
Programmer’s Guide

Developer Release 3.01
June 2000

COPYRIGHT NOTICE

© 2000 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this document is provided "AS IS" WITH NO EXPRESS
OR IMPLIED WARRANTY: permission to copy, modify, and distribute this document for
any purpose is hereby granted without fee, provided that the above copyright notice and
this notice appear in all copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution of this document without
specific, written prior permission. Hewlett-Packard Company makes no representations
about the suitability of this document for any purpose.

Contents
Chapter 1 The Basics. 1

About This Document . 1

Introduction . 2

Programming Model . 5

A Simple Example . 10

Chapter 2 Basic Services .19

Getting Connected to E-speak . 19

E-speak Services . 23

Client: Finding Services . 28

Service Deployer: Creating Services 41

Service Description . 42

Accessing Descriptions: ESAccessor 67

Chapter 3 Extended Services .71

Managing Bindings Using Folders 71
Developer Release 3.01 June 2000 i

Repository Views . 79

Categories . 80

Communities . 84

Security . 92

Events . 100

Appendix A Thread-Safe Programming: ESThread. 109

Appendix B Messaging Classes . 113

Appendix C IDL Compiler . 115

Generating code . 115

Input Files . 116

Output Files . 117

Command Line Parameters . 117

IDL Requirements . 118

Appendix D Interceptors. 121

Appendix E Account Manager . 125

Programming Model . 125

A Simple Example . 126
i i Developer Release 3.01 June 2000

Appendix F E-speak Security .131

Introduction . 131

Bootstrap process for testing . 133

Configuration files . 135

Appendix G Firewall Traversal. .141

Architecture . 141

Appendix H Management .147

Introduction . 147

Managed Service Model . 148

Managed Service Programmers Guide 154
Developer Release 3.01 June 2000 ii i

iv Developer Release 3.01 June 2000

Chapter 1 The Basics
About This Document A

This document describes the E-speak Service Interface for Java programmers
(J-ESI), pronounced J-Easy, that is used by Clients to program on the e-speak infra-
structure. The document explains the programming model for Clients of the e-speak
infrastructure. This document contains the following chapters:

• Chapter 1 provides an overview of the J-ESI, the programming model, and the
different Services provided in e-speak.

• Chapter 2 explains how to connect with e-speak, and how the Client and the
Service provider create and use Services.

• Chapter 3 explains folders, communities, categories, security, views, and events.

• Appendix A explains thread-safe programming concepts.

• Appendix B describes the messaging Application Programming Interfaces
(APIs).

• Appendix C describes the command line invocation of the IDL compiler.

• Appendix D describes the interceptor mechanism in J-ESI.

• Appendix E describes the account manager in J-ESI.

• Appendix F describes the security bootstrap mechanism.

• Appendix H describes how services can be deployed and accessed across fire-
walls.

• Appendix H describes how to create managed e-speak services and monitor
them.
Developer Release 3.01 June 2000 1

Introduction The Basics
Introduction A

Traditionally, distributed applications have been viewed as applications that are
run over multiple computers in a local domain. As a result, distributed environ-
ments have been geared toward tightly coupled applications. However, these envi-
ronments do not meet the requirements of application deployment and interaction
in the Internet domain.

Applications in the Internet domain are better characterized as Services. A Service
is a piece of software that is not tightly coupled with Client applications. Services
are dynamically discoverable and composable entities. E-speak allows building
such loosely coupled, distributed services by supporting the notion of a Service

interface, a Service description that enables Services to be discovered, and by
mediating access to Services.

The e-speak infrastructure provides clear segregation of the roles played by differ-
ent entities in enabling a robust Service ecosystem. The entities involved in defining
Service ecosystems are categorized as follows:

• Service standards bodies: Standardization bodies define and publish standard-
ized interfaces for different Service categories that are used by Service develop-
ers to write Services conforming to the standardized interface.

For example, a standards body may define a generic printer Service interface to
contain the following invocation points: print(), and status(). Any Service
provider interested in providing a printer Service writes their Service to support
this interface.

In addition, the standardization body is responsible for identifying the Vocabu-
lary used to describe a Service. The Vocabulary describes the attributes that are
used to uniquely describe a Service. For example, a printer Vocabulary includes
attributes such as Manufacturer, Modelname, DPI and so on (perhaps using
XML) that is used by service deployers to advertise this Service, and queried by
Clients to discover it.
2 Developer Release 3.01 June 2000

The Basics Introduction
• Service developers: These are the developers of the actual Service implementa-
tion. Service developers design their Service to comply with the programmatic
Service interfaces published by the standards bodies. Service developers are
also able to wrap existing legacy applications so that they can be made available
as services in the e-speak infrastructure.

• Service deployers: Service deployers are responsible for deploying the Services
created by the Service developers. They are responsible for advertising the
Services in the appropriate Vocabulary and also for handling requests to the
Service.

• Service administrators: These administrators are responsible for monitoring,
administering, and controlling the Service deployment.

• Service Directories: These directories are places where service providers and
clients can advertise and find other services that are of interest to them.

This segregation of roles allows the Service developers to concentrate on the busi-
ness logic of the Service that they are developing, the Service deployers to concen-
trate on advertising and handling requests to the Service, and the administrators to
administer the Service. Furthermore, the existence of service directories greatly
simplifies the process of building new composite services by providing a place
where services can find other services. An example of such a service directory is
accessible from the e-speak.hp.com site that each e-speak installation points to by
default.

J-ESI acts as the Java system call interface to the e-speak Core for all the above enti-
ties. The Core is the active entity of e-speak that acts as the mediation layer and
routes messages to Services.

Figure 1 shows a typical interaction between Clients and Service providers in an
e-speak community. An e-speak community consists of a number of Cores
connected to each other. Clients and Service providers join the community through
these Cores.

Clients search for Services registered in the community, and when they are success-
ful, they gain access to the Service using a Service proxy (stub) of the discovered
Service.

The Clients need to know only the interface of the Service in order to invoke
object-oriented functions (methods) on it.
Developer Release 3.01 June 2000

 3

Introduction The Basics
Unlike other distributed computing infrastructures, where the infrastructure is
used only to locate the remote stub, in e-speak all subsequent accesses are medi-
ated by the infrastructure. This mediation allows the infrastructure to enable very
flexible security mechanisms that can be used to implement a wide variety of secu-
rity policies. It also permits better management of the Services in the community for
accounting, auditing, and billing purposes. The e-speak architectural specification
has a description of the security features in e-speak. However, this release of J-ESI
exposes only few security-related APIs.

Figure 1 Typical interaction between Clients and Service providers

Community

e-speak
core

e-speak
core

Service 1

ESService

ESConnection
4 Developer Release 3.01 June 2000

The Basics Programming Model
Programming Model A

The primary goal of e-speakk is to simplify the development, deployment, and
management of communities of Services on the Internet. To accomplish this,
e-speak provides three basic abstractions:

• Services

• Service Contracts

• Service Vocabularies

In addition to these abstractions, e-speak provides system Services that enable
Clients to write e-speak Services using J-ESI.

E-speak Services A

Essentially, Services are programs written in a programming language such as Java,
C, Perl, and C++. Although J-ESI makes use of some Java features, the e-speak infra-
structure itself is not limited to any particular language. For example, a Service
registered using J-ESI can be accessed from a Perl/Python script by using the appro-
priate e-speak library. Figure 2 illustrates the relationship between Services, their
Contracts, and their Vocabularies.
Developer Release 3.01 June 2000

 5

Programming Model The Basics
Any e-speak Service conforms to its Contract because by design, it implements the
interfaces that are outlined in its Contract. In addition, the Service is advertised in
an appropriate Vocabulary.

Service Vocabularies essentially provide the scheme for constructing the descrip-
tion of the Service. All three abstractions, Services, Contracts, and Vocabularies,
are first-class entities in e-speak. By decoupling Services from the Contract and the
Vocabulary, e-speak allows Service implementors (who develop the actual Service
implementations conforming to certain Service Contracts) to be independent of
Service deployers (who simply advertise the Service in a well-known Vocabulary).

Clients are not dependent on the Service developer and deployer to communicate
the Service Contracts and Vocabularies with which these Services have been
described.

Figure 2 Relationships among Services, Contracts, and Vocabularies

Simple service

Base vocabulary

Conforms to
Advertised in

Vocabulary contract

Base contract

Conforms to

Service Description
6 Developer Release 3.01 June 2000

The Basics Programming Model
The Service deployers register their Services with a group of e-speak Cores. On
registering a Service, this Service is discoverable by others in the same e-speak
group of Cores.

Clients use the default e-speak finders that are provided with J-ESI, or write their
own finders to find Services that meet their requirements. The access permissions
of the Service determine the Services that will be visible to the Clients. On finding
Services, Clients receive a remote stub to the Service.

Service Contracts A

Each e-speak Service implements a set of interfaces defined in a Service Contract.
These interfaces are often defined using the e-speak IDL, which is similar to the
Java-RMI IDL. (See Appendix B, “Messaging Classes”, for additional information.)
Service Contracts are first-class entities that can be discovered and used like any
other Service. All Service Contracts support a base set of interfaces that provide
mechanisms to create and query them. As a result, Contracts also can be advertised
in a well-known Vocabulary—typically by a standardization body.

Service Vocabularies A

A Vocabulary consists of a set of associated attributes and properties. The only
properties associated with any attribute are the name of the attribute and the type
of values to which these attributes are assigned. The structure of a Vocabulary is
dependent on the vertical market for which it is defined.

For example, the Vocabulary used to define a printer with attributes such as manu-
facturer, model name, DPI, speed, color, and cost is quite different from the Vocab-
ulary that defines apparel merchandise that has attributes such as size, color,
material, and cost.

Though some of the attribute names may be the same across Vocabularies, they
may have different semantics. The attribute color in the Printer Vocabulary may be
a boolean expression that indicates whether the printer supports color printing;
however, the attribute color in the Apparel Vocabulary may indicate the actual color
of the piece of clothing.
Developer Release 3.01 June 2000

 7

Programming Model The Basics
Because Vocabularies are first-class entities, Clients and Services alike can find
these Vocabularies registered in the community and subsequently make use of
them. New Vocabularies are typically advertised using the Base Vocabulary that is
available in the e-speak infrastructure.

This Base Vocabulary defines a set of attributes that are generic and can be used by
generic Services in markets that do not have well-defined Vocabularies. All Services
registered as a Vocabulary conform to the Vocabulary Contract that defines the
operations that can legally be performed on Vocabularies.

E-speak System Services A

In addition to the base abstractions of Vocabulary, Contracts, and Services, J-ESI
supports a set of base and extended services that makes the job of deploying and
using Internet-wide Services simple.

Basic Services
These are the basic set of Services that are required to get connected to the e-speak
infrastructure and to create and find new user-defined Services. These Services
include the following:

• Connection—A connection Service is used to connect and disconnect from the
e-speak infrastructure.

• Vocabulary—A Vocabulary Service allows the creation of new Vocabularies
and queries the properties of existing Vocabularies.

• Contract—The Contract Service is used to create and use Contracts.

• Elements and Finders—Service elements are used to register Services with
the Core, while Service finders are used to find Services.

Extended Services
• Events—This Service defines a distributed Event Publisher-Subscriber model

for Events. Events are distributed by a Distributor across any number of
connected Cores.
8 Developer Release 3.01 June 2000

The Basics Programming Model
• Community—This Service enables discovery of Services across multiple
e-speak cores. Communities are Client-side abstractions of collections of groups
that form the search domain. The Community is a collection of member core
groups identified by group names.

• Folders—The Folder Service allows users to manage their Services (discovered
or created) similar to how they manage local files in a standard operating
system. Persistent folders appear on reconnecting and act very much like orga-
nized hierarchically persistent bookmarks.

Client-Service Interaction A

As described earlier, Clients find a Service using attributes described in the Service
Vocabulary. The return value of the find() call is a Service stub that extends
ESService and implements the operational interface specified in the find.

When Clients discover a Service, they have to specify the interface they want to use.
The stub is the Client-side abstraction of a Service that implements this interface.
The Service provider’s abstraction of the Service is a Service element as repre-
sented by the class ESServiceElement.

The Service element has, among other things, the description of the Service, the
description accessor of the Service to mutate the description, and the actual imple-
mentation of the Service. It also has information about the handler of the Service,
including the queue on which messages to this Service will be sent and the number
of threads servicing requests to this Service.

For example, if a Service provider wants to make an existing, stand-alone applica-
tion (such as PrinterServiceImpl), an e-speak Service, performs the following
actions:

1 Define or modify the interface that describes the Service interface to conform
to e-speak IDL.

2 Create a new ESServiceElement.

3 The Service deployer provides the description of the Service in a Vocabulary,
along with the implementation of the Service such as the object PrinterSer-
viceImpl to the Service element. The element also contains the description
Developer Release 3.01 June 2000

 9

A Simple Example The Basics
accessor of the Service that can be used by the deployer to query or modify the
description of the Service.

4 After performing these actions, the deployer can use the Service element to
start the Service. The deployer can also control the concurrence of the Service
by changing the number of threads that process the requests for this Service.
The message queue and threads are controlled by a Service handler.

Clients, on the other hand, create instances of a stub to the Service when they do a
find by using the e-speak finder service. They typically refer only to the interface
that the stub implements and invoke methods in that interface. Clients could also
choose to use the messaging APIs to communicate with Services.

A Simple Example A

The following section provides a simple example of an e-speak Service written
using J-ESI that illustrates some of the basic ideas in the e-speak infrastructure.

Client Service Discovery A

A Client first creates a new connection to an e-speak Core. After connecting to the
Core, the Client can look up or register Services. The Client locates a Service that
satisfies a constraint expressed with attributes in the default Vocabulary. The result
of the find Service is a stub (or proxy) to the Service provider’s Service. Clients can
use this stub as a network object reference and directly invoke methods on the
Service (see Figure 3).
10 Developer Release 3.01 June 2000

The Basics A Simple Example
Client Service Usage A

Clients interact with the Service with the set of interfaces for which stubs are avail-
able in the Client address space. Clients can preinstall the Service stubs that are
generated using the e-speak IDL stub generator, or they may acquire the stub class
from the Service provider by other means. From the Client’s perspective, the nature
of the Service provider is insignificant beyond the requirement that it implement the
interface and that its attributes satisfy the query that the Client made.

When a Client invokes an operation, a well-defined e-speak custom serialization is
used to ship the invocation to the target Service through the mediating e-speak
infrastructure. In so doing, all method invocations are effectively mediated. This
remote invocation will work across languages and platforms, because the basic
architecture does not depend on Java. The following code fragment illustrates a
very simple find-and-use scenario. The Client finds a Service whose name is
printer and invokes the print method on it.

Figure 3 Client and provider Core relationship

Service providerClient
E-speak service

E-speak core

Service Finder
Developer Release 3.01 June 2000

 11

A Simple Example The Basics
ESConnection coreConnection = new ESConnection();

String intfName = PrinterServiceIntf.class.getName();

ESServiceFinder printFinder =

new ESServiceFinder(coreConnection, intfName);

ESQuery printQuery = new ESQuery(“Name == ‘printer’”);

PrinterServiceIntf printer =

(PrinterServiceIntf) printFinder.find(printQuery);

printer.print(document);

Figure 4 shows that the e-speak Core is located between the Client and the Service
provider. In general, many Cores may lie between the Client’s Core and the Core
where the Service provider is registered.

Figure 4 The e-speak Core

Service provider

Client

E-speak service

E-speak core
12 Developer Release 3.01 June 2000

The Basics A Simple Example
Service Creation A

A Service provider is primarily interested in implementing a Service interface to
comply with the Contract and in advertising the Service in an appropriate Vocabu-
lary. The Service provider first connects to the e-speak Core. The provider then
creates a Service element with a description of any Service Vocabularies and
Contracts.

The register() method of ESServiceElement is used to register this Service with
the e-speak Core. The Service element object also supports certain management
APIs that allow the Service provider to start, stop, and query the status of the
Services encapsulated in this Service element:

ESConnection coreConnection = new ESConnection();

ESServiceDescription printDescription = new ESServiceDescription();

printDescription.addAttribute(“Name”,”printer”);

ESServiceElement printElement =

new ESServiceElement(coreConnection,printDescription);

PrinterServiceImpl printerImpl = new PrinterServiceImpl();

printElement.setImplementation(printerImpl);

ESAccessor printAccessor = printElement.register();

printElement.advertise();

printElement.start();

This code fragment creates a simple Service called printer that is implemented
by a class called PrinterServiceImpl. The only attribute used in this example
is the name of the Service that is set using the addAttribute method of ESSer-
viceDescription. Clients can create more complex descriptions using custom
Vocabularies, which are described in later chapters.

Once the start method in the Service element has been called, the printer Service
is available for other Clients in the community to access. The actual implementation
of the Service is independent of the e-speak infrastructure. In fact, the implementa-
tion can very well be legacy code potentially written in any language.
Developer Release 3.01 June 2000

 13

A Simple Example The Basics
The advertise call in the code causes the description of the service to be advertised
in the advertising directories that have been set up. By default, J-ESI advertises the
description of the service to the e-services village service directory. Note that the
advertising service has to be started separately in order for the advertise call to
function appropriately.

Complete Example A

This section puts together the basic ideas of e-speak into a simple end-to-end exam-
ple that illustrates the sequence of steps that have to be taken on the Service
provider and Client side to provide and access Services.

Typically, users have access to the IDL that defines the interface that the Service
implements. In this example, the Clients and Service providers are assumed to have
installed the stubs by virtue of having access to the IDL file as well as the IDL
compiler. Although dynamic loading of the stubs is not directly supported, it can be
implemented in user applications using standard Java class loaders, and will also be
supported in the next J-ESI release that incorporates the e-speak security features.

The e-speak IDL is similar to the Java-RMI IDL. Therefore, the contents of the IDL
files look similar to Java interface files. These IDL files must have a .esidl extension
for the IDL compiler to recognize them as e-speak IDL files. The IDL specifications
are found in Appendix B, “Messaging Classes”.

PrinterServiceIntf.esidl
The following is a sample esidl file that defines the interface to a printer Service that
has two methods: status and print.

public interface PrinterServiceIntf {

public String status()

public void print(String text)

}

The IDL compiler generates the following files, all of which are used by J-ESI:

PrinterServiceIntf.java,

PrinterServiceStub.java, and

PrinterServiceMessageRegistry.java
14 Developer Release 3.01 June 2000

The Basics A Simple Example
Except for some minor changes, such as marking the generated interface as an
e-speak interface, the Service PrinterServiceIntf.java is a copy of Print-
erService.esidl.

PrinterServiceStub.java is the stub class that the finder returns to the Client
when it finds a Printer Service.

For every method defined in the interface, the stub class contains code to create a
message, marshal parameters, and send it to the Service provider. PrinterSer-
viceMessageRegistry.java does not need to be used by the Client directly,
but is used by J-ESI.

