.

Refer to the e-speak security document for more details on the underlying security
mechanisms.

Additional Enhancements

There are many smaller enhancements to VF'S to enhance functionality and increase
the robustness of the system

Please refer to the code or the Contributed Services Document chapter on VF'S for
more detailed information.

The VFS Browser has gone through more rigorous testing. It is still largely a
demonstration application, but it should fail less often.

The service interface classes are not fully ported to using the esidl compiler. The
value-added functions have been moved into concrete classes under the
vfs.clientapi package. All the other clientapi classes now return these new
concrete classes. So, where in Beta 2.2 the VFSFolder.getFiles returns
VFSFileStub classes it now returns VFSObject classes. VFSObject still
extends VFSObjectIntf, but adds all the non-service provided methods. Note that
the change from VFSFile to VFSObject is to reflect the generic store change
discussed above.

The VFSShell has undergone a complete rewrite to simplify the implementation
and provide more Unix-like command syntax.

The cabinet view has been re-instated now that ESView support has been added
to the J-ESI library.

The management interfaces have been updated to support the new management
interface.

XAM trace points have been added to the code base to track performance

Developer Release 3.01 June 2000 67

Additional Enhancements Virtual File System

68 Developer Release 3.01 June 2000

Glossary

Terms used in E-speak

The following is a quick reference of terms commonly used in referring to e-speak
Services, applications and APIs.

Term

Advertising Service

Arbitration policy

Attribute
Vocabulary

Base Vocabulary

Builder

Certificate

Developer Release 3.01 June 2000

Meaning

A service for looking up resources not registered in the local
Repository. It returns zero or more Connection Objects.

A specification within the search request accessor for
naming that provides the logic to resolve multiple matches
found for a name search.

See Vocabulary.

A Vocabulary provided at system start-up.

An entity identified by a Remote Resource Handler that is
used to construct the internal state of a Resource imported
by value.

A data structure assigning a Tag or name to a Subject.
Certificates are signed using cryptographic technigues so
they cannot be tampered with.

69

Terms used in E-speak

Glossary

70

Term

Certificate Issuer
(Cl))

Client

Client library

Connection
Manager

Contract

Core

Core Event
Distributor

Core-managed
Resource

Distributor Service

Event

Meaning

A service issuing certificates to Subjects.

Any active entity (e.g., a process, thread, service provider)
that uses the e-speak infrastructure to process a request for
a Resource.

The interface specification that defines the interface for
e-speak programmers and system developers that will build
e-speak-enabled applications.

A Logical Machine's component that does the initial
connection with another Logical Machine.

See Resource Contract.

The active entity of a Logical Machine that mediates access
to Resources registered in the local Repository.

A Core-managed Resource whose purpose is to collect
information on e-speak Events and make such information
available to management tools within the infrastructures.

A Resource with an internal state managed by the Core.
A service that forwards published Events to subscribers.

A message that results in the recipient invoking a registered
callback.

Developer Release 3.01 June 2000

Glossary Terms used in E-speak

Term Meaning

Event filter A subscription specification expressed as a set of attributes
in a particular Vocabulary that must match those in the Event
state in order for a Client to receive notification on publication
of an Event.

Event state Areference within an Event to its expressed set of attributes
in a particular Vocabulary. These attributes must match the
Event filter in order for the subscriber to receive notification
of the Event.

Explicit Binding An accessor that contains a Repository Handle.

Import Name A container that holds a name for each imported Resource.
Frame

Inbox A Core-managed Resource used to hold request messages

from the Core to a Client.

Issuer An entity issuing a certificate. The Issuer is denoted in a
certificate by its Public Key

Logical Machine A Core and its Repository.

Lookup request Resources with attributes matching the lookup request will
be bound to a name in the Client’s name space.

Lookup Service The component that performs lookup requests used to find
Resources that match attribute-value pairs in the Resource
Description of Resources registered in the Repository.

Developer Release 3.01 June 2000 71

Terms used in E-speak

Glossary

72

Term
Mailbox

Mapping Object

Message

Metadata

Name Frame

Name Search Policy

Outbox

Pass-by value

Principal

Private Key

Meaning
Either an Outbox or an Inbox.

An object binding an ESName to Resources or a Search
Recipe.

Means of Client-Core communication.

Data that is not part of the Resource's implementation, but
is used to describe and protect the Resource.

A Core-managed Resource that associates a string with a
Mapping Object.

A name conflict resolution tool used by the Core to find the
appropriate strings when looking up names in a Name
Frame.

The location where the Client places a message to request
access to a Resource.

A metadata field, which, when set to true, includes the state
of the Resource in the Export Form.

The entity holding the Private Key corresponding to a given
Public Key

This is secret data. An entity demonstrates knowledge of
this secrete data by cryptographic techniques to
authenticate itself. Private Keys must be kept secret

Developer Release 3.01 June 2000

Terms used in E-speak

Term

Private Security
Environment (PSE)

Protection Domain

Publish

Public Key
Public Key
Infrastructure (PKI)

Repository

Repository entry

Repository Handle

Repository View

Developer Release 3.01 June 2000

Meaning

A cryptographically secure store for Private Keys.

The environment associated with a particular Outbox from
which Resources can be accessed.

A request sent to the Distributor Service to publish Events.

Non-secret data that is associated with a given Private Key
by cryptographic techniques

A set of services and protocols that support the use of public
and private key pairs by applications for security.

A passive entity in the Core that stores Resource metadata
and the internal state of Core-managed Resources.

The metadata of a Resource as stored in the Repository and
made available to the Core when a Client’s requests to
access Resources are processed.

Anindex into the Repository associated with the metadata of
a Resource.

A Resource that can be used to limit the search for particular
Resources in a large Resource Repository, much as a
database view restricts a search within a database.

73

Terms used in E-speak

Glossary

74

Term

Resource Contract

Resource

Resource
Description

Resource Factory

Resource Handler

Resource Specific
Data

Resource
Specification

Session Layer
Security Protocol
(SLS)

Service Identity
(ServicelD)

Meaning

A Resource denoting an agreement between the Client and
the Resource Handler for use of a particular Resource. The
agreement includes a provision for the Client to use an API
known to the Resource Handler when making the request

for the Resource.

The fundamental abstraction in e-speak. Consists of state
and metadata.

The data specified for the Attribute field of the metadata as
represented by the Client to the Core. See also Resource
Specification.

An entity that can build the internal state of a Resource
requested by a Client.

A Client responsible for responding to requests for access to
one or more Resources.

A metadata field of a Resource. Carries information about the
Resource. Can be public or private to the Resource Handler.

Consists of all metadata fields, except the Attributes field, as
represented by the Client to the Core.

The low level message protocol used by all e-speak Cores

and Clients for remote commmunication.

A field in the metadata that identifies a service or Resource

Developer Release 3.01 June 2000

Glossary

Terms used in E-speak

Term

Simple Public Key
Infrastructure
(SPKI)

State

Subject

Vocabulary

Tag

Vocabulary Builder

Vocabulary
Translator

Developer Release 3.01 June 2000

Meaning

A specific variant of PKI developed within the Internet
Engineering Task Force and used by e-speak.

Data a Resource needs to implement its abstraction.

The entity to which the access right or name has been
issued. In a certificate the Subject is denoted by its Public
Key.

A Resource that contains the set of attributes and value
types for describing Resources.

The field in a certificate expressing an access right

A Core-managed Resource registered by the Lookup Service
that is used to create new value types, attributes, and
Vocabularies.

A reference to a mechanism that is used to provide
interoperation between different Vocabularies by mapping
attributes from one Vocabulary into another through a
Translator Resource.

75

Terms used in E-speak Glossary

76 Developer Release 3.01 June 2000

Resource Descriptions

E-speak makes a distinction between the data representing the state of a Resource
and the data describing the management of the Resource. The Core mediates access
to any registered Resource. However, e-speak is concerned only with the Resource
state of Core-managed Resources, not with the Resource state of
non-Core-managed Resources.

A Resource is described to e-speak by its metadata. The metadata is composed of a
Resource Specification and a Resource Description. The Resource Description
consists of information that provides the means of discovery for Clients. The
Resource Specification includes:

e AnInbox that can be connected to the Resource Handler responsible for manag-
ing the Resource

e A specification of the security restrictions
e A variety of control fields

A Client registers a Resource by sending a message to a Resource Factory contain-
ing a Resource Description and a Resource Specification.

Together, Resource Descriptions and Resource Specifications include all informa-
tion the Core needs to enforce the policies specified by the Client registering the
Resource. If the registration succeeds, the Core returns a name bound to this
Resource to the Inbox specified by the Callback Resource in the Outbox envelope.

Resource Specification

The ResourceSpecification class is defined below.

public class ResourceSpecification

Developer Release 3.01 June 2000 77

Resource Specification Resource Descriptions

boolean byValue;

ESName contract;

FilterSpec filter;

ADR metadataMask;

ADR resourceMask;

ADR ownerPublicKey;

ADR ServicelId;

ESMap privateRSD; //Not exported if export by reference
ESMap publicRSD;

ESName owner; //Not exported

ESName resourceHandler; //Not exported
int eventControl;

ESUID uid;

String URL;

}

The type ESMap is serialized as ESArray. The e-speak convention for ESArray is
that it consists of a sequence of pairs. Thus, the first and second element are a pair,
the third and fourth element are a pair, and so on.