PrinterServiceImpl.Java
When the IDL file is passed through the IDL compiler for Java, it produces an equiv-
alent Java interface file. The Service implementor implements this Java interface.
Therefore, the Service implementor’s class (using PrinterServiceImpl as an
example) looks as follows:

public class PrinterServiceImpl implements PrinterServiceIntf

{

public String status()

throws ESInvocationException

{

// Implementation to return the printer status

}

public void print (String text)

throws ESInvocationException

{

// Implementation to print the document sent by user

}

}

The Service deployer advertises the Service and handles requests to the Service.
The following code fragment is written by the Service deployer:

public class PrintServer

{

Developer Release 3.01 June 2000

 15

A Simple Example The Basics
public static void main(String [] args)

{

try

{

ESConnection coreConnection = new ESConnection(“file.pr”);

ESServiceDescription printDescription =

new ESServiceDescription();

printDescription.addAttribute(“Name”,”printer”);

ESServiceElement printElement =

new ESServiceElement(coreConnection, printDescription);

printElement.setImplementation(new PrinterServiceImpl());

printElement.register();

printElement.start();

System.out.println("Started printer Service ");

}

catch (Exception e)

{

// handle the exception

}

}

}

The Client also runs the IDL compiler to generate the interface and stub files, and
makes use of the interface in the program. For instance, a Client discovers and uses
the printer as follows:

public class PrintClient

{

public static void main(String [] args)

{

try

{

ESConnection coreConnection = new ESConnection(“file.pr”);

String intfName = PrinterServiceIntf.class.getName();

ESServiceFinder printFinder =

new ESServiceFinder(coreConnection, intfName);

ESQuery printQuery =

new ESQuery(“Name == ‘printer’”);
16 Developer Release 3.01 June 2000

The Basics A Simple Example
PrinterServiceIntf printer = (PrinterServiceIntf)

printFinder.find(printQuery);

String document = getDocument();

printer.print(document);

System.out.println(printer.status());

}

catch (Exception e)

{

// handle the exception

}

}

}

This class is all that is required of a client application developer to find and use an
example printer service.
Developer Release 3.01 June 2000

 17

A Simple Example The Basics
18 Developer Release 3.01 June 2000

Chapter 2 Basic Services
This chapter explains the basic Services available within e-speak. The chapter
contains the following sections:

• Getting Connected to E-speak

• E-speak Services

• Client: Finding Services

• Service Deployer: Creating Services

• Service Description

• Accessing Descriptions: ESAccessor

Getting Connected to E-speak B

The simple example in Chapter 1 shows that pure Clients (e-speak Clients who use
found Services rather than creating their own Services) and Service providers who
provide Services have to connect to the e-speak infrastructure to access or provide
Services. Because both pure Clients and Service providers are Clients of the e-speak
infrastructure, they are often referred to collectively as e-speak Clients.

ESConnection B

In J-ESI, the connection between Clients and the e-speak infrastructure is repre-
sented by an ESConnection. Clients create a new instance of ESConnection
when they want to connect to the e-speak infrastructure. Clients insert all of the
Developer Release 3.01 June 2000 19

Getting Connected to E-speak Basic Services
relevant information needed for connecting to the e-speak infrastructure in a
configuration file that is passed as an argument to the constructor of the ESCon-
nection.

The default constructor for the ESConnection connects to an e-speak Core that is
running on the local machine and is listening to requests on a port defined in the
ESConstants file. Clients can also insert the name of a properties file that has the
values of the properties that are relevant to establishing the connection. The most
common fields in this property file are listed in the next subsection.

When a connection is established between a Client and the e-speak Core, the capa-
bilities granted to operations performed on this connection depend on the creden-
tials that are presented. For example, if a user connects to a Core as a guest, the user
receives restricted access and privileges compared to a user logged in as an admin-
istrator while operating from that connection.

ESConnection supports APIs that return the Base Vocabulary and Contract
Services. In addition, there are other APIs for getting management-related informa-
tion that identifies users and the Core. The ESConnection also encapsulates the
context of the actions that are performed by the Client.

Property Files
The property file parameter passed to the ESConnection constructor provides
values for the properties that are required to connect to the e-speak infrastructure.
For example, the property file has entries for the following properties:

• username

This property specifies the name of the user who is connecting to the e-speak
Core. If the property file does not provide a value for this, the default value that
is used is guest.

• password

This is the password of the user. The password along with the username form
the user credential.

• esurl
20 Developer Release 3.01 June 2000

Basic Services Getting Connected to E-speak
This is a colon-separated string that specifies the communication channel
between the Client and the Core. For example,
tcp:rgelpc032.rgv.hp.com:12346 specifies that the Client connects to
the Core running on host rgelpc032.rgv.hp.com on port 12346 using tcp
as the communication protocol.

• protocol
hostname
portnumber

When the esurl is not specified, the Client can alternatively specify the
elements of the connection information by explicitly specifying the protocol,
host name, and port number. If the configuration file does not have the protocol,
the default value for the protocol is tcp. Furthermore, if the property file does
not have a value for the host name, the default value for the host name is local-
host, and the default port number is 12346.

• accountname

Clients can provide names for their accounts so that they can reconnect to the
same account when they connect the next time.

• homefolder

Applications can specify their home folder. This folder is the current working
folder when the connection is made to the e-speak Core.

• Timeouts

Applications may be able to specify timeouts for various calls. Synchronous call
timeouts can be specified with synchronous_call_timeout. Asynchronous
call timeouts can be specified using asynchronous_send_timeout. Service
providers can specify timeouts for messages they receive using
asynchronous_receive_timeout. Clients can time out their find calls
using finder_timeout. Timeouts are specified in milliseconds. Timeouts
can also be changed dynamically. This can be done by calling the following
methods on ESConnection.

- setCallTimeout(int value);

- setAsyncSendTimeout(int value);
Developer Release 3.01 June 2000 21

Getting Connected to E-speak Basic Services
- setAsyncRecvTimout(int value);

- setFinderTimeout(int value);

Connection Configuration B

Typically, Clients create an instance of an ESConnection as follows:

ESConnection coreConnection = new ESConnection();

In this case, a transient guest account is created and as soon as the connection is
closed, this instance of the guest account is removed. Alternatively, the client can
connect to the Core using

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

When the property file is used for creating a connection and the account name prop-
erty in the property file is used, the following account creation rules are followed:

• Where the account name property is not specified, a transient guest account is
created. However, if the account name is provided and no previous account of
this name exists, a new account with the user and password is created.

• Where the account already exists and the user credentials are validated, the
connection returns a connection with the last saved state associated with the
same user credential.

After having connected to the Core, the Client can retrieve the parameters of the
connection by entering

ESConfiguration config = coreConnection.getConfiguration();

The following methods in the ESConfiguration class allow the Client to retrieve
the various parameters of the connection:

public class ESConfiguration

{

public ESUserCredential getUserCredential();

public String getHostName();

public int getPortNumber();

public String getProtocol();
22 Developer Release 3.01 June 2000

Basic Services E-speak Services
public String getURL();

public void setHostName(String hostName);

public void setPortNumber(int portNumber);

public void setProtocol(String protocol);

public String getConnectionName();

public void setConnectionName(String name);

public String getGroupName();

public void setURL(String url);

public int getCallTimeout();

public int setCallTimeout(int newVal);

// .. refer to javadoc for other methods

}

E-speak Services B

There are two abstractions for a Service:

• Service providers—Service elements (ESServiceElement) that are used by
Service providers to deploy and manage a Service.

• Clients—Service stubs (ESService) that are used by Clients to access an
e-speak Service.
Developer Release 3.01 June 2000 23

E-speak Services Basic Services
Service providers take the following steps to create a Service:

1 The Service developer provides implementation of the Service interface. These
interfaces are encapsulated in the Contract to which the Service conforms. The
actual implementation need not contain any e-speak-specific code.

2 The Service deployer then describes the Service in a chosen Vocabulary by
setting the attribute values appropriately. The ESServiceDescription class
is used to set these attribute values.

3 The Service deployer and/or administrator then creates a new ESService-
Element that registers and starts the Service so that other Clients of the
e-speak infrastructure can find and use the Service. (See Figure 5.)

Clients typically take the following steps to find and use a Service:

1 Clients find Services using a Service finder that accepts queries in the Vocabu-
lary that was used to advertise the Service. Clients also specify the interface
that they expect to use to invoke the Service.

Figure 5 Creating an ESServiceElement

PrinterServiceIntf

Accessor

ESServiceDescription

ESServiceFinder

PrinterServiceStub
creates

ESService finds

returns

implementsimplements

ESServiceElement PrinterServiceImpl
24 Developer Release 3.01 June 2000

Basic Services E-speak Services
2 On finding a match, the Clients get a handle to a Service stub that can be used
to invoke the methods that are implemented by the Service provider (see
Figure 5).

The Client or Service deployer can choose to examine or modify attribute values.
This is accomplished using the ESAccessor class.

All the three basic entities (Vocabularies, Contracts, and other Services) in e-speak
can be created or found in the same manner.

The main difference between generic Services and Contracts or Vocabularies is that
the interface for Vocabularies and Contracts is defined by the e-speak Core. The
Core is the handler for any Vocabulary or Contract method.

Generic Services on the other hand, are not handled by the Core, and can have arbi-
trary interfaces that meet the requirements of the specific Service. The rest of this
section describes the well-defined interfaces supported by Contracts and Vocabu-
laries in the e-speak Core.

ESContract B

Just as a Vocabulary determines the scheme for describing the attributes of
Services, the Contract determines the type of Service as represented by the inter-
faces that it implements. Just as the Core is the handler for Vocabularies, the Core
is the handler for Contracts as well.

The following method returns the name of the Contract; the name of the interface
that this Contract encapsulates:

public String getInterfaceName();

The following method returns the IDL string associated with the Contract:

public byte [] getInterfaceDefinition();

In addition, the ESContract has methods that return the conversations that the
service supports, the terms and conditions of use, and the license policy. The
following entry points in ESContract are the relevant entry points.
Developer Release 3.01 June 2000 25

E-speak Services Basic Services
public String getConversationScheme();

public String getTermsOfUse();

public String getLicense();

Base Contract
A Base Contract is available in the Core that Clients can obtain by invoking the
getBaseContract method in the connection object. For example:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESContract baseContract = coreConnection.getBaseContract();

ESVocabulary B

In the e-speak infrastructure, Vocabularies are also Services that are discovered by
Clients. When the Client discovers a Vocabulary, the Client receives a stub that
conforms to the ESVocabulary interface. However, the Service provider for the
Vocabulary is the e-speak Core itself.

After a Vocabulary has been defined, Clients of the Vocabulary can only query its
contents to determine what properties this Vocabulary defines. The Clients cannot
change the properties of the Vocabulary. Furthermore, they can query the core for
all the services that are registered in this vocabulary. There are two main APIs in
ESVocabulary:

public ESProperty[] getProperties();

public ESAccessor[] getServices();

The conversation scheme, terms of use, and licensing policy are not available for
the base contract.

Base Vocabulary
The Base Vocabulary comes preloaded with e-speak. This Base Vocabulary has
pre-defined properties that can be used to describe Services. Service providers do
not have to invent their own Vocabulary to describe their simple Services. The Base
Vocabulary has basic attributes that can represent the name of the Service, the type
of Service, and other similar characteristics that are universal to many Services.
26 Developer Release 3.01 June 2000

Basic Services E-speak Services
The base Vocabulary can be retrieved from an ESConnection using the
getBaseVocabulary() method. The following code fragment shows how
Clients get the Base Vocabulary:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);
ESVocabulary baseVocab = coreConnection.getBaseVocabulary();

The following table shows some of the important properties that are defined in the
Base Vocabulary. No other vocabulary should define and use ‘Name’, ‘Type’ and
‘ESGroup’ as these attributes are reserved and are used by the J-ESI library inter-
nally.

Table 1 Base Vocabulary properties

Attribute name Type Description

Name String Name of the Service

Type String Type of Service

ResourceSubType String Subtype of Service

Description String Description of the Service

Version String Version of the Service

ESDate Date Date associated with the Service

ESGroup String Group associated with the Service

ESTimestamp Timestamp Timestamp associated with the Service

ESCategory String Stringified list of categories that any
service is advertised in.
Developer Release 3.01 June 2000 27

Client: Finding Services Basic Services
Client: Finding Services B

Clients to the e-speak Core typically find Services that match certain constraints.
The kinds of finders are visible to the Client are:

• Vocabulary finders

• Contract finders

• Service finders

• Folder finders

• View finders

You can extend these finders to suit your needs or to use the APIs supported in
these classes directly.

ESContractFinder B

The ESContractFinder class is used by Clients to find Contracts. Contracts are
Services that are registered with the e-speak Core just like any other Service. The
Contract Finder finds only Services that have been registered as Contracts. The
attribute that is used to distinguish between Contracts is the Name attribute in the
Base Vocabulary. There are three important entry points in ESContractFinder.
These are:

public ESContract find(ESQuery query);

public ESContract[] findAll(ESQuery query);

public ESContract [] findNext();

public void setMaxToFind(int number);

The find method finds a single contract that matches the constraints and prefer-
ences in the query. The findAll finds all contracts that match the query subject to the
maximum number of services set in the finder.
28 Developer Release 3.01 June 2000

Basic Services Client: Finding Services
For example, to find a Contract named PrintContract, use the following code
fragment:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);
ESContractFinder printContractFinder =

new ESContractFinder(coreConnection);

ESQuery printContractQuery =

new ESQuery(“Name == ‘PrintContract’”);

ESContract printContract =

printContractFinder.find(printContractQuery);

ESVocabularyFinder B

The ESVocabularyFinder class is used by Clients to find Vocabularies. Finding
a vocabulary is done more often than creating a vocabulary. Vocabularies are
usually defined by some standard body. For example, a standard body might define
a printer vocabulary which contains attributes like the speed of the printer, its loca-
tion, etc. The definition of the vocabulary happens only once. It is likely that this
vocabulary is registered in a community of interest. Any printer which wants to
conform to this standard body finds the vocabulary and registers the printer service
using this vocabulary.

Because a vocabulary is also a service, it needs to be advertised as well. Usually
vocabularies are advertised in the default vocabulary. It is also possible to advertise
a vocabulary in another non default vocabulary.

public ESVocabulary find(ESQuery query);

public ESVocabulary[] findAll(ESQuery query);

public ESVocabulary[] findNext();

public void setMaxToFind(int number);

For example, to find a Vocabulary named printerVocab, use the following code
fragment:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);
ESVocabularyFinder printVocabFinder =

new ESVocabularyFinder(coreConnection);
Developer Release 3.01 June 2000 29

Client: Finding Services Basic Services
ESQuery printVocabQuery =

new ESQuery(“Name == ‘printerVocab’”);

ESVocabulary printVocab = printVocabFinder.find(printVocabQuery);

Instead of using ESQuery, you can find a vocabulary using an XML query using
ESXMLQuery.

ESServiceFinder B

The ESServiceFinder class is a generic finder class that is used to find
user-defined Services. The interfaces here look similar to the ESContractFinder and
ESVocabulary finder.

public ESService find(ESQuery query);

public ESService[] findAll(ESQuery query);

public ESService [] findNext();

public void setMaxTofind(int number);

The ESServiceFinder class has two constructors. One constructor which takes
only ESConnection as parameter. find/findAll in this case return the base
stub (ESService) from which all other stubs derive. The second constructor takes
ESConnection and the interface name (or ESContract) as parameters.
find/findAll in this scenario returns the stub for the Service provider. When the
interface name is specified for doing a find, the client library sends an introspection
request to the potential service providers. The service providers that respond
correctly to the introspection request are returned as results. This means that when
the interface name is used in the find, the services that the finder returns were
known to be up and ready at the time of the find. No such guarantee can be made
when the finder is used without the interface name. If the Service provider is not
running, the call timesout if the finder timeout is set. More details on how to set the
timeouts is available in the later sections.

The ESServiceFinder class can return multiple Services as the result of a query.
However, Clients can control the maximum number of Services that are returned as
the result of a find by entering the following code:

public void setMaxToFind(int number);

public int getMaxToFind();
30 Developer Release 3.01 June 2000

Basic Services Client: Finding Services
Chapter 1 presented an example of a Client that searches for a simple printer that
is described in the base Vocabulary. A slightly more complex example of a Printer
that has been advertised in a non-Base Vocabulary, called a printerVocab,
requires the following code to find the printer:

public class PrintClient{

public static void main(String[] argv){

try {

String propertyFileName =

new String(“/users/connection.prop”);

ESConnection coreConnection =

new ESConnection(propertyFileName);
// find vocabulary

ESVocabularyFinder printVocabFinder =

new ESVocabularyFinder(coreConnection);

ESQuery printVocabQuery =

new ESQuery(“Name == ‘PrintVocab’”);

ESVocabulary printVocab =

printVocabFinder.find(printVocabQuery);
// find contract

ESContractFinder printContractFinder =

new ESContractFinder(coreConnection);

ESQuery printContractQuery =

new ESQuery(“Name == ‘PrintContract’”);

ESContract printContract =

printContractFinder.find(printContractQuery);
// find service described in vocab that conforms to contract

ESServiceFinder printFinder =

new ESServiceFinder(coreConnection, printContract);

ESQuery printQuery = new ESQuery(printVocab);

printQuery.addConstraint(“DPI == 1400”);

PrinterServiceIntf printer = (PrinterServiceIntf)

printFinder.find(printQuery);

String document = getDocument();

printer.print(document);

} catch (Exception e)

{

Developer Release 3.01 June 2000 31

Client: Finding Services Basic Services
// handle the exception.

}

}

}

The finder class also supports a cursor like mechanism for clients to traverse the
result set obtained as a result of performing a findAll() operation. The cursor
mechanism is quite common in relational database APIs such as JDBC. In JDBC, the
result of executing a query is a result set, and the client program can loop based on
a condition that depends on whether there are additional rows in the result set. In
J-ESI, on the other hand, the finder itself acts as the result set. On invoking a find-
All() operation on the finder, the finder acts as a cursor. The client program can
determine whether there are other services found by the finder by invoking the
hasMoreResults() method on the finder. In addition, the next set of results can
be obtained from the finder by invoking the findNext() method. In the example
below, the query essentially finds all the services that are registered in the printer
vocabulary. It then proceeds to retrieve the services that are found two at a time.

public static void main(String [] args) {
try {

ESConnection conn = new ESConnection();
ESVocabularyFinder vf = new ESVocabularyFinder(conn);
ESVocabulary v = null ;
try {
v = vf.find(new ESQuery("Name == 'printerVocab'"));

} catch(LookupFailedException ffe) {
ffe.printStackTrace();
return;

}
ESServiceFinder finder = new ESServiceFinder(conn);
ESQuery query = new ESQuery(v,"(Name == 'printer') or (Name != 'printer')");
ESService[] serviceList = null;
int total_findall_services = 0;
finder.setMaxToFind(2);
serviceList = finder.findAll(query);
total_findall_services += serviceList.length;
while (finder.hasMoreResults()){

serviceList = finder.findNext();
// .. do stuff with services found in service list.
System.out.println(“number of services got: “ +

 serviceList.length);
 }

 } catch(Exception ex) {
 ex1.printStackTrace();
32 Developer Release 3.01 June 2000

Basic Services Client: Finding Services
 }
return;
 }

ESQuery B

In general, Clients use the ESQuery class to construct queries that are either not
simple name lookups in the Base Vocabulary or are constraints that are expressed
in a Vocabulary that is different from the default Vocabulary. The ESQuery class has
methods that allow the client to add constraints that make up the query. These
constraints are string constraints whose syntax is similar to the syntax of constraint
specification in OMG’s OTS specification. Essentially, every constraint is parsed as
if it were a disjunction of conjunctions, i.e., the contraint expression is expected to
be in disjunctive normal form.