The current implementation of ResourceSpecification uses the type
ResourceReference where ESName is given. ResourceReference is the
abstract base class for ESName. ESName and not ResourceReference is passed
by the e-speak Application Binary Interface (ABI).

The owner and resourceHandler fields are not included when the ResourceSpecifi-
cation is serialized for export, and the privateRSD field is only included in an export
serialization if the export is export by value.

boolean byValue;

78

If the byValue flag is True, the internal state of this Resource isincluded with the
Resource Specification and Resource Description sent to another Logical Machine.
The Core provides the value for Core-managed Resources. Currently, no mecha-
nism is defined for providing the value of non-Core-managed Resources.

Developer Release 3.01 June 2000

Resource Descriptions Resource Specification

ESName contract;

The contract field is the name of the Contract Resource associated with the
Resource. A Contract embodies the contract between the user and the provider of
a Resource. It denotes such things as the Application Programmer Interface (API)
passed through the payload of a message. Every Resource must be registered in
some Contract.

FilterSpec filter;

class FilterSpec{
ESSet Vocabularies;
String constraint;

}

The filter field consists of a set of vocabularies and a constraint. This is intended for
use by a service provider to register a constraint that can be evaluated to determine
if the Resource should be returned in response to an evaluation of a SearchRecipe
in alookup requestin a NameFrame. The constraint uses the UserProfile associated
with the client (xref to UserProfile). In this way a Resource can only be discovered
by certain Clients that satisfy the constraint.

ADR metadataMask;

The metadataMask controls which operations manipulating the Resource’s meta-
data have security disabled. The interface name in the metadataMask are always the
ResourceManipulationInterface. The format of the Resource Masks is specified in
(Chapter 4, “The E-speak Security Model”).

(The following text needs to be moved to the security chapter. It is here
because Steve is currently editing the security chapter.)

Masks are specified as tags. The basic method tag format is

(net .espeak.method <interface name> <method names)

Developer Release 3.01 June 2000 79

Resource Specification Resource Descriptions

80

In the metadataMask the interface name is the core interface being specified, and
the method name is the operation in that interface. For metadata this isthe
ResourceManipulationInterface, and the method name one of its methods. For the
resourceMask the interface name isone of the interfaces supported by the
Resource.

In the resource mask for an external Resource the interface name is the fully-quali-
fied name of the interface class. For a Core-managed Resource, the interface name
is the not qualified, so we just have “NameFramelnterface” and “ProtectionDomain-
Interface” etc. The method name is the name of the method in the interface, plus the
concatenated argument types. This allows overloaded methods to be distinguished.

The metadata mask is used by the in-core meta resource when performing metadata
operations. The resource mask is passed to the service handler by the core for the
service handler to use when performing operations on the service itself.

The masks are completely general tags, so the mask tag itself, or any of its fields,
can use the tag matching features such as sets, prefixes and ranges. The interface
and method names, for example, do not have to be string literals, they can be sets
or prefixes.

This tag masks method for interface net.espeak.examples. Examplelntf:
(net .espeak.method net.espeak.examples.ExampleIntf foo)

This tag masks method foo in interface net.espeak.examples.Examplelntf and
method bar in interface net.espeak.examples. ExampleZ2Intf

(net .espeak.method (*set
(net .espeak.examples.ExampleIntf foo)
(net .espeak.examples.Example2Intf bar)
)

)

This tag masks all methods beginning with foo:
(net .espeak.method net.espeak.examples.ExampleIntf (* prefix foo))
This tag masks methods foo and bar:

(net .espeak.method net.espeak.examples.ExampleIntf (* set foo bar))

Developer Release 3.01 June 2000

Resource Descriptions Resource Specification

Methods with prefix foo or bar:

(net.espeak.method net.espeak.examples.ExampleIntf
(* set (* prefix foo) (* prefix bar)))

All methods in the interface:

(net .espeak.method net.espeak.examples.ExampleIntf)
This is equivalent to

(net .espeak.method net.espeak.examples.ExampleIntf (*))
since missing trailing elements match anything.

All methods foo in Interface A and bar in Interface B:

(* set (net.espeak.method Interface A foo)
(net .espeak.method Interface B bar))

All methods:
(net .espeak.method)
or simply

(*)

ADR resourceMask;

The resourceMask determines which operations supported by the Resource has
security disabled.

ADR ownerPublicKey;

This field contains the owner public key.

ADR Serviceld;

This field contains the serviceld of the Resource.

Developer Release 3.01 June 2000 81

Resource Specification Resource Descriptions

ESMap publicRSD;

The first element in each pair of ESMap is a st ring used to tag the second element.
The second element is of type byte [1. The PublicRSD field (public
Resource-specific data) can be of interest to users of the Resource. Therefore, the
Client registering the Resource can include information in this field. It is an error if
either the tag or byte array is null or if the tags are not unique.