More formally, the context-free grammar that defines the syntax of the contraint
strings is as follows:

<Expr> ::= <OrExpr>
<OrExpr> ::= <AndExpr >

| <OrExpr> ‘or’ <AndExpr>
<AndExpr> ::= <NotExpr >

| <AndExpr> ‘and’ <NotExpr>
<NotExpr> ::= <EqualityExpr>

| ‘not’ <EqualityExpr>
<EqualityExpr> ::= <RelationalExpr>

 | <RelationalExpr> (<OpEqual> | ‘!=’) <RelationalExpr>
<RelationalExpr> ::= <InExpr>

| <InExpr> <OpRelational> <InExpr>
<InExpr> ::= <AdditiveExpr>

 | <AdditiveExpr> ‘in’ <AdditiveExpr>
 | <AdditiveExpr> ‘in’ <ListExpr>
<AdditiveExpr> ::= <MultiplicativeExpr>

| <AdditiveExpr> <OpAdditive> <MultiplicativeExpr>
<MultiplicativeExpr> ::= <UnaryExpr>
 | <MultiplicativeExpr> <OpMultiplicative>
<UnaryExpr>
<UnaryExpr> ::= <UnionExpr>

| ‘-‘ <UnaryExpr >
| ‘exist’ <PathExpr>

<UnionExpr> ::= <PathExpr>
| <UnionExpr> ‘|’ <PathExpr>

<ListExpr> ::= ‘[‘ <Arguments> ‘]’
<PathExpr> ::= ‘/’
 | ‘/’ <RelativeLocationPath>
 | ‘//’ <RelativeLocationPath>
 | <RelativeLocationPath>
Developer Release 3.01 June 2000 33

Client: Finding Services Basic Services
 | <FilterExpr>
 | <FilterExpr> ‘/’ <RelativeLocationPath>
 | <FilterExpr> ‘//’ <RelativeLocationPath>
<FilterExpr> ::= <PrimaryExpr>
 | <FilterExpr> <Predicate>
<RelativeLocationPath> ::= <Step>
 | <RelativeLocationPath> ‘/’ <Step>
 | <RelativeLocationPath> ‘//’ <Step>
<PrimaryExpr> ::= ‘$’ <NCName>
 | ‘(‘ <Expr> ‘)’
 | <Literal>
 | <FunctionCall>
<FunctionCall> ::= <FunctionName> ‘(‘ <Arguments> ‘)’
<Arguments> ::= <Expr>
 | <Arguments> ‘,’ <Expr>
<Predicate> ::= ‘[‘ <Expr> ‘]’
<Step> ::= <StepPredicate>
 | ‘.’
 | ‘..’
<StepPredicate> ::= <AxisSpecifier> <NodeTest>
 | <StepPredicate> <Predicate>
<AxisSpecifier> ::= <AxisName> ‘::’
 | ‘@’
 | e

<NodeTest> ::= ‘*’
 | <NCName> ‘:’ ‘*’
 | <QName>
 | NodeType ‘(‘ ‘)’
 | ‘processing-instruction’ ‘(‘ String_Lit ‘)’
<NodeType> ::= ‘comment’ | ‘text’ | ‘node’
<AxisName> ::= 'ancestor' | 'ancestor-or-self' | 'attribute'
 | 'child' | 'descendant' | 'descendant-or-self'
 | 'following' | ‘following-sibling' | 'namespace'
 | 'parent' | 'preceding' | 'preceding-sibling'
 | 'self'
<Qname> ::= <NCName>
 | <NCName> ‘:’ <NCName>
<Literal> ::= <Number_Lit>
 | <String_Lit>
 | <Boolean_Lit>
 | <Date_Lit>
 | <Time_Lit>
 | <TimeStamp_Lit>
<OpEqual> ::= ‘=’ | ‘==’
<OpRelational> ::= ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’
<OpAddtive> ::= ‘+’ | ‘-‘
<OpMultiplicative> ::= <MultiplyOperator> | ‘div’ | ‘mod’
<NCName> ::= (<Letter> | ‘_’)? <NCNameChar>*
<NCNameChar> ::= <Letter> | <Digit> | ‘.’ | ‘-‘ | ‘_’
 | <CombiningChar> | <Extender>
<Number_Lit> ::= <Digit>* ‘.’ <Digit>+ ((‘E’ | ‘e’) (‘+’ | ‘-‘)
<Digit>+)
34 Developer Release 3.01 June 2000

Basic Services Client: Finding Services
<String_Lit> ::= ‘”’ [<AnyChar>^’”’]* ‘”’
 | ‘’’ [<AnyChar>^’’’]* ‘’’
<Boolean_Lit> ::= true | false
<Date_Lit> ::= ‘{‘ (‘d’ | ‘D’) WhiteSpace* (CC | ‘-‘) YY? ‘-‘ MM? ‘-‘ DD ‘}’
<Time_Lit> ::= ‘{‘ (‘t’ | ‘T’) WhiteSpace* HH ‘:’ MM ‘:‘ SS
 (‘.‘
SSS S*)? (‘Z’ | ‘-‘ MM ‘:’ SS)? ‘}’
<TimeStamp_Lit> ::= ‘{‘ (‘t’ | ‘T’) (‘s’ | ‘S’) WhiteSpace* CCYY ‘-‘ MM
‘-‘ DD ‘T’ <Time_Lit>

Example query strings include:

"TestStr1 + 'String2' == 'String1String2' and TestInt - 5 < 10 and TestDouble
< 30"

"TestDate > {d 1980-08-21} and TestTimestamp <= {ts
1992-05-12T05:33:44.111111000}",

"TestInt * 2 >= 22 and not (TestDouble >= 55.550)",
"TestInt > 10 or TestDouble == 10 or TestFloat > 10.0",
"TestBool != TRUE or TestInt -10 <= 10 and 2345.99 >= TestBigDecimal1",

The specialization of ESQuery called ESXMLQuery can be initialized from a file
that contains a query for a Service expressed in XML:

public ESXMLQuery(ESConnection coreConnection,

ESXMLFile xmlQueryFile);

Finding Services Using XQL B

XQL can be used to find a printer described in printervocab. See Appendix C,
“IDL Compiler”, for more details about XML DTDs used in e-speak.

The following XML page describes an XQL-based search that is passed to the
ESQuery constructor:

<?xml version=”1.0”?>

<ESpeak version=”E-speak 1.0” operation=”FindService”>

 <resource>

 <!-- The search query-->

 <query>

 <queryBlock>

 <WHERE>

 <!-- Begin: Specify printer Vocabulary -->
Developer Release 3.01 June 2000 35

Client: Finding Services Basic Services
 <query>

 <queryBlock>

 <WHERE>

 <condition>

 <IN>

 <pattern>

 <Name>printervocab</Name>

 </pattern>

 </IN>

 </condition>

 </WHERE>

 </queryBlock>

 </query>

 <!-- End: Specify printer Vocabulary -->

 <!-- Begin: search conditions -->

 <condition>

 <predicate lexpr=”DPI” rexpr=”1400” RelOp=”eq”/>

 </condition>

 <!-- End: search conditions -->

 </WHERE>

 </queryBlock>

 </query>

 </resource>

</ESpeak>

The Service to be discovered is specified by means of a query. An embedded query
specifies the attribute Vocabulary in which attributes for the query conditions are
specified. In this case, assume that this XML fragment is in a file called print-
Finder.xml.

The query searches in the Vocabulary called printervocab for a printer whose
DPI attribute has a value of 1400.

PrintClient.java

public class PrintClient

{

public static void main(String[] args)

{

36 Developer Release 3.01 June 2000

Basic Services Client: Finding Services
try

{

String propertyFileName =

new String(“/users/connection.prop”);

ESConnection coreConnection =

new ESConnection(propertyFileName);

ESXMLFile xmlQueryFile =

new ESXMLFile(“/users/printerQuery.xml”);

ESXMLQuery printQuery = new ESXMLQuery(coreConnection,

xmlQueryFile);

String intfName = PrinterServiceIntf.class.getName();

ESServiceFinder printFinder = new

ESServiceFinder(coreConnection, intfName);

PrinterServiceIntf printer = (PrinterServiceIntf)

printFinder.find(printQuery);

String document = getDocument();

printer.print(document);

} catch (Exception e)

{

// handle the exception

}

}

}

The XML fragment above was the XML used in release 2.2 of the e-speak code. In
the 3.0 release, a shorter more concise XML is supported that achieves the same
purpose. The XML fragment for the query now looks as follows:

<?xml version='1.0'?>

<esquery xmlns="http://www.e-speak.net/Schema/E-speak.query.xsd">

 <result>$serviceInfo</result>

 <where>

 <vocabulary name="printervocab" src="printervocab"/>

 <condition>

 printerVocab:DPI = 1400

 </condition>

 </where>
Developer Release 3.01 June 2000 37

Client: Finding Services Basic Services
 <preference>

</preference>

 <arbitration>

 <operator>first</operator>

 <cardinality>all</cardinality>

 </arbitration>

</esquery>

J-ESI supports both the formats of XML documents. However, the older format is
deprecated and clients should consider moving to the newer XML format. In addi-
tion, there is a new constructor for ESXMLQuery that takes two ESXMLFiles as
arguments:

public ESXMLQuery(ESConnection connection, ESXMLFile xmlHeader,

 ESXMLFile xmlRequest);

In the example above, in the line where printQuery is constructed, this constructor
is used instead of the constructor that takes in a single xml file. In addition, the
contents of the xmlHeader file look as follows:

<?xml version='1.0'?>

<header xmlns="http://www.e-speak.net/Schema/E-speak.header.xsd">

 <communication>

 <to>es://localhost:12346/WebAccess/FindService</to>

 </communication>

</header>

Queries in Multiple Vocabularies B

You can specify a query using constraints in multiple vocabularies. Essentially, the
client can create local names for vocabularies in a query. The constraint expression
can then involve these vocabularies. This feature of being able to specify queries in
multiple vocabularies is similar to the notion of formulating queries in SQL that
query multiple tables. In addition, one can also specify preferences and arbitration
policies. The specification of preferences is similar to the notion of the “order by”
construct in SQL. Essentially, you can get the finder to return services using the
order specified in the preference parameter. The specification of the parameter is
done using the addSorter entry point in ESQuery. It takes two parameters, the first
38 Developer Release 3.01 June 2000

Basic Services Client: Finding Services
being the kind of sorting to be done, and the second, the expression whose value
determines the order. In the example below, the code fragment constructs an
esquery, that returns the services registered in the “printervocab” sorted by their
DPI with the printer with the highest DPI appearing first.

ESQuery query = new ESQuery("(printervocab:Name == 'AnyName')");

query.addVocabularyKey("printervocab", v);

query.addOrConstraint("(printervocab:Name != 'AnyName')");

query.addConstraint("(printervocab:Name != 'XXXX')");

query.setArbitPolicy(ESConstants.ARBITRATION_POLICY_ALL);

query.addSorter(ESConstants.SORTER_OPERATOR_MAX,

 "printervocab:DPI");

Using Introspection B

When finding Services, sometimes the Client wants to know all the Service inter-
faces supported by the Service the Client has found. The most likely use of this
scenario is in browsers, where the user is presented with a set of choices. This is
possible in an e-speak environment using the introspection facility. The Client can
get a handle to a service without knowing the interface it supports, and after getting
the handle can query the Service to find all the Service interfaces the Service
supports. The Client can also get a Service stub corresponding to a particular inter-
face and can invoke operations on it. An example follows:

ESServiceFinder printFinder = new ESServiceFinder(coreConnection);

ESService printer = printFinder.find(printQuery);

ESHashMap allSupportedInterfaceMap =

((ESIntrospectionIntf)printer).getInterfaces();

allSupportedInterfaceMap contains a map of interface names and the actual
class of the interface. The Client can find whether the Service supports a particular
interface of interest and then get the stub corresponding to it using

PrinterManagementIntf mg = ((ESStubFactoryIntf)

printer).getServiceStub(“PrinterManagementIntf”);
Developer Release 3.01 June 2000 39

Client: Finding Services Basic Services
Another use of introspection is in the development of lightweight Clients. The
Clients do not need to have any of the class files like the interface, stub files, and so
forth. All these can be obtained using introspection and stub factory interfaces, and
methods can be invoked using Java reflection. Thus introspection and stub factory
interfaces allow building truly dynamic, lightweight, and scalable solutions.
40 Developer Release 3.01 June 2000

Basic Services Service Deployer: Creating Services
Service Deployer: Creating Services B

The previous section explained how a Client gains access to Services created by
others. This section explains how Service providers create Services. As described
earlier, Service providers perform the following sequence of operations in creating
and managing the Service:

1 Create a description of the Service that uses the chosen Vocabulary.

2 Create a Service element that encapsulates the description and associates an
implementation and a handler for the Service.

3 Register and start the Service.

4 If necessary, mutate the metadata of the Service.

As with the finders, there are three kinds of elements:

• ESContractElement

• ESVocabularyElement

• ESServiceElement

• ESFolderElement

• ESViewElement

A similar set of classes encapsulates the descriptions of Services:

• ESContractDescription

• ESVocabularyDescription

• ESServiceDescription

• ESViewDescription

• ESFolderDescription
Developer Release 3.01 June 2000 41

Service Description Basic Services
Service Description B

Service descriptions are sets of attribute-value pairs expressed in a certain Vocab-
ulary describing the Service. The Vocabulary determines the names and types of the
attributes used in the description of the Service. For instance, a printer Service can
be described in a Printer Vocabulary. The Printer Vocabulary in turn can contain
attributes such as DPI that takes on an integer value, Manufacturer, that takes
on a string value, and Modelname that takes on a string value. The printer itself is
identified by the fact that it is manufactured by a particular manufacturer, has a
particular model name, and prints at a particular DPI value.

Vocabularies, in turn, have to be described, and e-speak breaks the recursion using
a Base Vocabulary that has predefined attribute properties described earlier.

All Service Descriptions are associated with two kinds of attributes:

• Searchable attributes—Those used in queries by Clients.These are also the
attributes listed in each Vocabulary.

• Service-specific data (Data)—This data, which is stored along with the
description of the Service, cannot be searched for, but can be accessed. This
data can be as simple as String entries, or as complex as arbitrary byte code. For
example, one Datum in the printer description may be the administrator’s
contact information (such as a phone number).

In the current API, there are two ways of specifying the descriptions:

• Using XML (This is the recommended method for specifying descriptions.)

• Using the e-speak description of objects provided in the Client library
42 Developer Release 3.01 June 2000

Basic Services Service Description
Searchable Attributes

The attributes that can be part of any Vocabulary can be in one of the 14 e-speak-
base types:

The ESBaseDescription class supports the addition of attributes by the
addAttribute method. These calls take two parameters, the first is the name of
the attribute, and the second parameter is the value of the parameter.

ESContractDescription
Contracts are also Services in the e-speak infrastructure. Contracts are typically
described using the Base Vocabulary. Contracts encapsulate the Service IDL to
which the Service is guaranteed to conform.

The setInterfaceDefinition methods set the IDL associated with the
Contract:

public void setInterfaceName(String intfName);

public void setInterfaceDefinition(String idlString);

public void setInterfaceDefinition(byte[] intfClass);

public void setConversationScheme(String scheme);

public void setTermsOfUse(String terms);

public void setLicense(String license);

The following code segment explains how to create a contract using the contract
description.

• String • boolean

• byte • char

• short • int

• long • float

• double • BigDecimal

• Date • Time

• Timestamp • byte []
Developer Release 3.01 June 2000 43

Service Description Basic Services
String propertyFileName = new String(“/users/conection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESContractDescription printContractDescription =

new ESContractDescription();

printContractDescription.addAttribute(“Name”,”PrintContract”);

printContractDescription.setInterfaceName

(“printer.PrinterServiceIntf”);

String idl = getIDLFromFile(“PrinterService.esidl”);

printContractDescription.setInterfaceDefinition(idl);

ESContractElement printContractElement =

new ESContractElement(coreConnection, printContractDescription);

ESContract printContract = printContractElement.register();

ESVocabularyDescription
This class is used to describe a new Service Vocabulary that is used in descriptions
of other Services. As noted earlier, the printer Service is described in the Printer
Vocabulary.

There are two parts to describing a Vocabulary. First, because Vocabularies are
Services that can be discovered, the attributes of the Vocabulary need to defined so
that Clients and Service providers can discover the Vocabulary. Second, the prop-
erties of the Vocabulary need to be defined so that any Service that is registered in
this Vocabulary has the same properties. These properties can also be used to build
queries to find Services.

Vocabularies are somewhat analogous to a table schema in relational databases.
The properties that make up the Vocabulary are the columns of the table, and each
Service that is registered in the Vocabulary becomes a row in the table. In keeping
with the database analogy, it is assumed that the names of the properties in a Vocab-
ulary are case insensitive.

Clients who are creating Vocabularies can set the name of the new Vocabulary they
want to create using the addAttribute() method in the ESBaseDescription class.

Just as Service descriptions contain 14 basic attributes in e-speak, the Vocabulary
descriptions can contain properties in those 14 types:
44 Developer Release 3.01 June 2000

Basic Services Service Description
• String

• boolean

• byte

• char

• short

• int

• long

• float

• double

• BigDecimal

• Date

• Time

• Timestamp

• byte []

Typically, Clients make a series of calls that add various named properties. For
example, to create a description of a printer Vocabulary that has three properties
corresponding to the manufacturer, model name, and DPI and that indicates that a
particular property is mandatory (meaning that any Service registered in this Vocab-
ulary has to provide a value for this property), use the following code fragment:

String propertyFileName = new String(“/users/conection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESVocabularyDescription printVocabDescription =

new ESVocabularyDescription();

printVocabDescription.addAttribute(“Name”,”PrintVocab”);

printVocabDescription.addStringProperty(“Manufacturer”);

printVocabDescription.addStringProperty(“Modelname”);

printVocabDescription.addIntegerProperty(“DPI”);
Developer Release 3.01 June 2000 45

Service Description Basic Services
ESVocabularyElement printVocabElement =

new ESVocabularyElement(coreConnection, printVocabDescription);

ESVocabulary printVocab = printVocabElement.register();

ESServiceDescription
The preceding example describes how a printer Vocabulary is defined. This Vocab-
ulary description can be used by a standards body to register a Printer Vocabulary.
Now, a printer manufacturer can choose to use this Vocabulary to advertise a
printer with appropriate attribute values.

For example, if a Printer Service provider were interested in offering an “Acme”
printer as a Service, it can choose to describe the printer as follows:

//describe printer in printervocab

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection =

new ESConnection(propertyFileName);

ESVocabularyFinder printVocabFinder =

new ESVocabularyFinder(coreConnection);

ESQuery printVocabQuery =

new ESQuery(“Name == ‘PrintVocab’”);

ESVocabulary printerVocab =

printVocabFinder.find(printVocabQuery);

ESServiceDescription printDescription =

new ESServiceDescription(printerVocab);

printDescription.addAttribute(“Manufacturer”,”HP”);

printDescription.addAttribute(“Modelname”,”LP 5”);

printDescription.addAttribute(“DPI”, (int) 1400);
46 Developer Release 3.01 June 2000

Basic Services Service Description
XML Descriptions of Services B

So far, APIs have been used to create and manage descriptions in Java. In addition
to these APIs, J-ESI supports XML descriptions of Vocabularies and Services using
the constructors described here. XML is the preferred mode for describing Vocabu-
laries and Services. Typically, XML is used for data descriptions passed as parame-
ters to the description constructors.

XML Vocabulary Description
The ESVocabularyDescription class has a constructor that takes in an
ESXMLFile describing the Vocabulary encapsulated in an XML page:

public ESVocabulary(ESXMLFile xml_stream, ESConnection conn);

This example creates a new Vocabulary with three attribute properties:
Manufacturer, Modelname, and DPI:

<?xml version="1.0"?>

<ESpeak version="E-speak 2.0" operation="CreateVocab"

xmlns="http://localhost/e:/Esxml/Schemas/espeak.xsd">

 <resource xmlns="">

 <resourceDes xmlns="">

 <pattern>

 <Name xmlns=””>

 printervocab

 </Name>

 <Type>

 Vocabulary

 </Type>

 </pattern>

 </resourceDes>

 <resourceData xmlns="">

 <attrGroup name="my printer Vocabulary" xmlns="">

 <attrDecl xmlns="" name="Manufacturer" required="no">

 <datatypeRef xmlns="" name="string"/>

 </attrDecl>

 <attrDecl xmlns="" name="Modelname" required="no">

 <datatypeRef xmlns="" name="string"/>
Developer Release 3.01 June 2000 47

Service Description Basic Services
 </attrDecl>

 <attrDecl xmlns="" name="DPI" required="no">

 <datatypeRef xmlns="" name="integer">

 </datatypeRef>

 </attrDecl>

 </attrGroup>

 </resourceData>

 </resource>

</ESpeak>

All XML requests in e-speak have E-speak as the root element, which specifies the
version information as well as the intended operation for the Services described in
the request. As noted earlier, two aspects are required to describe Vocabularies.

First, how Clients can find the Vocabulary has to be described. It is assumed that
the Vocabularies are themselves defined in the default Vocabulary that allows spec-
ifying, among other things, the name and type of Service. In the preceding XML
description, the element resourceDes specifies the Name of this Vocabulary to be
printervocab. Because this is a Vocabulary, its Type is Vocabulary.

Second, the properties of the Vocabulary must be specified. The properties that
make up the printer Vocabulary are contained in an attrGroup element. The
attrGroup element contains a list of attrDecl elements, each describing the
specifics of an attribute property, including its name and data type. The XML file
defines a Printer Vocabulary that has three properties: Manufacturer, Model-
name, and DPI.

As with queries, J-ESI 3.0 supports a new XML format for creating vocabularies. The
new format involves constructing ESVocabularyDescription with two ESXMLFile
arguments

public ESVocabularyDescription(ESConnection connection,

ESXMLFile xmlHeader, ESXMLFile xmlRequest)

The contents of xmlHeader looks as follows:

<?xml version='1.0'?>

<header xmlns="http://www.e-speak.net/Schema/E-speak.header.xsd">

 <communication>
48 Developer Release 3.01 June 2000

Basic Services Service Description
 <to>es://localhost:12346/WebAccess/CreateVocab</to>

 </communication>

</header>

The contents of xmlRequest looks as follows:

<?xml version='1.0'?>

<resource xmlns="http://www.e-speak.net/Schema/E-speak.register.xsd">
 <resourceDes>

 <vocabulary>http://www.e-speak.net/Schema/E-speak.base.xsd</vocabulary>
 <attr name="Name">
 <value>printervocab</value>
 </attr>
 <attr name="Type">
 <value>Vocabulary</value>
 </attr>
 </resourceDes>
 <attrGroup name="printervocab"

xmlns="http://www.e-speak.net/Schema/E-speak.vocab.xsd">
 <attrDecl name="Model" required="true">
 <datatypeRef name="String"/>
 </attrDecl>
 <attrDecl name="DPI" required="true">
 <datatypeRef name="String"/>
 </attrDecl>
 <attrDecl name="Manufacturer" required="true">
 <datatypeRef name="String"/>
 </attrDecl>
 </attrGroup>
</resource>

XML Service Description
The ESServiceDescription class has a constructor that takes in an ESXML file
describing the Vocabulary encapsulated in an XML page, as follows:

public ESServiceDescription(ESXMLFile xmlDescriptionFile,

ESConnection coreConnection);

This is the recommended mode of creating and registering Services for compatibil-
ity with existing or emerging Vocabularies. The following example registers a new
Service using the Vocabulary just created:

<?xml version="1.0"?>
Developer Release 3.01 June 2000 49

Service Description Basic Services
<ESpeak version="E-Speak 1.0beta" operation="RegisterService"

xmlns="http://localhost/e:/Esxml/Schemas/espeak.xsd">

 <resource>

 <resourceDes xmlns="" name="Printer">

 <!-- Specify printer Vocabulary -->

 <query xmlns="">

 <queryBlock xmlns="">

 <WHERE xmlns="">

 <!-- absence of query implies Base Vocabulary -->

 <condition xmlns="">

 <IN xmlns="">

 <pattern xmlns="">

 <Name

 xmlns="">printervocab</Name>

 <Type

 xmlns="">Vocabulary</Type>

 </pattern>

 </IN>

 </condition>

 </WHERE>

 </queryBlock>

 </query>

 <!-- Begin: attributes -->

 <attrSet xmlns="">

 <!-- End: Use printerVocabulary -->

 <attr xmlns="" name="Manufacturer" required="true">

 <value xmlns="">HP</value>

 </attr>

 <attr xmlns="" name="Modelname" required="false">

 <value xmlns="">LP 5</value>

 </attr>

 <attr xmlns="" name="DPI">

 <value xmlns="">1400</value>

 </attr>

 <!-- End: attributes -->

 </attrSet>

 </resourceDes>
50 Developer Release 3.01 June 2000

Basic Services Service Description
 </resource>

</ESpeak>

In the preceding example, XML has been used to describe a specific printer. The
XML description has two parts. The first part of the XML document, the Vocabulary
in which the rest of the description is to be interpreted, is specified. For example,
the query specifies that the following description is in a Vocabulary whose name is
printervocab:

<?xml version="1.0"?>

<ESpeak version="E-Speak 1.0beta" operation="RegisterService"

xmlns="http://localhost/e:/Esxml/Schemas/espeak.xsd">

 <resource>

 <resourceDes xmlns="" name="Printer">

 <!-- Specify printer Vocabulary -->

 <query xmlns="">

 <queryBlock xmlns="">

 <WHERE xmlns="">

<condition xmlns="">

 <IN xmlns="">

 <pattern xmlns="">

 <Name>printervocab</Name>

 <Type>Vocabulary</Type>

 </pattern>

 </IN>

 </condition>

 </WHERE>

 </queryBlock>

 </query>

In the second part, the element attrSet actually contains the set of attribute value
pairs that describe the particular Service in question. The following example
describes a printer whose Manufacturer is HP, whose Model name is LP 5, and
whose DPI is 1400:

<!-- Begin: attributes -->

 <attrSet xmlns="">

 <!-- End: Use printer Vocabulary -->

 <attr xmlns="" name="Manufacturer" required="true">
Developer Release 3.01 June 2000 51

Service Description Basic Services
 <value xmlns="">HP</value>

 </attr>

 <attr xmlns="" name="Modelname" required="false">

 <value xmlns="">LP 5</value>

 </attr>

 <attr xmlns="" name="DPI">

 <value xmlns="">1400</value>

 </attr>

 <!-- End: attributes -->

 </attrSet>

 </resourceDes>

 </resource>

</ESpeak>

Just as the 3.0 version of e-speak supports a new format for XML queries, it also
supports a new format for service descriptions. The XML that represents the regis-
tration request now looks as follows:

<?xml version='1.0'?>

<resource

xmlns="http://www.e-speak.net/Schema/E-speak.register.xsd">

 <resourceSpec>

 <locator>

http://www.hp.com

 </locator>

 </resourceSpec>

 <resourceDes>

 <vocabulary>

printervocab

 </vocabulary>

 <attr name="Manufacturer">

 <value>HP</value>

 </attr>

 <attr name="Modelname">

 <value>LP 5</value>

 </attr>

 <attr name="DPI">
52 Developer Release 3.01 June 2000

Basic Services Service Description
 <value>1400</value>

 </attr>

 </resourceDes>

</resource>

J-ESI does support the older XML schemas for registering services, but they should
be treated like deprecated schemas and clients are encouraged to move to the
newer schemas. The header for the service description creation looks as follows:

<?xml version='1.0'?>

<header xmlns="http://www.e-speak.net/Schema/E-speak.header.xsd">

 <communication>

 <to>es://localhost:12346/WebAccess/RegisterService</to>

 <context>

 <!-- session token is inserted by the requesting appl. -->

 </context>

 </communication>

</header>

The ESServiceDescription constructor that uses the new XML entry points looks as
follows:

public ESServiceDescription(ESConnection connection,

ESXMLFile xmlHeader,

ESXMLFile xmlRequest)

Example: Creating a Printer Description
The following example shows how to make an XML description of a printer regis-
tered in the e-speak Core. This code assumes that a printervocab Vocabulary is
found in the registry:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESXMLFile xmlDescriptionFile =

new ESXMLFile(“/users/printer.xml”);

ESServiceDescription printDescription =

new ESServiceDescription(xmlDescriptionFile,
Developer Release 3.01 June 2000 53

Service Description Basic Services
coreConnection);

where printer.xml is the XML file that has the contents in the last example. This
is much more succinct than explicitly adding all the properties by hand. A typical
usage scenario reads a list of products described in a merchant’s catalogs,
described in XML, to be read in and automatically registered as Services in e-speak.

Now that various methods have been presented for describing Services, the next
section describes other operations that Service providers have to perform to make
their Service available to other Clients.

Registering and Starting Services B

Typically, Service providers have to associate an actual implementation with their
Service, register their Service, and start a handler that will handle requests directed
to this Service. J-ESI provides an abstraction of a Service element represented by
the ESServiceElement class for performing these operations.

Consider the steps required to register a printer Service (PrinterServiceImpl)
that implements the PrinterServiceIntf. The following code fragment creates
a Service described in the default Vocabulary with the name MyPrinter, registers
it, and starts a thread that can process requests to the Service. The register()
call puts the description of the Service into the e-speak Repository so that other
Clients can discover it. The start() call starts a thread that processes requests to
this Service.

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESXMLFile xmlDescriptionFile =

new ESXMLFile(“/users/printer.xml”);

ESServiceDescription printDescription =

new ESServiceDescription(xmlDescriptionFile,

coreConnection);

ESServiceElement printElement =

new ESServiceElement(coreConnection,printDescription);

printElement.setImplementation(new PrinterServiceImpl());
ESAccessor printAccessor = printElement.register();

printElement.start();
54 Developer Release 3.01 June 2000

Basic Services Service Description
In this example, a single thread is started that handles the requests to the Service.
All requests destined to this Service are dispatched to an instance of the Print-
erServiceImpl object.

There are situations where Clients may want to associate multiple Services with the
same thread, or have multiple threads for the same Service. The current Client
library allows Service providers to control the number of threads through the
notion of a Service handler, represented by the ESServiceHandler class.

Every connection with the e-speak Core has a default Service handler
associated with it. This default Service handler can be retrieved using the
getDefaultServiceHandler call in the connection, as shown by the following
code fragment:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESServiceHandler defaultHandler =

coreConnection.getDefaultServiceHandler();

In essence, each Service handler encapsulates a channel of communication through
which messages are received. A single Service handler can serve as a channel for
getting messages to multiple Services. Each Service handler also has control over
the number of threads that process the messages that are delivered on the commu-
nication channel.

In the following example, a print server maintains a message queue for multiple
printers. This is made possible by using the same handler for all the printers. The
print server has 32 threads that process the requests of the Clients. The following
code sample shows how this is accomplished:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);
ESServiceHandler printHandler =

new ESServiceHandler(coreConnection);

printHandler.setNumThreads(32);

ESServiceDescription printDescription1 =

new ESServiceDescription();

printDescription1.addAttribute(“Name”,”Printer1”);

ESServiceElement printElement1 = new
Developer Release 3.01 June 2000 55

Service Description Basic Services
ESServiceElement(coreConnection,printDescription1);

printElement1.setImplementation(new PrinterServiceImpl());

printElement1.setHandler(printHandler);

ESAccessor printAccessor1 = printElement1.register();

printElement1.start();

ESServiceDescription printDescription2 =

new ESServiceDescription();

printDescription2.addAttribute(“Name”,”Printer2”);

ESServiceElement printElement2 =

new ESServiceElement(coreConnection,printDescription2);

printElement2.setImplementation(new PrinterServiceImpl());

printElement2.setHandler(printHandler);

ESAccessor printAccessor2 = printElement2.register();

printElement2.start();

The Service elements for each printer share the same handler. This way, there is a
single queue for requests for both printers, and there are 32 threads that handle
requests to the printers.

Service-Specific Data
As described earlier, Service-specific data is arbitrary data that can be associated
with Services. Service-specific data comes in two forms: public and private.

PublicData is data that can be accessed by any Client that can find the Service.

PrivateData is data that is sent back to the Service handler along with each request
to the Service. For example, this data can be used by the Service handler to distin-
guish among various Services that share this handler.

The following two API calls allow Clients to add public and private data to the
descriptions:

public void addPublicData(String dataName, byte[] data);

This API call adds public Service-specific data to the Service element

public void addPrivateData(String dataName, byte[] data);

This API call adds private Service-specific data to the Service element.
56 Developer Release 3.01 June 2000

Basic Services Service Description
For example, in a file system implementation, where the file store and the files
themselves are Services, the file store may choose to identify the files it creates
using private Data. This allows the file store to be very generic because it uses a
flexible implementation for storing the bytes that make up a file.

If the bytes are stored on the local disk directly, the file store can use the private
Data to keep track of the directory path on the local disk for the file. If the file store
instead stores the bytes making up a file in a database table, the information needed
to access the row in the table where the bytes of the files are stored is in the private
Data.

This allows the file handler to determine where the bytes of the file are stored when
a request for this file is received. The names for the data elements are selected by
the creator of the Service based on need. Service creators can choose to associate
multiple Data elements with every Service they create.

Creating Services Described in Multiple Vocabularies B

In the current version of J-ESI, services can be advertised in multiple vocabularies.
In essence, the ESServiceElement can be constructed with an array of service
descriptions, each of which describes the service in one vocabulary. For instance,
suppose that a printer service provider wanted to advertise the printer in two vocab-
ularies. Suppose one of the vocabularies enabled the service provider to advertise
the speed of the printer and the second allowed the service provider to advertise the
printer quality measured in terms of the dots per inch (DPI). Furthermore, the prop-
erties that one can add to a vocabulary can be flagged as primary key properties so
that the e-speak repository can build indices using such attributes. This allows the
searches that use these properties to be quite efficient.

ESServiceDescription sd[] = new ESServiceDescription[2];

try{

ESConnection connection = new ESConnection(“file.pr“);

//Creating the vocabulary........

ESVocabularyDescription vocabDesc = new

ESVocabularyDescription();

ESVocabularyDescription vocabDesc1 = new

ESVocabularyDescription();
Developer Release 3.01 June 2000 57

Service Description Basic Services
//Setting the vocabulary name

vocabDesc.addAttribute("Name","vocab");

vocabDesc1.addAttribute("Name","vocab1");

//Adding vocabulary properties

vocabDesc.addStringProperty("printerSpeed");

vocabDesc1.addStringProperty("printerDPI");

//Registering the vocabulary

ESVocabularyElement vocabElem = new

ESVocabularyElement(connection,vocabDesc);

ESVocabularyElement vocabElem1 = new

ESVocabularyElement(connection,vocabDesc1);

ESVocabulary vocab = vocabElem.register();

ESVocabulary vocab1 = vocabElem1.register();

 ESServiceDescription sd = new ESServiceDescription[2];

//Creating the service description

sd[0] = new ESServiceDescription(vocab);

sd[1] = new ESServiceDescription(vocab1);

//Setting the service name

sd[0].addAttribute("Name","myPrinter");

sd[0].addAttribute(“printerSpeed”, “10”);

sd[1].addAttribute("Name","myPrinter");

sd[1].addAttribute(“printerDPI”, “1000”);

//Create the service element

ESServiceElement se = new ESServiceElement(connection,

 sd);

Restarting Existing Services B

Just as Service providers can start new Services, J-ESI allows Service providers to
restart existing Services. Clients may want to restart Services in order to resume a
Service after recovering from a Service shutdown or outage. Clients can restart
Services in three ways: (i) They can construct a Service element from the descrip-
58 Developer Release 3.01 June 2000

Basic Services Service Description
tion and call restart() on the element, (ii) they can store away the accessor for
the service in a persistent folder and use the accessor to restart the service, or (iii)
they can store away the accessor of the handler in a persistent folder and use that
accessor to restart the service. Modes (ii) and (iii) are discussed in the next chapter
in the section on folders.

The element attempts to find a Service whose description matches the description
currently provided in the element. If such a Service is found, it activates that Service
so that requests to that Service are now handled. However, if no such Service is
found, an exception occurs and the Client is expected to catch the exception and
then register and start the Service.

However, the recommended mode for restarting Services is with the use of Folders.
The Client is expected to have created a local name for the Service in their folder
hierarchy. See “Managing Bindings Using Folders” on page 71 to determine how to
restart Services using the binding.

The following example shows the typical use of the restart method without the use
of Folders:

public static void main (String [] args)

{

try

{

String propertyFileName =

new String(“/users/connection.prop”);

ESConnection coreConnection =

new ESConnection(propertyFileName);

ESXMLFile xmlDescriptionFile =

new ESXMLFile(“/users/printer.xml”);

ESServiceDescription printDescription =

new ESServiceDescription

(xmlDescriptionFile, coreConnection);

ESServiceElement printElement =

new ESServiceElement(coreConnection, printDescription);

printElement.setImplementation(new PrinterServiceImpl());

ESServiceHandler printHandler =

new ESServiceHandler(coreConnection);

printHandler.setNumThreads(2);
Developer Release 3.01 June 2000 59

Service Description Basic Services
printElement.setHandler(printHandler);

try

{

printElement.restart();

System.out.println("XMLPrintServer re-started");

}

catch (ESInvocationException esie)

{

printElement.register();

printElement.start();

System.out.println("XMLPrintServer started");

}

}

catch (Exception e)

{

// handle the exception

}

}

Registering Vocabularies and Contracts B

Vocabularies and Contracts are themselves Services that are registered with the
e-speak infrastructure. However, the Service provider for Vocabularies and
Contracts is the e-speak Core itself. Because of this, Clients who create Vocabular-
ies only register them, and do not start a thread in order to serve requests to the
Vocabulary or Contract.

The classes that allow Clients to register Vocabularies and Contracts are
ESVocabularyElement and ESContractElement, respectively. The follow-
ing code fragment registers a printer Vocabulary that has three properties: DPI,
Manufacturer, and Modelname:

public class VocabularyCreator

{

public static void main(String[] argv)

{

60 Developer Release 3.01 June 2000

Basic Services Service Description
try

{

String propertyFileName =

new String(“/users/connection.prop”);

ESConnection coreConnection =

new ESConnection(propertyFileName);

ESVocabularyDescription printVocabDescription =

new ESVocabularyDescription();

printVocabDescription.addAttribute

(“Name”,"printervocab");

printVocabDescription.addIntegerProperty("DPI");

printVocabDescription.addStringProperty("Manufacturer");

printVocabDescription.addStringProperty("Modelname");

ESVocabularyElement printVocabElement =

new ESVocabularyElement(coreConnection,

printVocabDescription);

ESVocabulary printVocab = printVocabElement.register();

Property[] propertyList = printVocab.getProperties();

for (int i = 0; i < propertyList.length; i++)

{

System.out.println(propertyList[i].getPropertyName());

}

}

catch (Exception e)

{

// handle the exception

}

}

}

Creating Contracts is very similar to the creation of Vocabularies. The following
code fragment shows the creation of a simple Contract:
Developer Release 3.01 June 2000 61

Service Description Basic Services
public class ContractCreator

{

public static void main(String[] argv)

{

try

{

String propertyFileName =

new String(“/users/connection.prop”);

ESConnection coreConnection =

new ESConnection(propertyFileName);

ESContractDescription printContractDescription =

new ESContractDescription();

printContractDescription.addAttribute

(“Name”,"PrintContract");

String printIDL = getIDLFromFile();

printContractDescription.setInterfaceDefinition(printIDL);

ESContractElement printContractElement =

new ESContractElement(coreConnection,

printContractDescription);

ESContract printContract = printContractElement.register();

String receivedPrintIDL =

printContract.getInterfaceDefinition();

System.out.println(receivedPrintIDL);

}

catch (Exception e)

{

// handle the exception

}

}

}

62 Developer Release 3.01 June 2000

Basic Services Service Description
On registering a Vocabulary or Contract, the Clients receive a stub to the created
Vocabulary or Contract. This is in contrast to other Services that the Client creates,
where they receive an accessor to the Service that they create. (ESAccessor is
explained in detail in the later sections) This is because the Client that is registering
the Vocabulary or Contract is not the handler for that Vocabulary or Contract.