ESMap privateRSD;

The first element in each pair of ESMap is a string used to tag the second element.
The second element is of type byte []. The privateRSD field (private
Resource-specific data) is used by the Resource Handler when a Client sends a
message to this Resource. Therefore, the Client registering the Resource includes
information in this field. This data is delivered to the Resource Handler. The intent
is that only the Resource Handler have access to this data, but permission can be
granted to any task using the e-speak security mechanisms. It is an error if either the
tag or byte array is null or if the tags are not unique. This field is most often used to
carry the Resource Handler's designation for the Resource.

ESName owner;

The owner field is the ESName of the active Protection Domain of the Client that
registered the Resource. This field can be changed to another Protection Domain by

any Client that unlocks the proper permission. It is an error if the ESName is not
bound to a Protection Domain.

ESName Resource Handler;

Messages sent to this Resource isdelivered to this Inbox. This field is NULL for
Core-managed Resources. The Client that has connected to this Inbox receives
messages for this Resource. This field can be NULL only if the Resource being regis-

tered is Core-managed. It is an error if the ESName specified by the Client is not
bound to an Inbox.

82 Developer Release 3.01 June 2000

Resource Descriptions Resource Description

int eventCo

ESUID

String URL;

ntrol;

If eventControl is non-zero, then whenever the Resource metadata (the
Resource Description or the Resource Specification) is changed, an Event is
published to the Core’s Event distributor.

public class ESUID

{

}

An ESUID contains a byte array that is up to 64 bytes long. An ESUID is guaranteed
by probabilistic means. In the current implementation is consists of a

byte[] UniqueId;

a Core identity component and Resource identity component as well as an indica-
tion if the associated Resource is local or remote (imported). The Core identity is
unique (to a high probability) and is 20 bytes long. The Resource identity is unique
within a given Core and is 12 bytes long.

This field is the ESName (represented as a string) by which the registering entity
refers to the Resource. It is an ESName (URL) which others can use to access the
Resource.

Resource Description

ResourceDescription contains an array of Vocabularies and the attributes
associated with each. Clients can specify a search request and ask the Lookup
Service to find Resources with attributes that match the lookup request. An
attribute specification includes a Vocabulary in which to interpret the attributes
that describe the Resource.

ResourceDescriptionis an array of AttributeSet as shown below.

Developer Release 3.01 June 2000 83

Resource Description Resource Descriptions

public class ResourceDescription

{

AttributeSet [] attribSets;

}

Each element in the ESArray isan AttributeSet.

An AttributeSet consists of the ESName of a Vocabulary Resource and an
ESMap of name-attribute pairs.

The Vocabulary is one in which the attributes have meaning

The first element of an ESMap pair is a string, the second elementis an Attribute.
The string is the name of the Attribute. It is an error if ESName is not bound to a
Vocabulary or if Attributes or their values are not valid in the named Vocabu-
lary.

public class AttributeSet

{

ESName attrVocab;
ESMap attributes;

public class Attribute

{

String name;
Value value;
Boolean essential;

}

The name field is the name associated with Attribute. It can contain a single
value or a set of values (sets of values are not supported in the current release).

If essential is true, then this attribute must be included in any search request to
discover a Resource with this attribute in its Resource Description.

84 Developer Release 3.01 June 2000

Resource Descriptions

Resource type

Resource type

The e-speak Core associates a type with every Resource registered. The following
defines the currently recognized Resource types.

class resourceType{

static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int
static int

Developer Release 3.01 June 2000

INBOX_CODE = 0;
META RESOURCE_CODE = 1;

PROTECTION DOMAIN CODE = 2;
RESOURCE_FACTORY CODE = 3;
CONTRACT CODE = 100;
CORE_DISTRIBUTOR CODE = 110;
IMPORTER_EXPORTER CODE = 120;
MAPPING OBJECT CODE = 140;
NAME_FRAME CODE = 150;
REPOSITORY VIEW CODE = 160;
SECURE_BOOT CODE = 170;
SYSTEM_MONITOR CODE = 180;
VOCABULARY CODE = 190;
CORE_MANAGEMENT SERVICE CODE = 200;
DEFAULT VOCABULARY CODE = 210;
DEFAULT CONTRACT CODE = 220;
FINDER SERVICE CODE = 230;
CONNECTION MANAGER CODE = 240;
REMOTE_RESOURCE_MANAGER CODE = 250;
EXTERNAL_CODE = 1000;
EXTERNAL_RESOURCE_CONTRACT CODE = 1001;
INBOX CODE = O0;

META RESOURCE_CODE = 1;