A Bank Service Example
The following example is a complete Bank Service example that makes use of many
of the concepts introduced in this chapter. Figure 6 shows the relationship between
a Bank Service, a Bank Service Contract, and the Bank Service Vocabulary. Typi-
cally, the Bank Vocabulary, Bank Contract, and Bank Service are not defined by the
same programmer; however, for the sake of simplicity in this example, we can
assume that they are defined by the same person.

Figure 6 Example of a Bank Service
Developer Release 3.01 June 2000 63

Service Description Basic Services
The following example lists the sequence of actions performed by a Bank Service
(assuming the Vocabulary, Contract, and Service are all defined by the same piece
of code):

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESContractDescription bankContractDescription =

new ESContractDescription();

bankContractDescription.

addAttribute(“Name”,“BankContract”);

ESContractElement bankContractElement =

new ESContractElement(coreConnection,

bankContractDescription);

ESContract bankContract = bankContractElement.register();

ESXMLFile xmlDescriptionFile =

new ESXMLFile(“/users/bankVocab.xml”);

ESVocabularyDescription bankVocabDescription = new

ESVocabularyDescription(xmlDescriptionFile,

coreConnection);

ESVocabularyElement bankVocabElement = new

ESVocabularyElement(coreConnection,

bankVocabDescription);

ESVocabulary bankVocab = bankVocabElement.register();

xmlDescriptionFile =

new ESXMLFile(“/users/bank.xml”);

ESServiceDescription bankDescription =

new ESServiceDescription(xmlDescriptionFile,

coreConnection);

bankDescription.setContract(bankContract);

ESServiceElement bankElement =

new ESServiceElement(coreConnection, bankDescription);

bankElement.setImplementation(new BankServiceImpl());

ESAccessor bankAccessor = bankElement.register();
64 Developer Release 3.01 June 2000

Basic Services Service Description
bankElement.start();

The following example shows the contents of the bankVocab.xml file that is used
to describe the Vocabulary:

<?xml version=”1.0”?>

<ESpeak version=”E-speak 1.0” operation=”CreateVocab”>

 <resource>

 <!-- Begin: Specify the Vocabulary description -->

 <resourceDes>

 <attrSet>

 <attr name=”Name”>

 <value>bankvocab</value>

 </attr>

 </attrSet>

 </resourceDes>

 <!-- End: Specify the Vocabulary description -->

 <resourceData>

 <!-- Begin: Specify the attribute property set -->

 <attrGroup name=”Bank Vocabulary”>

 <attrDecl name=”Name”>

 <datatypeRef name=”string”/>

 </attrDecl>

 <attrDecl name=”createAccount”>

 <datatypeRef name=”string”/>

 </attrDecl>

 <attrDecl name=”tradeStock”>

 <datatypeRef name=”string”/>

 </attrDecl>

 </attrGroup>

 <!-- End: Specify the attribute property set -->

 </resourceData>

 </resource>

</Espeak>

The following example lists the contents of the bank.xml file that is used to
describe the particular Bank Service:

<?xml version=”1.0” ?>
Developer Release 3.01 June 2000 65

Service Description Basic Services
<ESpeak version=”E-Speak 1.0” operation=”RegisterService”>

 <resource>

 <resourceDes name=”Bank Description”>

 <!-- Begin: Specify bank Vocabulary in a query-->

 <query>

 <queryBlock>

 <WHERE>

 <condition>

 <IN>

 <pattern>

 <Name>bankvocab</Name>

 </pattern>

 </IN>

 </condition>

 </WHERE>

 </queryBlock>

 </query>

 <!-- End: Specify bankVocabulary -->

 <!-- Begin: the attribute list -->

 <attrSet>

 <!-- End: Use bank Vocabulary -->

 <attr name=”Name”>

 <value>Acme</value>

 </attr>

 <attr name=”createAccount”>

 <value type=”string”>”Acme 1”</value>

 </attr>

 <attr name=”tradeStock”>

 <value type=”string”>”hwp”</value>

 </attr>

 </attrSet>

 <!-- End: the attribute list -->

 </resourceDes>

 </resource>

</ESpeak>
66 Developer Release 3.01 June 2000

Basic Services Accessing Descriptions: ESAccessor
Accessing Descriptions: ESAccessor B

ESAccessor is a reference to a Service with which the user can do the following.

• Obtain or change the attributes of a Service

• Send messages to the Service (More details are in Appendix B)

Typically, a Client finds a Service that matches some desired attributes, but after
finding the Service, the Client may be interested in checking the values of other
attributes as well.

For example, a Client may find a list of printers meeting a certain DPI value, but
after finding this list, the Client may want to determine the manufacturer name
before proceeding further. In such situations, the Client can get the accessor for
each Service and query the accessor for the manufacturer attribute’s value.

Similarly, an administrator who manages the printer may want to mutate one of the
searchable attributes or add new Data to reflect some upgrade to the printer. In this
case, the ESAccessor is used to mutate the Service description as well. For exam-
ple:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESXMLFile xmlDescriptionFile =

new ESXMLFile(“/users/printerQuery.xml”);

ESXMLQuery printQuery = new ESXMLQuery(coreConnection,

xmlDescriptionFile);

ESServiceFinder printFinder = new ESServiceFinder(coreConnection);

ESService printService = printFinder.find(printQuery);
ESAccessor printAccessor =

((ESAccessorHandle)printService).getAccessor();

On the Service provider side, when a Service is registered, an accessor is returned
as a result of doing the register call. For example:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESServiceDescription printDescription =

new ESServiceDescription(printVocab);

printDescription.addAttribute(“Modelname”, “HP1000”);
Developer Release 3.01 June 2000 67

Accessing Descriptions: ESAccessor Basic Services
ESServiceElement printElement =

new ESServiceElement(coreConnection, printDescription);

printElement.setImplementation(new PrinterServiceImpl());

ESAccessor printAccessor = printElement.register();

printElement.start();

The Service provider can now use the accessor to access and mutate the description
of the Service.

Consider a printer Client who, after finding a printer with DPI == 1400, decides
to list all the attributes of the printer, perhaps in an effort to find out its manufac-
turer, speed, and so on.:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESServiceFinder printFinder =

new ESServiceFinder(coreConnection);

ESQuery printQuery = new ESQuery(printervocab);

printQuery.addConstraint(“DPI==1400”);

ESService printService = printFinder.find(printQuery);

ESAccessor printAccessor =

((ESAccessorHandle)printService).getAcessor();

System.out.println(“Attributes of this printer are:\n”);

ESAttribute[] attrList =printAccessor.getAttributes();

for(int i=0; i<attrList.length; i++)

{

System.out.println(attrList[i].toString());

}

A Service provider who has created a Service or a Client and who has the appropri-
ate permissions can change the attributes of the Services. For example, if the
administrator upgrades the printer to the latest model that supports a higher DPI,
the administrator can update the description of the printer with the new values for
the attributes as follows:

// code to find print service from above

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESVocabularyFinder printVocabFinder =
68 Developer Release 3.01 June 2000

Basic Services Accessing Descriptions: ESAccessor
new ESVocabularyFinder(coreConnection);

ESQuery printVocabQuery =

new ESQuery(“Name == ‘printervocab’”);

ESVocabulary printVocab = printVocabFinder.find(printVocabQuery);

ESQuery printQuery = new ESQuery(“Manufacturer == ‘HP’”);

ESService printService = printFinder.find(printQuery);

ESAccessor printAccessor =

((ESAccessorHandle)printService).getAccessor();

ESAttribute attr1 = new ESAttribute(“Manufacturer”);

attr1.setValue(“HP”);

ESAttribute attr2 = new ESAttribute(“DPI”);

attr1.setValue((int) 1400);

printAccessor.setAttribute(attr1, printVocab);

printAccessor.setAttribute(attr2, printVocab);

The ESAccessor class also has other methods that can be used to mutate the meta-
data of services. Examples of such methods are the following. Note that though
some of these signatures refer to ESBaseDescription, in practice, these return
values or arguments to these functions are instances of ESVocabularyDescription,
ESContractDescription, ESViewDescription, ESServiceDescription, etc.

public void setDescriptions(ESBaseDescriptions [] desc);

public void setDescription(ESBaseDescription desc);

public void setAttribute(ESAttribute attr, ESVocabulary vocab);

public void setAttributes(ESAttribute [] attrs, ESVocabulary vocab);

public ESBaseDescription [] getDescriptions();

public ESBaseDescription getDescription();

public ESAttribute getAttribute(String name, ESVocabulary vocab);

public ESAttribute [] getAttributes(String name, ESVocabulary

vocab);
Developer Release 3.01 June 2000 69

Accessing Descriptions: ESAccessor Basic Services
70 Developer Release 3.01 June 2000

Chapter 3 Extended Services
The previous chapters described the programming model, and how e-speak Clients
and Services interact. In addition to support for these basic functions, J-ESI
supports extended Services that enable support for persistent bindings,
Event-based interaction semantics, and loosely coupled distributed Communities.
This chapter shows how these extended Services can be used to create sophisti-
cated Service interactions.

The chapter is divided into the following sections:

• Managing Bindings Using Folders

• Repository Views

• Categories

• Communities

• Security

• Events

Managing Bindings Using Folders C

One of the main reasons why e-speak can support loosely coupled distributed
Services is that it does not rely on global naming. In many traditional distributed
systems, the distribution is possible because Clients know the name of the Service
providers and they use the name to access the Service.

In e-speak, on the other hand, there are no global names. Clients can make up names
for the Services they find or create, and that name is independent of the name that
another Client uses for the same Service.
Developer Release 3.01 June 2000 71

Managing Bindings Using Folders Extended Services
For instance, one Client may refer to a Printer Service as “Marketing Printer,” while
another Client may refer to the same Printer Service as “Engineering Printer.” This
allows Services to be migrated or upgraded, without having to change the
Client-side programs that use these Services. Figure 7 illustrates the naming
process in e-speak.

Figure 7 Example of folder names using e-speak

In J-ESI, Clients manage their local name spaces using folders. Folders are analo-
gous to directories in traditional file systems. Clients can create bindings between
the names and Services they find and then put the bindings in a folder.

Essentially, folders enable Clients to build a local hierarchical name space. Every
user account in an e-speak Core has a folder that is its root (typically denoted by /).
Clients can get at the root folder in their session by invoking the getRootFolder
method in ESConnection. For example:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESFolder myRoot = coreConnection.getRootFolder();
72 Developer Release 3.01 June 2000

Extended Services Managing Bindings Using Folders
Creating Folders C

Folders created by Clients are either persistent or transient. A transient folder is a
folder that does not survive beyond the lifetime of the connection in which it is
created. A persistent folder, on the other hand, can survive beyond the lifetime of
the connection in which it is created. If the Core is backed up in a database, persis-
tent folders also survive Core reboots. This is because, although the folders are a
Client-side abstraction, their state is maintained in the e-speak Core.

Creating Transient Folders
Currently, Clients can create transient or persistent folder hierarchies under the
root folder. To create a transient folder hierarchy, they create a subfolder of the
root folder that is transient. For example, to create a transient folder under the root
folder called bookmarks, use the following constructor of ESFolder:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESFolder bookMarkFolder = new ESFolder(coreConnection, “bookmarks”);

This call creates a transient folder under the root folder called /bookmarks. The
folder constructor is used to create subfolders of the root folder, while the
createSubFolder method is used to create subfolders of all non-root folders.

Creating Persistent Folders
The above ESFolder constructor cannot be used to create persistent folders. To
create a persistent folder called /myServices under the root folder, the following
call is used:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESFolder ownFolder = new ESFolder(coreConnection, “myServices”,

true);

By default, a root folder is persistent. Hence, the user invokes the createSub-
Folder method on the root folder to create persistent folders. Because the folder
/myServices is a persistent folder, any subfolder of /myServices is also persis-
tent.
Developer Release 3.01 June 2000 73

Managing Bindings Using Folders Extended Services
As in most operating systems, there is the idea of a current folder in J-ESI. Clients
can get their current folder through the Service context, as shown by the following
code fragment:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESServiceContext connectContext =

coreConnection.getServiceContext();

ESFolder currentFolder = connectContext.getCurrentFolder();

When a new connection is created, the name of the home folder is read from the
properties file that is passed to the constructor of ESConnection. The value of the
property named homefolder in the properties file is used as the name of the home
folder. If no properties file is passed to the constructor of ESConnection, the
default home folder is /home. The home folder can be obtained as follows:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESFolder homeFolder = coreConnection.getHomeFolder();

The properties of the current folder that the Client is located in are important. If a
Client creates Services while in a persistent folder, the Service is created as a persis-
tent Service. This means that the description of the Service is registered with the
e-speak Core even if the handler of the Service disconnects from the e-speak Core.

Naming Found Services
Clients typically create folders to manage name bindings on Services they have
discovered or created. For example, an administrator may add bindings to discov-
ered print Services in a persistent folder (such as /home/services/printers).
Because the bindings are stored in a persistent folder, anytime the administrator
reconnects, they continue to have access to previously discovered printers by
simply looking into the persistent /home/printers folder.

The following code fragment shows the creation of a subfolder ‘printers’ of the
Client’s home folder (/home/services). After printers is created, the Client
finds a printer and places a name binding for it in this folder.

String propertyFileName = new String(“/users/connection.prop”);
ESConnection coreConnection = new ESConnection(propertyFileName);
ESServiceContext connectContext =
74 Developer Release 3.01 June 2000

Extended Services Managing Bindings Using Folders
coreConnection.getServiceContext();
ESFolder currentFolder = connectContext.getCurrentFolder();
// The current folder is assumed to be /home/services.
// This can be set in the properties file
ESFolder newFolder = null;
try {

newFolder = currentFolder.getSubFolder("printers");
}
catch (InvalidNameException ine){

newFolder = currentFolder.createSubFolder("printers");
}
connectContext.setCurrentFolder(newFolder);
PrinterServiceIntf printer = null;
try{

printer = (PrinterServiceIntf)
newFolder.getService("myprinter", “PrinterServiceIntf”);

}
catch (ESInvocationException esie){

ESXMLFile xmlQueryFile = new ESXMLFile(“/users/printerQuery.xml”);
ESXMLQuery printQuery =

new ESXMLQuery(coreConnection, printQuery);
String intfName = PrinterServiceIntf.class.getName();
ESServiceFinder printFinder =

new ESServiceFinder(coreConnection, intfName);
printer = (PrinterServiceIntf) printFinder.find(printQuery);
newFolder.add("myprinter", printer);

}
// get the contents of the folder
String[] contents = newFolder.listNames();
Naming Created Services
Naming a Service which is created and adding it to a folder is similar to naming a
found Service. The following code shows an example of how to name a created Service.
String propertyFileName = new String(“/users/connection.prop”);
ESConnection coreConnection = new ESConnection(propertyFileName);
ESServiceContext connectContext =

coreConnection.getServiceContext();
ESFolder currentFolder = connectContext.getCurrentFolder();
// The current folder is assumed to be /home/services.
// This can be set in the properties file
ESFolder newFolder = null;
try {

newFolder = currentFolder.getSubFolder("printers");
}
catch (InvalidNameException ine){

newFolder = currentFolder.createSubFolder("printers");
}
connectContext.setCurrentFolder(newFolder);
if (!(newFolder.containsName(“fastprinter”)){

ESXMLFile xmlDescriptionFile =
new ESXMLFile(“/users/printer.xml”);

ESServiceDescription printDescription =
new ESServiceDescription(xmlDescriptionFile, coreConnection);

ESServiceElement printElement = new ESServiceElement(
Developer Release 3.01 June 2000 75

Managing Bindings Using Folders Extended Services
coreConnection, printDescription);
printElement.setImplementation(new PrinterServiceImpl());
ESServiceHandler essh = new ESServiceHandler(coreConnection);
printElement.setHandler(essh);
ESFolder homeFolder = coreConnection.getHomeFolder();
homeFolder.add(HANDLER_NAME, essh.getAccessor());
ESAccessor printAccessor = printElement.register();
printElement.start();
newFolder.add(“fastprinter”, printAccessor);

}
else
{

ESServiceElement printElement = new
ESServiceElement(newFolder.getAccessor(“fastprinter”));

printElement.setImplementation(new PrinterServiceImpl());
printElement.restart();

}

When the Service provider goes off-line and logs back into the e-speak Core, they
do not have to re-create the Service. The provider looks for the name binding corre-
sponding to the printer that they created and performs a restart. This allows the
print Service to go online and to respond to requests.

An alternative way to restart services is to use the accessor of the service handler.
A service provider can store away a binding to the service handler that was created
to handle requests to her services in a folder. On restarting, the service handler can
be recreated from this binding, and a service element can be recreated from the
service handler. This allows multiple services that share a handler to be restarted
without creating a service element for each service all over again. The following
code snippet shows how to do this.

ESConnection conn = new ESConnection(“propfile”);

ESFolder home = conn.getHomeFolder();

 ESAccessor da = home.getAccessor(HANDLER_NAME);

 ESServiceHandler handler = new ESServiceHandler(da);

 handler.setNumThreads(numThreads);

 ESServiceElement element = new ESServiceElement(handler);

 element.setImplementation(new PrintServiceImpl());

 element.restart();
76 Developer Release 3.01 June 2000

Extended Services Managing Bindings Using Folders
Creating and Finding Folders with Descriptions C

Clients can create folders and describe them in any Vocabulary just like any other
Service. By doing this, the folders can be found by other Clients using the queries
that are in the Vocabulary in which the folder was advertised. Creating the folders
with descriptions allows other Clients to discover the folders and use the name
bindings that have been created within the folders.

For example, if Client A creates a folder with bindings for print Services that they
want to share with Client B, Client A can create the folder with a description and
advertise it so that Client B can discover the folder. Client B can then use the bind-
ings without also having to create their own bindings.

Some of the constructors of ESFolder, as well as some of the createSubFolder
calls in ESFolder, take an additional ESServiceDescription that describes
the attributes of the folder that is being created. For example:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESXMLFile xmlDescriptionFile = new ESXMLFile(“/users/folder.xml”);
ESServiceDescription folderDescription =

new ESServiceDescription(xmlDescriptionFile, coreConnection);

ESFolder newFolder = new ESFolder(“services”, folderDescription);

The preceding constructor of ESFolder causes the description of the folder to be
registered in the Repository of the Core so that other Clients can discover the folder
description. Folders are found using the ESFolderFinder class. For example:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESFolderFinder fFinder = new ESFolderFinder(coreConnection);

ESXMLFile xmlQueryFile =

new ESXMLFile(“/users/folderQuery.xml”);

ESXMLQuery folderQuery =

new ESXMLQuery(coreConnection, xmlQueryFile);

ESFolder folder = fFinder.find(folderQuery);
Developer Release 3.01 June 2000 77

Managing Bindings Using Folders Extended Services
Navigating Folders C

The ESFolder class has methods for navigating a folder hierarchy. For example,
to get the subfolder of a given folder, there is a getSubFolder call. On the other
hand, to get the parent of any folder, a getParent call is issued. In addition, there
are other calls that allow the Client to list the contents of the folders.

Scopes C

Scopes are used to mark the lifetime of transient and persistent Services.

Before scopes can be used, boundaries need to be defined for them. The following
method in ESServiceContext is used to signify scope boundaries:

public void beginTransientScope();

public void endTransientScope();

Ending a scope results in all the transient/persistent Services created in the scope
being deleted. Furthermore, all the transient bindings for Services found by the
Client are also deleted. For example:

String propertyFileName = new String(“/users/connection.prop”);

ESConnection coreConnection = new ESConnection(propertyFileName);

ESServiceContext connectContext =

coreConnection.getServiceContext();

…

while(notDone())

{

connectContext.beginTransientScope();

…

createFindAndUseServices(coreConnection);

…

connectContext.endTransientScope();

}

In this example, the createFindAndUseServices is a method that creates and
uses a transient Service. The end scope call following this method invocation auto-
matically deletes all transient bindings and Services created in the method.
78 Developer Release 3.01 June 2000

Extended Services Repository Views
Repository Views C

The repository view is a feature in e-speak that allows clients to restrict the scope
of their searches to within the view. These views are collections of e-speak regis-
tered e-speak services. Clients can add and remove services from these views.
These views are maintained by the e-speak core engine, therefore they are
core-managed services. These repository views are described using ESViewDe-
scription just as vocabularies are described with ESVocabularyDescription and
other services are described with ESServiceDescription. Similarly, clients use the
ESViewFinder to find these repository views and create ESViewElement instances
in order to register new repository views with the core repository.

The following code snippet shows how a client can create a repository view, find it,
and add elements to it, etc.

public class testView

{

 public static void main(String args[])

 {

 ESConnection es = null;

 try {

es = new ESConnection();

 ESViewDescription esd = new ESViewDescription();

esd.addAttribute("Name","TestView");

ESViewElement ese = new ESViewElement(es,esd);

ESView v = ese.register();

ESViewFinder esf = new ESViewFinder(es);

ESView[] ess = esf.findAll(new ESQuery("Name == 'TestView'"));

ESAccessor esa = ((ESAccessorHandle) ess[0]).getAccessor();

((ESViewStub)ess[0]).add(esa);

boolean result = false;

result = ((ESViewStub)ess[0]).contains(esa);

// get all the accessors in the view

ESAccessor[] e = ((ESViewStub)ess[0]).list();

es.close();

}catch(Exception e) {

}

}

Developer Release 3.01 June 2000 79

Categories Extended Services
}

Restricting searches with views
The typical use of such repository views is to restrict the search results from
queries. This is accomplished by associating a view with a query. When an ESQuery
with an associated view is executed by the e-speak repository, the search results
are guaranteed to be from the elements within the repository view.

ESConnection es = new ESConnection();

System.out.println("Connected to core");

ESViewFinder esf = new ESViewFinder(es);

ESView view = esf.find(new ESQuery("Name == 'myPrintView'"));

ESServiceFinder finder = new ESServiceFinder(es,

“PrinterServiceIntf”);

ESVocabulary pVocab = // .. code to find vocabulary

ESQuery query = new ESQuery(pVocab, “printerSpeed == ‘10’”);

query.setView(view);

try {

 ESService[] list = finder.findAll(query);

 for (int i = 0; i < list.length; i++) {

 ESServiceStub printer = (ESServiceStub)list[i];

 ESAccessor desc = file.getAccessor();

 }

}

 catch (LookupFailedException lfe) {

 // No entries were found that matched the search criteria

 }

Categories C

J-ESI supports the notion of categories. These categories provide a way to classify
services so that service providers can advertise in multiple categories and clients
can find services of interest to them in the categories of interest to them. Each cate-
80 Developer Release 3.01 June 2000

Extended Services Categories
gory is qualified by its name. Furthermore, one can create sub-categories of existing
categories, and provide descriptions for them. When clients search for services,
they too can set the categories that they want the search to be performed in. This
becomes part of their query and picks out the services that are advertised in the
categories of interest to the client.

The category list of interest to the client/service provider is maintained in the
ESServiceContext that is associated with the ESConnection. The following exam-
ple shows the registration of the print service in the “high speed printer” category.
Essentially, the service provider sets the current category list in the ESServiceCon-
text and these categories are used when registering and advertising the service.

public static void main(String[] args)

 {

 try {

ESConnection connection = new ESConnection();

ESCategoryFinder cf = new ESCategoryFinder(connection);

ESCategory root = cf.findRootCategory();

ESCategory cat1 = root.createCategory("high speed printer",

"high ppm");

ESCategory[] catList = new ESCategory[2];

catList[0] = root;

catList[1] = cat1;

connection.getServiceContext().setCategory(catList);

ESServiceDescription sd = new ESServiceDescription();

sd.addAttribute(ESConstants.SERVICE_NAME, "printer");

sd.addAttribute("Description", "my hp printer");

ESServiceElement se = new ESServiceElement(connection, sd);

se.setImplementation(new PrinterServiceImpl());

se.register();

se.advertise();

se.start();

} catch (Exception e1) {

}

}

Developer Release 3.01 June 2000 81

Categories Extended Services
Now, on the client side, the finder for the printers also uses the category list that is
set in the service context. The code snippet below shows how to search for printers
in the “high speed printer” category. Note that the client has to construct a category
list that represents the path from the root category to the category of interest.

public static void main(String [] args) {

try {
String propFileName = args[1];
ESConnection connection = new ESConnection(propFileName);
 ESCategoryFinder cf = new ESCategoryFinder(connection);
ESCategory root = cf.findRootCategory();
ESAccessor[] cat1Acc = cf.find("high speed printer");
ESCategory cat1 = new ESCategoryStub(connection, cat1Acc[0]);
ESCategory[] catList = new ESCategory[2];
catList[0] = root;
catList[1] = cat1;
connection.getServiceContext().setCategory(catList);

ESQuery q = new ESQuery (ESConstants.SERVICE_NAME +
"=='printer'");

ESServiceFinder sf = new ESServiceFinder(connection,
 "PrinterServiceIntf");

ESService[] myObjs = sf.findAll(q);

if((myObjs == null) || (myObjs.length == 0))
System.out.println("ERROR IN CREATING STUB/FINDING");
System.out.println("Found " + myObjs.length + " services");

for(int i=0; i<myObjs.length; i++) {
PrinterServiceIntf myObj =

 (PrinterServiceIntf)myObjs[i];
 String junk = myObj.print();
 }
 connection.close();
 return;

} catch (Exception e1) {
}

}

Delegators C

Often, there is a need for the implementation objects associated with services to
have access to some of the metadata of the services that the implementation object
is associated with. For example, a file implementation is to be shared amongst
multiple files that are registered as services with e-speak. Suppose furthermore,
that the private service specific data is used to store the actual path to the contents
82 Developer Release 3.01 June 2000

Extended Services Categories
of the file on disk. In particular, suppose that the name of the service specific data
is “RealFileName”. Essentially, when the implementation object extends the ESDel-
egatorImpl, the service specific data of the service is passed onto the implementa-
tion object. This allows the implementation object to determine the exact service
for which this request is meant.

public class VFSFileImpl extends ESDelegatorImpl{
final static String REAL_FILE_NAME = "RealFileName";

public VFSFileImpl(ESConnection connection, ESVocabulary vocab, ESLogClient log,
 int numThreads) {

// constructor....
}

 public byte[] fetchBuffer(int offset, int size)
 throws ESInvocationException {

try {
 String fileName = getFileName();

File file = new File(fileName);
 int count = size;
 int whatsLeft = (int)file.length() - offset;
 if (whatsLeft < count) {
 count = whatsLeft;

byte [] fileBuffer = new byte[count];
 FileInputStream in = new FileInputStream(file);
 in.skip((long)offset);
 in.read(fileBuffer);
 in.close();
 return fileBuffer;
 } catch (Exception ioe) {

} finally {
}

 }

private String getFileName() {
try {

 byte[] entry = getPrivateData(REAL_FILE_NAME);
 String fileName = new String(entry);

 return fileName;
 } finally {

}
 }

}

Developer Release 3.01 June 2000 83

Communities Extended Services
Communities C

So far, the discussion has focused on how e-speak Clients can register and discover
new Services while using folders to manage Service bindings. No mention has been
made yet of multiple connected Cores, the distributed nature of deployments, or the
impact of distribution on failure semantics, latency, and concurrency.

J-ESI makes it easy for programmers to write distributed Services. Although all
Services are registered in the local Core by default, these can be made more widely
visible by advertising this Service across multiple Cores. In J-ESI, the possible
domains in which a Service is visible are as follows:

• Only the e-speak Core—In this deployment scenario, all Clients that want to
use this Service are also connected to the same Core, loosely representative of
a classic Client-server deployment of Services.

• In an e-speak group—An e-speak group is a collection of e-speak Cores that
are closely connected to each other, such as in an administrative domain. These
Cores typically can find all Services registered in any of the other Cores, and
they may all share the same back-end server (possibly an LDAP server) for stor-
ing all Services registered in the group. E-services Village, a HP hosted service
directory is an example of such a service directory. Such deployments are anal-
ogous to lookup or naming servers used in other solutions. Note: The advertising
services without LDAP should use the same group name in the command line
-group <groupname> option if they want to be part of the same group.

• In an e-speak community—An e-speak community is a Client-defined named
set of e-speak groups that is created by Clients to enable them to search through
different related sets of Services easily. The default community in J-ESI includes
www.eservicesvillage.com. Therefore, every query that any client executes
returns results that are not only in the local core, but also in eservices village.

In Figure 8, the top left corner shows a single Core case where all Clients and
Service providers are connected to the same Core. The top right corner shows an
e-speak group in which a closely connected group of Cores share an LDAP server
or use other mechanisms to advertise all their Services to each other. The bottom
figure shows an e-speak community that can be formed between groups A and B. A
Client in group A can select to find Services in group B, by setting the community
list to include group B.
84 Developer Release 3.01 June 2000

Extended Services Communities
Figure 8 E-speak Core groups

A Service provider can advertise the Service in the local advertising service or can
advertise it to different groups. The Service provider can do so by using either the
advertise call or advertiseInOtherGroups method in ESServiceEle-
ment.

Consider an example where there are a number of printers organized according to
administrative groups. Additionally, assume that each administrative group is asso-
ciated with a different e-speak group. A user wanting to find printers across all
administrative groups but still located closest to the user performs the following
steps:

1 Create their own community that lists the groups of all the relevant administra-
tive domains. Each group is identified by a string with the following format:

<host_name>:<port_num>/<group_name>

The host name and port number identify the host machine in which an advertis-
ing Service for the group of interest can be found. In addition, the name of the
group of interest is specified as well. Note: The port is that of the connection
Developer Release 3.01 June 2000 85

Communities Extended Services
factory and not of the Core. The advertising service should have been started
with the same group name, with the command line option -group <group-
name>.

ESCommunity newCommunity = new ESCommunity(coreConnection);

newCommunity.add(“host1:22020/auction_site1”);

newCommunity.add(“host2:22021/auction_site2”);

Another way to create a community is to specify it in the properties file used on
start-up. The properties file takes in a community property that is a
comma-delimited list of groups such as:

printcommunity.prop file:

…

community = host1:22020/auction_site1, host2:22021/auction_site2

…

2 Set the current community to this community name using the
ESServiceContext class:

ESServiceContext connectContext =

coreConnection.getServiceContext();

connectContext.setCommunity(newCommunity);

3 Perform a search as follows:

ESServiceFinder anyFinder =

new ESServiceFinder(coreConnection);

anyFinder.find(“Name == ‘AnyService’”);

A mobile user can simply switch the community profile to find the appropriate
Services in the currently relevant community.

In fact, because e-speak is geared toward Service deployment, it is natural to
simplify the process of advertising a Service across a wide geographical area,
simplify searching, and provide distributed access control.

To simplify the programming of distributed Services, the following support is built
into J-ESI:
86 Developer Release 3.01 June 2000

Extended Services Communities
• Advertising a Service automatically makes the Service visible to the group in
which it has been advertised.

• Because each Core has a registry, an e-speak deployment does not require a
centralized naming or lookup Service to obtain information about all Services
registered. A centralized scheme can be implemented as a special case within a
more general scheme enabled by e-speak finder Services. The search for a
Service is automatically performed in parallel across multiple registries.

Advertising across internet and locally C

Advertising service across the Internet using HP hosted global ser-
vice directory
Service providers can advertise the services throughout the world using HP hosted
global service directory by selecting default values when starting the advertising
service. In this case, when user invokes the advertise() call, the service gets adver-
tised in the global service directory. This allows a service provider located in Los
Angles to advertise a service to the global directory, accessable by any clients in
New York. Clients and service providers can use the hosted gateway/connector
service at eservicesvillage.com to access and provide services from behind a fire-
wall.

For services hosted behind a firewall to advertise themselves at eservicesvil-
lage.com (or any other service directory on the internet), the service provider has
to set up the configuration files appropriately. The sections of the e-speak configu-
ration file that pertain to web-proxy configuration and advertising service configu-
ration may have to be modified in order for this to work correctly. The following is
a sample section from an e-speak configuration file with the rules for web-proxy
and advertising service configuration.

!---
! Web proxy configuration
!---
! webproxyname is a single value being the fully qualified hostname
! of the http-proxy used to traverse a firewall
net.espeak.infra.core.connector.webproxyname=web-proxy.efgijk.com

! webproxyport is the port on which the proxy listens
net.espeak.infra.core.connector.webproxyport=8088
Developer Release 3.01 June 2000 87

Communities Extended Services
! domain for which direct connection should be done.
! only one entry is supported currently
! Syntax is the end of the domain that should be match
! the '*' wildcard is not supported.
net.espeak.infra.core.connector.noproxydomain=efgijk.com

!---
! Advertising Proxy configuration
!---
!host at which the core for advertising proxy is running
net.espeak.services.advertise.esv_proxy_host=XXXXXXXX
(needs to be fixed***)

!port at which the core for advertising proxy is running
net.espeak.services.advertise.esv_proxy_port=23456

!default username and password to be used at the e-services village
net.espeak.services.advertise.esv_user_name=%esv_username%
net.espeak.services.advertise.esv_password=%esv_password%

If service providers who advertise their service have created an account at
eservicesvillage.com, they can edit the esv_user_name and esv_password fields in
the configuration file above to the appropriate values. This allows them to login to
eservicesvillage and manage/edit their services.

Advertising a service within an enterprise
Service providers can advertise the services within an enterprise in two ways.

• Using a service directory (say LDAP)

• Using only the e-speak core repository

The first scenario is similar to using HP hosted global service directory except that
the advertising service connects to the service directory specifed by the service
provider. This service directory can be located within the enterprise spread in
different locations. Specifically, the advertising service is started by specifying
(-beproto <protocol>), (-behost <hostname>) and (-beport <port-
number>) command line options. If (-beproto) command line option is not spec-
ified, then global service directory hosted by HP is selected.
88 Developer Release 3.01 June 2000

Extended Services Communities
In the second scenario, service providers who do not want to use service directory
like LDAP can still achieve the same results by starting the advertising service in
'With repository mode'. When the user invokes the advertise() call, the service is
placed in the local advertising service.

In this case, clients doing a search in a community, can specify fully qualified group
names (group name+host name+port number). The infrastructure automatically
connects and makes all the services available in the advertising service identified by
host name and port number visible to the client, even when not using any service
directory.

Advertising a service in local domain
Service providers advertising service in the local domain can do so in the following
two ways.

• Using a service directory (say LDAP)

• Using only the e-speak core repository

The first scenario is same as described above.

In the second scenario, the users can use the spontaneous discovery mechanism in
the e-speak system. Service provider's advertisements are automatically transfered
to all the advertising services belonging to the same group.

Clients doing a search in a community, need to specify only the group names. The
hostname and portnumber are no longer necessary in the local domain, as the
advertising services spontaneously talk with each other in the local domain and
exchange information.

Multiple groups in a single service directory
Multiple groups can be in a single service directory (say LDAP). In this case, differ-
ent advertising services belonging to different groups can connect to the same
service directory and advertise services.
Developer Release 3.01 June 2000 89

Communities Extended Services
Selecting a group name
Two different service providers can advertise services with exactly the same
descriptions (attribute values). If the service provider wants to prevent collisions
across the advertised services or wants to protect the access to the services adver-
tised, the service provider can specify sufficiently unique group name for the adver-
tising service. Specifically the service provider uses (-group <groupname>)
command line option of advertising service to achieve this. It is the service
provider's and client's responsibility to select a sufficiently unique name for the
groups to prevent collisions.

A client doing a search can specify a community which is a collection of group
names. In this case, only services registered in the those groups are returned to the
client. Services in other groups, even if matching client's query are not returned.

A service provider wishing to advertise the service to the whole world can do so by
starting the advertising service with group name 'speaktome' and using the HP
hosted global service directory. Specifically, the service provider starts the adver-
tising service with command line option (-group "speaktome")

Setting Current Community C

The following two Application Programming Interfaces (APIs) in the
ESServiceContext class are used to create the community in which a search or
a registration of a Service is to be performed.

The getCurrentCommunity and setCommunity methods are as follows:

public ESCommunity getCurrentCommunity();

public void setCommunity(ESCommunity community);

ESCommunity
To add an entry to the list of groups, use the following code:

public void add(String groupName);

The default community is defined by the start-up file.

To remove a group from the community, use the following code:
90 Developer Release 3.01 June 2000

Extended Services Communities
public void remove(String groupName);

NOTE: Note: This is included in future releases.

To return the enumeration of group servers, use the following method:

public Enumeration listGroupServers();

Example: csldemo5.rgv.hp.com:22022/group.

Advertising to Groups C

As mentioned earlier, advertisement of Services is managed by ESServiceEle-
ment. An advertise call makes the Service visible to the entire group. To advertise
a Service, use the following method:

public void advertise();

If a Service needs to be advertised to a different set of groups, use the following
method:

public void advertiseToOtherGroups(String[] groupNames)

where each element in groupNames is in the form
<hostname>:portnumber/name.

Finding in Communities C

All the user needs to do to find a Service in a community is to set the current
community to the one of interest and invoke the finder method to find the Service.

ESServiceContext connectContext =

coreConnection.getServiceContext();

connectContext.setCommunity(owncommunity);

.....

finder.find(query);

.....
Developer Release 3.01 June 2000 91

Security Extended Services
Security C

The most basic notion in security is the notion of identity that is determined by its
key-pair. In order to invoke operations on a security-enabled service, a client
requires an appropriate certificate. This certificate must be signed either by the
service provider's principal himself or by another principal who is linked by a chain
of delegation to a principal listed in the trust assumptions of the service provider.
With security enabled in the core, service providers and service client require certif-
icates to enable them access to core apis. For instance, to register a service and to
perform find operations. The principal representing the core issues certificates to
both client and provider enabling such access.