PROTECTION DOMAIN CODE = 2;
RESOURCE_FACTORY CODE = 3;
CONTRACT CODE = 100;
CORE_DISTRIBUTOR CODE = 110;
IMPORTER_EXPORTER CODE = 120;
MAPPING OBJECT CODE = 140;
NAME_FRAME CODE = 150;
REPOSITORY VIEW CODE = 160;

85

Resource type

Resource Descriptions

86

static
static
static
static
static
static
static
static
static
static
static

int
int
int
int
int
int
int
int
int
int
int

SECURE_BOOT CODE = 170;

SYSTEM MONITOR CODE = 180;
VOCABULARY_CODE = 190;
CORE_MANAGEMENT SERVICE CODE = 200;
DEFAULT VOCABULARY CODE = 210;
DEFAULT_CONTRACT CODE = 220;

FINDER SERVICE CODE = 230;
CONNECTION MANAGER CODE = 240;
REMOTE_RESOURCE_MANAGER_CODE = 250;
EXTERNAL_ CODE
EXTERNAL_RESOURCE_CONTRACT CODE = 1001;

= 1000;

Developer Release 3.01 June 2000

XML Book Broker Example

XML Book Broker Example

An example demonstrates how e-speak can be used for service composition based
on existing services in the Internet. Assuming that not all services offered in the
Internet are e-speak enabled, it is in particularly important to support bridging
between different "service worlds". E-speak allows it by so-called proxy services.
Proxy services are regular e-speak services connected to an e-speak engine. Proxy
services provide the mapping between the e-speak service world and other service
worlds.

Today's services in the Internet are mostly designed for direct customer interaction
(b2c). Content and its presentation is mixed in HTML. The term content refers here
to the "bare information" about a subject such as the price and delivery information
of a book. Content is stored in databases behind the web servers. Presentation
means wrapping content into final HTML, including all information needed for the
dialog with the user (such as all the links the user can chose for the next dialog step,
session handling etc.). Since presentation is a major differentiator among web sites
with direct customer interaction, it is becoming more and more sophisticated and
overloads the actual content information making it difficult to build interacting
service applications (b2b) and service composition.

Search engines are early examples of application services obtaining and classifying
static content from web sites and offering searches on the cached content.
However, a big portion of content is dynamic today and not retrievable through
search engines.

Two major challenges need to be addressed in the web today in order to enable
dynamic service composition:

Developer Release 3.01 June 2000 87

XML Book Broker Example XML Book Broker Example

1 Content must be directly accessible through XML separate from its presenta-
tion in browsing devices,

2 Service composition cannot be based on cached content, content must be
obtained directly from the original service provider in "real time" on request.

XML allows keeping content and its presentation separate. Merging with the presen-
tation information can be processed at a late stage potentially in browsers. XML and
related technologies provide means to overcome handicaps service composition is
faced today. XML allows to:

1 Separate content from its presentation.

2 Use a common data format to represent both content (in XML) as well as its
presentation (XML/XSL).

3 Describe service provider specific, individual XML formats in XML itself by
XML schema. This opens a potential for generic translators rather than pair-
wise translators between XML formats.

4 Define commonly accepted semantics for schemas for various business areas
by common vocabularies as currently proposed by several working groups [1],
[2].

E-speak's vision is to provide a homogeneous platform for this upcoming world of
service composition in the Internet using the capabilities XML technologies
provide. However, there is still a way to go that providers in the Internet can open
direct access to their contents through XML.

The purpose of the Book Broker example is to demonstrate e-speak's vision of how
service composition becomes enabled in the near future as well as to demonstrate
what the possibilities and limitations are today. The Book Broker demonstration

software has been part of e-speak since release Beta 2.0 as complete source code.

Overview of the E-speak Book Broker Service

Three existing online bookstores are referred to as real, external service provides
in the Internet. All of them are not e-speak enabled. Proxy services must be repre-
sented by respective proxy services in e-speak. They are registered with the e-speak

88 Developer Release 3.01 June 2000

XML Book Broker Example

XML Book Broker Example

engine and discoverable based on attributes using an online bookstore vocabulary.
Proxy services run outside the engine. They are "dynamically plugable" by dynamic
registration with the e-speak engine and can be provided by a third party or by the
online bookstores themselves.

The overall architecture is shown in the following figure:

FatBrain

www.amazon.c

Barnes&Noble.c

www.fatbrain.co

HTTP /HTML 1 HTTP / HTML

Proxy-

Amazn

Proxy

Proxy
Barnes

HTTP / XML
HTTP / XML

Book |e—
Broker
Service [

Access

1 A~

ML

HTTP / XML

& HTTP/HTMLX

Client’
S

Client’
S

Figure 2 An Overview of the Book Broker Service

Developer Release 3.01 June 2000

89

XML Book Broker Example XML Book Broker Example

90

The main task of proxy services is to provide the bridge between non-e-speak
services accessible through HTTP and HTML and e-speak services connected
through XML. Eventually, the need for proxy services becomes obsolete when
online bookstores directly provide a XML content interface. Online bookstores can
then directly connect and register with e-speak omitting the need for proxy
services.

From an e-speak perspective, the Book Broker service itself is an external service.
It is connected to the e-speak engine and discoverable by clients (which can be
human users or other services) using a broker vocabulary. Clients are not aware of
how many bookstores have currently registered with the e-speak engine. They also
cannot directly interact with them. A client discovers the Book Broker service and
interacts with this service only. If multiple Book Broker services have registered
with the engine, the user (or the application) can chose one or work with multiple
of them.

The Book Broker service offers services such as "find all offers for a certain book".
Which offers finally are found depends on how many online bookstores have regis-
tered with the e-speak engine at a particular time and are currently accessible.
Online bookstores can connect and disconnect at any time. The number and kind of
bookstores varies over time. E-speak's dynamic service (un-)registration and
discovery directly reflects the dynamic nature of the Internet. The only assumption
is that services are described and registered using commonly shared vocabularies.
Vocabularies are discoverable themselves in the e-speak engine. They are described
by attributes defined in one of the "vocabulary vocabularies". The recursion of
vocabulary definitions is grounded by the base vocabulary.

When a client sends a book query to the Book Broker service, the Book Broker
queries the e-speak engine for currently registered online bookstores and forwards
the query to all of them in parallel, currently going through proxy services as shown
in the figure. The online bookstores process the query and return results to the
Book Broker service. The Book Broker service collects all results and returns a list
of book offers to the client. Web Access decide whether the internally used XML
should be returned to application clients directly or a XML to HTML (WML) trans-
lation is performed for browsing devices.

Developer Release 3.01 June 2000

XML Book Broker Example XML Book Broker Example

The functionality of the Book Broker service is currently not very sophisticated.
There is no negotiation and no participation in auctions. Enhancements are planned
for the future using protocols currently under development. However, even in its
current simplistic form, the Book Broker service provides some features which
differentiate it from existing "composition web-sites" or search engines:

1 Results are obtained based on real-time queries directly at the providing web-
sites, not based on pre-queried or cached information which can easily be out-
of-date.

2 There is no knowledge required in clients as well as in broker services about
which providers have currently registered and where and how they can be
contacted. This information is dynamically obtained from the engine's reposi-
tory per invocation request (per use). New service providers are automatically
found as soon as they have registered with the e-speak engine. Services becom-
ing unavailable are no longer discoverable and referred to as soon as their
description data disappears from the engine's repository.

3 Programs and business logic in clients and in broker services becomes freed
from connection states and configuration information about where and how to
interact with other service providers. The dynamic discovery of e-speak
enables on-time, up-to-date control flows between services unaware of each
other.

4 E-speak's Web Access performs all necessary translations between XML and
HTML or WML according to the needs of the client application or browser. XML
to XML transformations based on XSL are planned for future releases.

Book Broker DTD and XML Examples

The Book Broker uses XML to represent queries as well as the resulting book lists.
The format of this XML is defined in a simple Book Broker DTD:

< !DOCTYPE BOOKBROKERDTD [

<!-- E-speak Book Broker DTD -->
< !ELEMENT author (#PCDATA) >
<!ELEMENT title (#PCDATA) >

< !ELEMENT subject (#PCDATA) >

Developer Release 3.01 June 2000 91

XML Book Broker Example

XML Book Broker Example

92

< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT
< !ELEMENT

< !ELEMENT
< !ELEMENT
< !ELEMENT

1>

publisher (#PCDATA) >

isbn (#PCDATA) >

year (#PCDATA) >

offeredby (#PCDATA) >

price (#PCDATA) >

shipsin (#PCDATA) >

URLtoOrder (#PCDATA) >

comments (#PCDATA) >

bookdesc (author?,title?,subject?,publisher?,isbn?) >

bookoffer (author, title, publisher, year, offeredby,
price, shipsin?, URLtoOrder, comments?) >

booklist (bookoffer* |bookdesc+) >

queryresult (booklist) >

bookquery (booklist) >

Developer Release 3.01 June 2000

XML Book Broker Example XML Book Broker Example

e

¥ Book Buying - Melscape

File Edit “iew Go Communicator Help

e ¥ A D} s w3 & #

Back Fomward Reload Home Search Metscape PFrint Securty Stop

wt " Bookmarks Q& Location: Ista"sewIetsa’\v\r"ehﬂ.ccessa’callr’basic?T_l,Jpe=broker&N ame=books j ﬁ' wihat's Related

['{‘P HEWLETT [‘&P HEWLETT [‘&P HEWLETT [jﬂ EE;VKLEJE

PACKARD PACKARD PACKARD

e ‘speak

Book Buying Form

Author: First |Ernest Last IHemingway

Title [The Old Man and the Zea

subject |

Publisher |

Search Mow |

ISBN |

Search Mow |

= (== |Document: Dione

Figure 3 Query Screen presented in the Browser

The query for the shown book can be generated in a client application and sent to
Web Access in the body of a HTTP request. Or it can be generated from a browser's
FORM POST request from a query form as shown in Figure 2.