When security is enabled, start up of any e-speak client (service client or service
provider) reads two files: the trust assumptions and the certificates. Both these are
actually just lists of certificates: the former being used by a service provider and the
latter being used by a service client. In the base case, the service provider requires
only one certificate: that for accessing the core. The service client, on the other
hand, requires one for accessing the core and one or more for accessing the service
itself. The client certificate list is merely a concatenation of these. An example of a
certificate that the core can provide a service provider looks as follows, the binary
data has been truncated for brevity.

(signed (cert
(issuer (public-key elgamal-pkcs1

"\003\017v\245\235b\004\345\211\225\021[\203=\256/K\256\375\032\217:\351\024\327\
304\342\312B\'\311\016\007\304^\2052\322\271@\304`<\370\204\036j\220\030\2217aD*\
242\335|\233H\334N\201?.Uq\236)"))

(subject (public-key "elgamal-pkcs1"
"\003\017v\245\235b\004\345\211\225\021[\203=\256/K\256\375\032\217:\351\024\327\
304\342\312B\'\311\016\007\304^\2052\322\316r+"))

(propagate)
(tag (net.espeak.method (*) (*) (*)))
(not-before 2000-05-25_10:15:28)
(not-after 3000-05-25_10:15:28)
) (signature (hash SHA-1

"\032\356V\317\260\t\347\331\277]\'\0278\237\0301t\212#\210") (public-key
elgamal-pkcs1
"\003\017v\245\235b\004\345\211\225\021[\203=\256/K\256\375\032\217:\351\024\327\
304\342\312B\'\311\016\007\304^\2052\201?.Uq\236)")
"\003\017`97\317`\377\'\303\347yC\337+\221$Sm\202\242\201\214w\004\352&\310]U-/\2
72\\342\301\330\034"))
92 Developer Release 3.01 June 2000

Extended Services Security
A certificate that a service provider, a print service in this example, provides to a
client that allows the client to invoke an operation, such as print, on it looks as
follows (the binary data has been chopped):

(signed (cert
(issuer (public-key elgamal-pkcs1

"\003\017v\245\235b\004\345\211\225\021[\203=\256/K\256\364p\255|\335"))
(subject (public-key "elgamal-pkcs1"

"\003\017v\245\235b\004\345\211\225\021[\203=\256/K\256\311\301\273\307l\323\316r
+"))

(propagate)
(tag (net.espeak.method PrinterServiceIntf (* set print) (*)))
(not-before 2000-05-25_10:15:28)
(not-after 3000-05-25_10:15:28)
) (signature (hash SHA-1

"\0237\340}\'\310I\2638mq\207V\265\357\342\201\2702\274")
(public-key elgamal-pkcs1
"\003\017v\245\235b\004\345\211\225\021[\203=\256/K\246\374\032\020\244\004\004T\
307\221\037\247\034\332\365\3648~\300\274\362"))

When a message invoking an operation is received, J-ESI extracts the interface and
method from it, and gets the service identifier from the information passed to the
service handler by the core. From this it constructs the tag required to authorize the
operation. The authorizer first checks to see if the tag is contained in the resource
mask, and if it does, the operation is permitted. If the operation is not in the mask,
J-ESI looks for a valid certificate (or certificates) that contain the tag needed to
invoke the operation. The tag matching rules used for authorization are explained
in the E-speak Architecture Specification chapter on “Access Control”. The certifi-
cates checked by J-ESI are those presented by the client to establish the session

J-ESI provides service providers with means to set metadata and resource masks
that can mask access control to their services. See Appendix H for details on how
to set up your security environments in e-speak.

The default behaviour when security is enabled is to require authorization for all
operations. Service providers can create masks and associate them with service
elements that they create. Masks enable Service providers to allow operations with-
out any authorization. Any client is allowed to perform any operation that is speci-
fied in the mask for the service. If an operation is not included in a mask, only
clients that have been given certificates authorizing access are allowed to invoke
the operation. The security infrastructure examines the certificates that have been
Developer Release 3.01 June 2000 93

Security Extended Services
presented by the client to see if they contain a tag authorizing the operation. The
rules for how tags authorize operations are explained in the E-speak Architecture
Specification “Access Control” chapter.

Masks C

There are two types of masks: the metadata mask for metadata operations and the
resource mask for resource specific operations. For example, service providers can
control who can mutate the metadata of the service that they have created using the
metadata masks, and they control who can invoke operations on services provided
by them using the resource specific masks.

Masks are specified as tags. The basic method tag format is

(net.espeak.method <interface name> <method name>)

The tag format is explained in detail in the E-speak Architecture Specification
“Access Control” chapter. In the metadata mask, the interface name is the core
interface being specified, and the method name is the operation in that interface.
For metadata, the interface is likely to be ResourceManipulationInterface, and the
method name one of its methods.

In the resource mask for a J-ESI service the interface name is the fully-qualified
name of the interface class. The method name is the name of the method in the
interface, plus the concatenated argument types. This allows overloaded methods
to be distinguished.

The metadata mask is used by the in-core metaresource when performing metadata
operations. The resource mask is passed to the service handler by the core for the
service handler to use when performing operations on the service itself.

The masks are completely general tags, so the mask tag itself, or any of its fields,
may use the tag matching features such as sets, prefixes and ranges. The interface
and method names, for example, do not have to be string literals, they can be sets
or prefixes.

This tag masks method foo in interface net.espeak.examples.ExampleIntf:

(net.espeak.method net.espeak.examples.ExampleIntf foo)

This tag masks all methods beginning with foo:
94 Developer Release 3.01 June 2000

Extended Services Security
(net.espeak.method net.espeak.examples.ExampleIntf

(* prefix foo))

This tag masks methods foo and bar:

(net.espeak.method net.espeak.examples.ExampleIntf

(* set foo bar))

Methods with prefix foo or bar:

(net.espeak.method net.espeak.examples.ExampleIntf

(* set (* prefix foo) (* prefix bar)))

All methods in the interface:

(net.espeak.method net.espeak.examples.ExampleIntf)

This is equivalent to

(net.espeak.method net.espeak.examples.ExampleIntf (*))

since missing trailing elements match anything.

Methods foo in InterfaceA and bar in InterfaceB:

(* set (net.espeak.method InterfaceA foo)

 (net.espeak.method InterfaceB bar))

All methods:

(net.espeak.method)

or simply

(*)

The full form of the method tag is actually:

(net.espeak.method <interface name> <method name> <service>)

In the normal case, the service handler is only interested in its own operations, so
it does not care what the service field is. Since omitting a trailing field is equivalent
to giving it the value (*), we omitted this detail above.
Developer Release 3.01 June 2000 95

Security Extended Services
Authorizing Access C

General tags can be constructed using the following method in ESSecurityEnv:

ADR createTag(String s) throws IOException

The IOException subclass net.espeak.security.adr.ADRParseException is thrown
on a parse error. The parameter s is a string containing the input syntax for the tag.

Method tags can be created using

ADR createMethodTag(String interfaceName,

 String methodName,

 ADR service)

Clients can retrieve their current security environment from the connection. For
example:

ESConnection conn= new ESConnection(“config.file”);

ESSecurityEnv secEnv = conn.getSecurityEnv();

For the purposes of resource masks, it is usual to use a tag containing simply (*) as
the service parameter. In advanced applications, the service may want to set the
service parameter to its service id, but this is not necessary.

After a mask tag has been constructed, it is used in ESServiceElement methods:

void setResourceMask(ADR tag) throws ESException

void setMetadataMask(ADR tag) throws ESException

Before a service is registered, these simply affect the local state. After registration,
these set the local state and update the service metadata.

Masking can be turned on or off using ESAuthorizer:

void setMasking(Boolean x)

When masking is off, the resource mask is ignored by the service authorizer even if
set. Setting masking off in the authorizer has no effect on the resource metadata, or
the in-core metaresource handling metadata operations. Masking can be turned off
completely, in the core and handler, by setting a mask to null.
96 Developer Release 3.01 June 2000

Extended Services Security
An ESAuthorizer is associated with each ESServiceElement, and one can obtain the
authorizer associated with an ESServiceElement using the getAuthorizer() call in
ESServiceElement.

ESConnection has methods for controlling the default resource and metadata
masks used when services are registered:

void setDefaultResourceMask(ADR mask)

ADR getDefaultResourceMask()

void setDefaultMetadataMask(ADR mask)

ADR getDefaultMetadataMask()

void setMasks(ADR metadataMask, ADR resourceMask)

After a default mask is set, all resources registered use it until it is changed. Unless
the default masks are set explicitly, ESConnection uses null for them, causing
authorization to be checked for all operations.

Example C

In the example below, the service provider sets up a mask for the print method and
a mask for the checkStatus method. Clients who present tags that match the print
method are allowed to print and all clients are allowed to invoke the checkStatus
method. The access control for the checkStatus method is disabled because of the
setResourceMask method invocation in ESServiceElement.

public static void main(String[] args)
 {
 try {

ESConnection conn = new ESConnection(“config.cfg”);
ESSecurityEnv sEnv = conn.getSecurityEnv();
String m2 = “(net.espeak.method PrinterServiceIntf checkStatus)”;
ADR adr2 = sEnv.createTag(m2);
ESServiceDescription sd = new ESServiceDescription();
sd.addAttribute(ESConstants.SERVICE_NAME, "printer");
sd.addAttribute("Description", "my hp printer");
ESServiceElement se = new ESServiceElement(conn, sd);
se.setResourceMask(adr2);
ESAuthorizer esa = (ESAuthorizer) se.getAuthorizer();
esa.setMasking(true);
se.setImplementation(new PrinterServiceImpl());
se.register();
se.advertise();
se.start();
Developer Release 3.01 June 2000 97

Security Extended Services
} catch (Exception e) {
 e.printStackTrace();
}

}

Clients who want to invoke this print service must obtain the tags to invoke this
service and install them in their security environment.

Remote Connection Manager C

Using advertising service, groups and communities is the prefered way of exchang-
ing service metadata between various cores. However, sometimes more fine
grained control is required where you want to make the service available to a
specific core or engine. This can be done with the aid of remote connection
manager and remote service manager.

Remote connection manager has set of simple methods that allows the application
programmer to connect to the specified core, to disconnect from a core and to get
a list of all connections that the local core maintains with other cores. To do this,
first obtain the remote connection manager object from ESConnection.

ESConnection conn = new ESConnection(“file.prop”);

ESRemoteConnectionManager connMgr = conn.getConnectionManager();

To open a connection to a remote core, the client can invoke the openConnection()
method on the connection manager. Typically, the client specifies the address and
port number on the remote machine on which the remote core is running.

String url = “tcp:abc.foo.com:12345”;

String id = connMgr.openConnection(url);

Clients can close existing connections with remote cores by invoking the closeCon-
nection method in the connection manager. For example:

connMgr.closeConnection(id);

where id is the string that represents the id of the connection that is returned by the
openConnection() call. To get a list of connections that are currently open with the
connection manager, use the following call.

String[] ids = connMgr.getConnections();
98 Developer Release 3.01 June 2000

Extended Services Security
Remote service manager is used to control transfer of service metadata from one
core to another. This allows clients of one core to export their service descriptios
to other cores on a selective basis. The remote service manager is obtained from the
ESConnection by

ESConnection conn = new ESConnection(“file.prop”);

ESRemoteServiceManager servMgr = conn.getRemoteServiceManager();

Now, suppose the service provider has registered a series of services with the
e-speak core and has the accessors for the service in an array of ESAccessors called
accessors. Furthermore, suppose that the id of the core to which the service
provider has opened a connection is id. Additionally, the exporter has to specify
whether the export should occur by value or by reference, and in the case of acces-
sors corresponding to folders, the exporter has to determine whether the export
should recursively export sub folders of the current folder, or should it export only
the current folder. The invocation of the exportResource method looks as follows:

servMgr.exportResource(accessors, id, exportType, level);

The exportType is an integer that is 1 if the services are to be exported by value and
2 if the services are to be exported by reference. In addition, set the boolean flag,
level to false if the contents of a folder are to be recursively exported, and to true if
only the top level of the folder is to be exported. A similar interface can be used to
import resources.

servMgr.importResource(accessor, id, importType, level);

To unexport an exported resource from a remote core, the service can invoke:

servMgr.unexportResource(accessor, id);

To unimport an imported resource, the service provider can invoke:

servMgr.unimportResource(accessor, id);
Developer Release 3.01 June 2000 99

Events Extended Services
Events C

This section describes the design details of the Event Service, a lightweight, extensi-
ble Service targeted at loosely coupled, distributed applications. Events provide a
publish-subscribe mechanism for communication built on top of e-speak messaging.

Event Model C

E-speak supports an extended form of the familiar publish-subscribe Event Model.
There are four logical entities in the e-speak Event Model whose interactions are
shown in Figure 9. These entities are the Publisher, Listener, Distributor, and
Subscriber.

A Publisher (marked P in the figure) is an entity that generates an Event notification
message. The recipient of an Event notification is called a Listener (L). A Distributor
(D) is an extension of a Listener. It receives Events and forwards them to other
Listeners. A Subscriber (S) is an entity that registers interest in a particular Event
with a Distributor and designates the Listener to whom Events are sent. The
Subscriber and the Listener are typically the same physical entity. Similarly, it is
fairly typical for a Publisher to act as a Distributor of its own Events.

The Core itself is an example of an Event Publisher. It sends Events to a trusted
Client called the Core Distributor to signal state changes such as a change in a
Service’s attributes. The Core Distributor can then distribute these Events to inter-
ested Clients that have appropriate authority.

Figure 9 Interactions in the Event Model

subscribepublish

notify(event)
notify(event)

P D S

ListenerL
100 Developer Release 3.01 June 2000

Extended Services Events
Interaction Sequence
Figure 10 shows a typical Event notification process where the Subscriber and
Listener are folded into a single Client.

The following numbers in the figure represent these steps in the process:

1 Distributor registers with the Core.

2 Publisher discovers the Distributor.

3 Publisher sends publish request to the Distributor describing the Events it
will be generating.

4 Subscriber discovers the Distributor.

5 Subscriber sends subscribe request to a Distributor describing the Events in
which it is interested.

6 Publisher sends the Event to the Distributor using a notify message.

7 Distributor forwards the Event to the Subscriber (also using a notify request).

Figure 10 Typical Event notification process

Publisher

Distributor

Subscriber

1

2

3
4

5

6
7

Core

Distributor
Resource
Developer Release 3.01 June 2000 101

Events Extended Services
Subscribing to Events C

The Event APIs provide simple mechanism by which Clients can express interest in
various Events and handle them. The following code shows how a printer Client
subscribes to outofpaper and paperjam Events and handle them subsequently.

String propertyFileName = new String(“/users/connection.prop”);
ESConnection coreConnection = new ESConnection(propertyFileName);
....
....
ESSubscriber printerEventSubscriber =

new ESSubscriber(coreConnection);
printerEventSubscriber.addEvent

(“hp.headoffice.firstfloor.printer.outofpaper”);
printerEventSubscriber.addEvent(

(“hp.headoffice.firstfloor.printer.paperjam”);
printerEventSubscriber.setImplementation

(new PrinterEventHandler());
ResultSet rs = printerEventSubscriber.subscribe();

public class PrintEventHandler implements ESListnerIntf
{

...

...
public String notifySync(Event evt)
{

System.out.println(evt.getPayload());
return “Notified” ;

}

public void notify(Event evt)
{

System.out.println(evt.getPayload());
}

}

The event subscriber, after connecting to the e-speak core, creates an instance of
ESSubscriber and expresses interest in certain event using addEvent call.
Furthermore, the subscriber sets the handler for the Events in which it is interested
using setImplementation(). The handler should implement the ESListener-
Intf. Then the subscriber invokes subscribe() to register with the existing
distributors in the community. The community is set using setCommunity() call
in ESServiceContext. The ResultSet obtained as a result of subscribe()
call contains success or failure of subscription with different distributors. The
subscriber can subscribe to e-speak service events in a similar manner. The
102 Developer Release 3.01 June 2000

Extended Services Events
subscriber can also subscribe to e-speak core events using ESCoreSubscriber
class. The list of e-speak service and core events are mentioned towards the end of
this section.

The following code gives a simple example of how to subscribe to service events,
for e.g., service.create. This subscribes the user to any service creation events in the
community.

String propertyFileName = new String(“/users/connection.prop”);
ESConnection coreConnection = new ESConnection(propertyFileName);
....
....
ESSubscriber serviceCreateSubscriber =

new ESSubscriber(coreConnection);
serviceCreateSubscriber.addEvent

(“service.create”);
serviceCreateSubscriber.setImplementation

(new PrinterEventHandler());
ResultSet rs = serviceCreateSubscriber.subscribe();

Publishing Events C

Publishing events is done using the ESPublisher class. The usage is similar to that
of subscribing to events.

String propertyFileName = new String(“/users/connection.prop”);
ESConnection coreConnection = new ESConnection(propertyFileName);
....
....
ESPublisher printerEventPublisher = new

ESPublisher(coreConnection);
printerEventPublisher.addEvent

(“hp.headoffice.firstfloor.printer.outofpaper”);
printerEventPublisher.addEvent(

(“hp.headoffice.firstfloor.printer.paperjam”);
printerEventPublisher.publish();
....
....
Event outofpaperEvent =

new Event(“hp.headoffice.firstfloor.printer.outofpaper”);
outofpaperEvent.setPayload(“printer foo out of A4 paper”);
printerEventPublisher.sendNotify(outofpaperEvent);

Just as the subscriber expresses interest in receiving events, the publisher
expresses interest in sending events. The publisher does this by instantiating the
ESPublisher class, adding events of interest using addEvent and then calling
publish(). publish() does not send an event to the consumer, rather it just
Developer Release 3.01 June 2000 103

Events Extended Services
expresses intent to publish those events at a later point of time. Actual publishing
of events takes place when the publisher calls sendNotify() after constructing
an Event object. There is a default publisher available with the ESConnection
that can be obtained using the getDefaultPublisher() call. This is used for
publishing only the e-speak service events. The list of service events is given at the
end of this section.

Distributing Events C

So far we have talked about a simple subscriber and publisher assuming that there
is already a distributor is available for the outofpaper and paperjam events. In case
no such distributor is available, the publisher of the events can write a simple Event
distributor as follows.

String propertyFileName = new String(“/users/connection.prop”);
ESConnection coreConnection = new ESConnection(propertyFileName);
....
....
ESDistributor printerEventDistributor = new

ESDistributor(coreConnection);
printerEventDistributor.addEvent

(“hp.headoffice.firstfloor.printer.outofpaper”);
printerEventDistributor.addEvent(

(“hp.headoffice.firstfloor.printer.paperjam”);
printerEventDistributor.start();
....
....
printerEventDistributor.shutdown();

The distributor creates an instance of ESDistributor and adds events which the
distributor intends to distribute using the addEvent() call. The distributor then
starts using the start() call. The distributor can be stopped using shutdown()
call. There are some pre-existing Event distributors bundled with the e-speak core.
These are started along with the e-speak core. They are the service distributor and
the core distributor. These distribute the service and core events listed at the end of
this section. It is possible to subscribe to core events distributed by the ESCore-
Distributor. It is possible also to subscribe and to publish service events that are
distributed by the ESServiceDistributor.
104 Developer Release 3.01 June 2000

Extended Services Events
List of Service Events C

This section lists the Service Events generated by e-speak.