Web Access performs the necessary transformations into XML. An example of a
query in XML is shown below. Multiple queries can be submitted with one request:

Developer Release 3.01 June 2000 93

XML Book Broker Example XML Book Broker Example

94

<bookquerys>
<booklist>
<bookdesc>
<author> Hemingway </authors>
<title> The 0ld Man and the Sea </title>
</bookdesc>
</booklists>
</bookquery>

A XML representation of a returned result might be:

<queryresult>
<booklist>
<bookoffers>
<author> Hemingway </authors>
<title> The 0ld Man and the Sea </title>
<publisher> Bubble Book Publishing </publishers>
<year> 1996 </year>
<offeredby> Amazon </offeredbys>
<price> $16.95 </price>
<shipsin> 3 days </shipsin>
<URLtoOrder> http://www.amazon.com/.../ </URLtoOrders>
<comments> paper back </commentss>
</bookoffers>
<bookoffers
<author> Hemingway </authors>
<title> The 0ld Man and the Sea </title>
<publisher> Sky Publishing Company </publishers
<year> 1999 </years
<offeredby> Barnes and Noble </offeredby>
<price> $59.99 </price>
<shipsin> 1-2 weeks </shipsin>
<URLtoOrder>http://www.barnes.com/.../ </URLtoOrders>
<comments> special edition </commentss>
</bookoffers>
</booklist>
</queryresult>

Developer Release 3.01 June 2000

XML Book Broker Example XML Book Broker Example

The Book Broker service returns the resulting booklist to client applications in XML
without any modifications as response to the initial HTTP query request. For users
behind web browsers, the booklist is automatically translated into HTML or WML
by Web Access.

The resulting screen is shown in the next figure. In order to purchase a particular
book, the user can click on one of the URLs shown in Figure 3 and are directly
referred to the offer at the bookstore's original web site (<URLtoOrder> element in

the XML result document)
List - Netscape
it Wiew Go Communicator Help

T T S S = S
i Back Fonward Reload Home Search Metscape Print Security Stop -
7§ Bookmarks i Losation [t/servistsAwehicosss/calbasic?H ame=hookstType=bioker =] @507 What's Felated

e ‘speak 5

Book List

+ The Old Man and the Sea & Hemingway, Ernest, March, $8.00 , In-Stock: Ships within 24

hours

+ Old Man & Notes,Monarch&Hemingway, Ernest, Movember, $3.16 , In-Stock: Ships within 24

hours

- The Old Man and the Sea AR & Hemmgway Emest&ddams (Reader) Alexzander, Tune,

$14.36 , In-Stock: Ships within 24 hours

+ The Old Man and the Sea and Other Stories & Hemingway Emest&Kandinskey

(Reader), Wolkam, May, $72.00 , Special Order: Ships 3-5 weeks

+ El Wiejo ¥ Bl Marthe Old Man and the Sea & Hemingway, & Planeta Mexico, 6/1997, $595 |

Usually ships in 2 to 3 weeks

+ Old Man and the Sea, Large Print, First Edition & Hemingway, & G K Hall, 09/1994, $19.95,

Usually ships in 2 to 3 weeks

Bl

o | [Ducirment: Donz E el)

Figure 4 Final List of Book Offers returned to the Browser

Developer Release 3.01 June 2000 95

XML Book Broker Example XML Book Broker Example

Dependencies and Limitations

The current version of the Book Broker example has two main limitations:

e The Proxies are only capable to perform single-step invocations on the book-
store's web sites. This means that all invocation information must be delivered
(and accepted) in one HTTP request. It is currently not possible for proxies to
emulate a user stepping through multiple pages to the desired content. Some
web sites require these steps to be carried out in order to perform a login, to set
cookies or to collect user's information. The final HTTP request then requires
dynamic information as gathered while going through previous pages on the web
site. The three considered online bookstores do not require it.

e Another limitation is the dependency in the proxy code on the formats the
respective web-site accepts for invocations as well as for interpreting the result
obtained from the response.

As mentioned, the proxy services perform an encoding of the information obtained
from a XML book query into site-specific formats (URL parameters) of the HTTP
request issued by the proxy to the web-site. This information is usually contained in
the form page shown in a user's browser to make a selection. Since this form page
is loaded from the same web-site, the web-site can control and change the format of
the final HTTP request at any time. The proxy's programs currently hard coded one
particular format which needs to be adjusted when the web-site changes this
format.

The same applies for the results returned from the web-sites in HTML. The proxies
parse this HTML according to hard-coded rules in their programs. Programs need
to be changed when the web-site changes the presentation.

Both limitations are related to the problem of mixed content and presentation used
today in human user oriented web-sites. Both limitations as well as the need for
proxy services are overcome after web-sites open access to their content directly.
E-speak takes advantage of these upcoming changes in the Internet.

96 Developer Release 3.01 June 2000

	Introduction
	What’s new in Developer Release 3.01
	Changes to the E-speak Engine
	Client Library Programming APIs
	Java Client Library
	JESI

	Advertising Services
	Virtual File System
	System Management
	Web Access
	Current Feature Limitations
	Intended Audience
	Structure
	Conventions

	The E-speak Engine
	Persistence
	Secure dynamic firewall
	Support for Microsoft SQL 7.0

	Jesi
	Added Functionality
	Multiple vocabularies
	Multivalued attributes
	Interception
	View
	Find
	Threading policy
	Categories
	Security
	Account manager
	Faster restart

	Removed Functionality
	Persistent Scopes

	Added APIs
	Class : ESAccessor
	Class : ESAccountManager
	Class : ESAccountProfile
	Class : ESAttribute
	Class : ESBaseDescription
	Class : ESBaseServiceStub
	Class : ESCategoryFinder
	Class : ESCategory
	Class : ESConfiguration
	Class : ESConnection
	Class : ESContractDescription/ESContract
	Class : ESFolder
	Class : ESIceptorControl
	Class : ESProfileDescription
	Class : ESProperty
	Class : ESQuery
	Class : ESRemoteConnectionManager
	Class : ESRemoteServiceManager
	Class : ESRequest
	Class : ESServiceContext
	Class : ESServiceElement
	Class : ESServiceHandler
	Return the ESAccessor of the handler.
	Class : ESServiceStub
	Class : ESValue
	Class : ESViewDescription
	Class : ESViewElement
	Class : ESViewFinder
	Class : ESViewStub
	Class : ESVocabularyDescription
	Class : ESServiceDescription
	Class : ESContractDescription
	Class : ESVocabularyDescription
	Class : ESVocabularyFinder
	Class : ESVocabularyStub
	Class : ESXMLQuery
	Class : ESAbstractElement
	Class : ESAbstractFinder
	Class : ESAbstractFinder
	Class : ESDelegatorImpl
	Class : ESIceptor
	Class : ESServiceHandler
	Class : ESServiceStub
	Class : ESValue
	Class : ESViewDescription
	Class : ESViewElement
	Class : ESViewFinder
	Class : ESViewStub
	Class : ESVocabularyDescription
	Class : ESServiceDescription
	Class : ESViewDescription
	Class : ESContractDescription
	Class : ESVocabularyDescription
	Class : ESVocabularyFinder
	Class : ESVocabularyStub
	Class : ESXMLQuery
	Class : ESAbstractElement
	Class : ESAbstractFinder
	Class : ESDelegatorImpl
	Class : ESIceptor

	Depricated APIs
	Class : ESAccessor
	Class : ESBaseDescription
	Class : ESConnection
	Class : ESContractDescriptior
	Class : ESFolder
	Class : ESQuery
	Class : ESServiceContext
	Class : ESServiceElement
	Class : ESServiceMessenger
	Class : ESVocabularyDescription

	The E-speak Security Model
	Certificates
	Simple Public Key Infrastructure
	Service Identity
	Undeliverable Requests
	JESI
	Resource masks
	Tags

	XML

	Management
	State Descriptions
	Inputs
	Managed Variable Tables
	Configuration Parameter Table
	Resource Table

	Managed Service Interface
	The Variable table
	The Resource Table

	Web Access
	Which Interface should I use?
	Considerations

	Migrating Java to XML
	XML Architecture
	XML TYPE Layer
	Functional Definition of E-speak Content

	Virtual File System
	The Semantic File System
	Generic storage services
	Security
	Additional Enhancements

	Glossary
	Terms used in E-speak

	Resource Descriptions
	Resource Specification
	boolean byValue;
	ESName contract;
	FilterSpec filter;
	ADR metadataMask;
	ADR resourceMask;
	ADR ownerPublicKey;
	ADR ServiceId;
	ESMap publicRSD;
	ESMap privateRSD;
	ESName owner;
	ESName Resource Handler;
	int eventControl;
	ESUID
	String URL;

	Resource Description
	Resource type

	XML Book Broker Example
	XML Book Broker Example
	Overview of the E-speak Book Broker Service
	Book Broker DTD and XML Examples
	Dependencies and Limitations