List of Core-Generated Events C

This section lists the Events generated by the e-speak Core.

service.create This Event is generated by e-speak Service interface
when a Service is created.

service.mutate This Event is generated when a Service’s attributes
are mutated.

service.delete This Event is generated on deletion of a Service in
the e-speak Service interface.

service.access This Event is generated whenever the ESAccessor
of a Service is used.

service.pause A Service can voluntarily generate this Event for
temporary pause of its Services.

service.resume A Service can voluntarily generate this Event on
resumption of its Services.

service.genericinfo A Service sends out generic information about itself
through this Event type.

core.mutate.NameFrameInterface.3 Bind a Resource to a new name in an
existing Name Frame.

core.mutate.NameFrameInterface.4 Rebind an existing name in a Name
Frame to a new Resource.

core.mutate.NameFrameInterface.5 Unbind a name from a Resource.

core.mutate.NameFrameInterface.6 Copy a binding from one Name Frame
to another.

core.mutate.NameFrameInterface.7 Add a binding to a Resource to an exist-
ing name.
Developer Release 3.01 June 2000 105

Events Extended Services
core.mutate.NameFrameInterface.8 Remove a binding to a Resource from
an existing name.

core.mutate.VocabularyInterface.3 Modify the attribute set of a Vocabu-
lary.

core.mutate.ResourceFactoryInterface.1 Register a new Resource.

core.mutate.ImporterExporterInterface.1 Import a new Resource.

core.mutate.ImporterExporterInterface.5 Update an imported Resource.

core.mutate.ResourceManipulationInterface.1 Unregister a Resource.

core.mutate.ResourceManipulationInterface.3 Modify the owner of a Resource.

core.mutate.ResourceManipulationInterface.5 Modify the handler of a Resource.

core.mutate.ResourceManipulationInterface.9 Modify a public RSD of the Resource.

core.mutate.ResourceManipulationInterface.11 Modify a private RSD of the Resource.

core.mutate.ResourceManipulationInterface.13 Modify the attributes of the Resource.

core.mutate.ResourceManipulationInterface.23 Modify the export-type of the
Resource.

core.failure.invalid_parameter Pass an invalid parameter.

core.failure.null_parameter Pass a null parameter.

core.failure.invalid_value Receive an invalid value.

core.failure.invalid_type Receive an invalid type.

core.failure.out_of_order Out of order.

core.failure.Core_panic Core has an irretrievable exception.

core.failure.service_panic Service has a critical exception.

core.failure.recoverable_Core Received exception recoverable.

core.failure.repository_full Repository is overflowing.

core.failure.partial_status_update Status update is partial.

core.failure.request_not_delivered Request not delivered.

core.failure.permission_denied Permission denied for this operation.

core.failure.undeliverable_request Request is not deliverable.
106 Developer Release 3.01 June 2000

Extended Services Events
core.failure.unrecoverable_delivery Unrecoverable delivery exception.

core.failure.recoverable_delivery Recoverable delivery exception.

core.failure.quota_exhausted Resource quota exhausted.

core.failure.naming Naming exception received.

core.failure.empty_mapping Mapping empty exception.

core.failure.unresolved_binding Exception in binding resolution
occurred.

core.failure.multiple_resolved_binding Multiple resolved binding failures
occurred.

core.failure.name_not_found Name does not exist.

core.failure.stale_entry_access Stale repository entry accessed.

core.failure.name_collision Name collision exception occurred.

core.failure.lookup_failed Lookup attempt failed.

core.failure.service_failed Service failed.

core.failure.nameframe_failed Name Frame failed.

core.failure.invocation_failed Invocation failure occurred.

core.failure.invalid_name Invalid name detected.

core.failure.remote Remote failure occurred.

core.failure.exporter Exporter failed.

core.failure.exception All other exceptions.
Developer Release 3.01 June 2000 107

Events Extended Services
108 Developer Release 3.01 June 2000

Appendix A Thread-Safe Programming:
ESThread
There are two aspects to threading when programming with J-SEI.

• The threads that the service handler uses to handle requests to the service

• The threads in the client program that may share a connection to the core.

When service providers create services, they create service handlers. These service
handlers can be set up so that there are many threads that handle requests to this
service. Essentially, each service handler comes with a ESThreadPoolManager that
manages the pool of threads for servicing requests to this service. Furthermore,
there are two main policies that can be used by the service provider:

• Thread per request: When the configuration indicates that the service provider
wants to spawn off a thread per request, the ESThreadPoolManager creates a
new thread to handle every request for the service. This thread runs to comple-
tion at the end of the request.

• Fixed thread pool: In this case, the thread pool manager has a fixed pool of
threads that depends on the number of threads that the client has indicated in
the ESServiceHandler. The client can set the number of threads she wants by
using the setNumThreads(int num) in the ESServiceHandler.
Developer Release 3.01 June 2000 109

Thread-Safe Programming: ESThread
Client applications in can be multithreaded. A Client can choose to create a connec-

tion to the Core and then create multiple threads (using the native Java threads) that
use this connection simultaneously.

Because these threads share the same connection, any state stored in ESConnec-
tion is shared across all these threads. In certain situations, this is undesirable
when the threads need to operate independently of each other. ESThread is used
in these situations.

An example of where this problem can occur is the use of the
setCurrentFolder(..) API, to set the current folder in which new bindings are
created. If multiple threads need to change the working directory without affecting
other threads, then these threads should be created using an ESThread() call,
which clones the ESConnection state on creation of the thread.

Just like Java Threads, there are two ways of using the J-ESI threads.

• Application developer creates a Java file which implements ESRunnable
(counterpart of Java Runnable) and passes this to the constructor of
ESThread (counterpart of Java Thread). The application developer does this
if his Java file already extends some other Java class and hence could not extend
ESThread directly. This is the suggested and preferred way of using ESThreads.

ESThread thread1 = new ESThread(esrunnable);

thread1.start();
110 Developer Release 3.01 June 2000

Thread-Safe Programming: ESThread
Application developers can also extend ESThread directly. An example is as
shown below.

public ApplThread extends ESThread
{

public ApplThread(ESConnection coreConnection)
{

super(coreConnection);
}

public void run()
{

ESConnection clonedConnection =
super.getConnection();

....

....
clonedConnection.getServiceContext().

setCurrentFolder(...);
....
....

}
}

For example, the following code fragment creates two threads that operate on the
same connection:

public class ThreadTest
{

public static void main(String args[])
throws ESInvocationException, ESLibException,
InterruptedException, IOException

{
ESConnection coreConnection = new ESConnection();
ApplThread thread1 = new ApplThread(coreConnection);
ApplThread thread2 = new ApplThread(coreConnection);
thread1.start();
thread2.start();

}
}

Developer Release 3.01 June 2000 111

Thread-Safe Programming: ESThread
112 Developer Release 3.01 June 2000

Appendix B Messaging Classes
E-speak Clients discover Services and interoperate with them using a remote object
model or using Events. In addition to these approaches, e-speak supports a purely
messaging interaction model with the ESServiceMessenger class.

Clients send and receive messages using synchronous or asynchronous messages
to other Services represented by the ESAccessor associated with the Service.

ESServiceMessenger messenger =

new ESServiceMessenger (coreConnection);

The messenger can be used to send a payload object synchronously or asynchro-
nously to any other Service. To send an object, use the following code:

…

Object payload = new Object();

ESService myService = finder.find(query);

ESAccessor serviceAccessor = ((ESAccessorHandle) myService).

getAccessor();

Object retValue = messenger.sendSynchronous

(serviceAccessor, (Object) payload);

or (to send asynchronously):

ESMessage msg = messenger.sendASynchronous

(serviceAccessor, (Object) payload);

When an asynchronous message is sent, a message ID is returned in the form of an
ESMessage. The service sending an asynchronous message may expect a notifica-
tion to be returned. It can wait for a reply using the wait method as follows:

messenger.wait(msg);
Developer Release 3.01 June 2000 113

Messaging Classes
where msg is the return value of the asynchronous send.

A Service expecting to receive messages can instruct the ESServiceMessenger
to receive messages destined for a particular service element by using the following
code:

ESMessage msg = messenger.receive(se);

where se is an ESServiceElement which has been initialized and registered.

On receipt of a message, a Service can extract its payload, operate on it. To extract
the payload from the ESMessage, use the following method:

Object obj = msg.getPayload();

On operating on the payload, the service can reply to a message by invoking the
reply() method on it.

Object repObject = new Object();

msg.reply(repObject);
114 Developer Release 3.01 June 2000

Appendix C IDL Compiler
The purpose of ESIDL compiler is to prepare the code that enables programmer of
client code to invoke services as if they were running in the same process space.
Such code includes stub, registering into message registry and serialization of
objects.

ESIDL compiler can create new code and check existing code for conformance.
Both E-Speak serialization and Java serialization are supported.

Generating code C

ESIDL compiler uses as input description of services, types, and exceptions and
creates support files needed by user to invoke service through e-speak.

There are two kinds of description:

• services are described in service description files

• types and exceptions are described in type description files.

There are several kinds of support files:

• interface files that define service interfaces

• stub files that represent service on client side

• message registry files that are used to register classes with e-speak messaging
layer

• class files that implement data types and exceptions

Data type description can be in an ESIDL file (extension “.esidl”) or in a Java file
(extension “.java’). Service description can be only in an ESIDL file. ESIDL files are
Developer Release 3.01 June 2000 115

Input Files IDL Compiler
checked and new code is generated from them. If files of both types exist, then the
ESIDL file is used as input.

Processing Java files is new to ESIDL compiler.

Input Files C

Service Description C

Service description includes information about an e-speak service. For ESIDL
compiler every parameter it receives on the command line denotes an e-speak
service. This is a change from the previous version where all service files and data
types had to be listed. Interface file, stub file, and message registry file are gener-
ated for every e-speak service.

Service.esidl → ServiceIntf.java, ServiceStub.java,

ServiceMessageRegistry.java

Type Description C

Type description includes information about:

• Types of service attributes

• types returned by service methods

• parameters to service methods

• exceptions thrown by service methods

Type description files are not listed as command line parameters to the compiler.
They are searched for using import statements in the same manner as javac
compiler searches for the source files (CLASSPATH environment variable or -class-
path option).

Type.esidl → generated Type.java

Type.java → checked Type.java
116 Developer Release 3.01 June 2000

IDL Compiler Output Files
Output Files C

Interface File C

Interface file includes interface that the service implements. The interface extends
ESService.

Stub File C

Stub file includes code for:

• serialization of service stub object

• rerouting of service method invocations through core

• calling messaging registry initialization (in message registry file) for return
types, parameter types and exception types used in the service

Message Registry File C

Message registry file includes code for registering types (for a list, see Type Descrip-
tion chapter) with MessageRegistry.

Type File C

Type file is generated from type description. Serialization code is generated (for
.esidl files) or checked (for .java files). E-speak serialization is default if none is
specified (in declaration of type). Otherwise the specified serialization is used.

Command Line Parameters C

Do not list all data type and exception files as the compiler parameters as it was
required by the previous version of the compiler.
Developer Release 3.01 June 2000 117

IDL Requirements IDL Compiler
Java net.espeak.util.esidl.IDLCompiler [–classpath|cp

<path-to-sources>] [-verbose] <service-desc> [<service-desc> …]

where:

IDL Requirements C

Requirements have changed from the previous version and are now much less
strict.

Description in ESIDL file C

Service description is admissible if:

• it is declared public AND

• all methods it declares are admissible

A user-defined abstract class or a user-defined exception is admissible if:

• it is declared public AND

• its parent type is either java.lang.Object or another admissible
user-defined data type

A service method is admissible if:

• return type and parameter types are admissible

• exceptions thrown are admissible

<path-to-sources> Semicolon separated list of directories where compiler
searches for description files. “.” (dot) is used for current
directory. If classpath is not specified, environment vari-
able CLASSPATH is used.

-verbose Instructs the compiler to print out information about
created files.
118 Developer Release 3.01 June 2000

IDL Compiler IDL Requirements
Description in Java file C

A user-defined data type (a Java class) must conform to these additional restric-
tions:

• implements ESSerializable or java.io.Serializable interface

A user-defined exception (a Java class) must conform to these additional restric-
tions

• it must extend ESServiceException

A service method is admissible if it throws ESInvocationException
Developer Release 3.01 June 2000 119

IDL Requirements IDL Compiler
120 Developer Release 3.01 June 2000

Appendix D Interceptors
J-ESI provides simple mechanisms for service providers and clients to monitor
accesses to their services.Service providers can use these mechanisms to either
generate management events such as billing events, create an access log, or provide
mechanisms for performing load balancing, redirecting requests should a particular
server be unavailable, etc. Clients can use interceptors for adding or removing
parameters from requests or even implement a secure invocation interceptor that
finds an available service with the required method and invoke it.

In essence, each ESServiceElement object contains an ESIceptorControl object
that controls the list of interceptors associated with the service element. The inter-
ceptor objects are instances of classes that extend the abstract ESIceptor class. The
ESIceptorControl object therefore provides methods provides methods to add and
remove interceptors from the ESServiceElement. When a message arrives for the
service represented by the ESServiceElement, the message is passed through each
interceptor that the service provider has associated with the ESServiceElement.

Interceptors are classified based on whether they are terminal or not. A terminal
interceptor is an instance of ESTerminalIceptor, and represents an actual invoca-
tion to the service. There is a single terminal Therefore, the ESIceptorControl that
is associated with any ESServiceElement, comes with a default ESTerminalIceptor.
However, the service provider can change that terminal interceptor with any other
terminal interceptor that she writes.

The service provider must go through the following steps in order to set up an inter-
ceptor:

• Define an interceptor class that extends ESIceptor or ESTerminalIceptor. The
service provider must implement the invoke(ESRequest req) method in the
extended class. Furthermore, if the interceptor being defined is an extension of
Developer Release 3.01 June 2000 121

Interceptors
ESIceptor, she has to make a invokeNext() call in the implementation of the
invoke method. If this is not done, the interceptors that are added after this inter-
ceptor are not invoked.

• The service provider also must implement the initialize(Object
params) method in the interceptor class. This method is invoked when the
interceptor is added to the ESIceptorControl and can be used to initialize the
state of the interceptor.

• When the service provider creates a ESServiceElement that represents the
service, she makes an addIceptor(ESIceptor icp, Object params)
that adds the interceptor to the interceptor control object associated with the
service element.

The service provider is free to override other methods in EsIceptor, but the invoke,
and initialize methods must be implemented.

We now present a simple example that shows using the interceptors. Consider the
print service example from the previous sections. Suppose the service provider
wants to:

• balance the load among multiple print service implementations

• generate information about each access to the print service

This is accomplished by the following interceptors: the LoadBalancingInterceptor,
and the PrintingInterceptor

public class LoadBalancingInterceptor extends ESIceptor {
// Array of backup services
private ESService[] services;
private ESService thisService;

// If the service reaches this load backup services are invoked
private int LIMIT_LOAD = 5;
private String PRINT = "print";

public boolean invoke(ESRequest req){
System.out.println("LoadBalancingInterceptor enter invoke");
if(req.getMethodName().equals(PRINT)) {
 try{

ESRequest request = new ESRequest();
// check services load
int load = ((PrintServiceIntf)thisService).getLoad();
if (load > LIMIT_LOAD){
 // the load is above limit load, invoke backup service
122 Developer Release 3.01 June 2000

Interceptors
 int minLoadService = getLowestLoadService();
 PrintServiceIntf ps = (PrintServiceIntf)services[minLoadService];

req.setReturnValue(ps.print((String)req.getParamValue("arg0")));
invokeNext(req);

}else{
 invokeNext(req);
}

}catch(Exception e){
return false;

 }
}else{
 try{

invokeNext(req);
 }catch(Exception e){

 }
}
return true;

 }

public void initialize(Object param){
// .. implementation that initializes the services array, etc.
// from information in param

}

private int getLowestLoadService(){

//… implementation
 }
}

//This is how the interceptor code looks like

public class PrintingInterceptor extends ESIceptor {
int cnt=0;

public boolean invoke(ESRequest req) throws ESInvocationException{
if(req.getMethodName().toString().equals(“print”)){

cnt++;
writeCountToLogFile();

}
try{

invokeNext(req);
}catch(Exception e){
}
return true;

}
private void writeCountToLogfile(){

// implementation
}

public void initialize (Object param){
}

}

Developer Release 3.01 June 2000 123

Interceptors
Now that we have defined the two interceptors, the print server, looks as follows:
public class PrintServer
{

public static void main(String [] args)
{

try {
ESConnection coreConnection = new ESConnection();
ESServiceDescription printDescription =
new EServiceDescription();
printDescription.addAttribute(“Name”,”printer”);
ESServiceElement printElement =
new ESServiceElement(coreConnection, printDescription);
printElement.setImplementation(new PrinterServiceImpl());
printElement.register();
printElement.addIceptor(new PrintingInterceptor(),”HP Lobby 49 U

printer”);
LBIParams lbiParams = ..// initialize object expected by
//initialize method of LoadBalancingInterceptor
printElement.addIceptor(new LoadBalancingInterceptor(),

lbiParams);
printElement.start();
System.out.println("Started printer Service ");

}
catch (Exception e){
// handle the exception
}

}
}

In the above example, the printing interceptor is invoked before the loadbalancing
interceptor on any request. If the service provider wants the order to be reversed,
reverse the order of adding the interceptors to the service element.
124 Developer Release 3.01 June 2000

Appendix E Account Manager
The Account Manager allows administrators to create and manage accounts in
e-speak. This means that administrators can create accounts, grant or change
permissions for accounts, and occasionally delete accounts. In the current release,
the Account Manager cannot grant, change or revoke account permissions, but this
will be added in a future release.

Programming Model C

The Account Manager module provides three basic abstractions, the Account
Manager, the Account Profile, and the Account Description. The Account Manager
allows basic account management functions, including creating and deleting
accounts, authenticating users, and retrieving lists of accounts. Each account
created by the account manager has an account profile associated with it, which is
required for authentication of the account. To change the description associated
with the account profile, a profile description with a valid (non-null) vocabulary
must be supplied, together with the attributes to be added to the description.

Profile Description C

The Profile Description describes attributes of the Account Manager. Since the
default Account Manager vocabulary does not define a set of attributes that are
expected, the user must provide a vocabulary that describes the attributes which
will be included in this profile description, so that it can be added to the existing
description of the account profile. In the account manager module, this abstraction
is represented by the ESProfileDescription class.
Developer Release 3.01 June 2000 125

A Simple Example Account Manager
Account Profile C

The Account Profile contains the authentication information for the account. It is
initialized with just the account name and password phrase and can be modified by
adding a Profile Description to it. In the account manager module, this abstraction
is represented by the ESAccountProfile class.

Account Manager C

The Account Manager allows the service administrator to perform administrative
tasks such as creating and deleting accounts, retrieving lists of all accounts, and
adding descriptions to existing accounts. The service administrator’s main interac-
tion to the Account Manager module is through the Account Manager abstraction
itself. In the account manager module, this abstraction is represented by the ESAc-
countManager class.

In this release, there are two default accounts defined in e-speak’s core Account
Manager: the admin account, and the guest account. The username, passphrase pair
for the admin account is “admin, admin”, and the corresponding pair for the guest
account is “guest, guest”.

A Simple Example C

Consider an example where a service administrator decides to create an account
temporarily, change its description, and then delete the account. At present, only an
administrator or someone presenting the credentials of the account itself can delete
an account. In a future release, there will be functionality allowing the granting of
permissions to new accounts, and it is probable that some new accounts will be
granted permissions to delete at least some subset of the existing accounts.

First, to create the account, the service administrator should open a connection to
an e-speak core. (The core is already running). After a connection has been estab-
lished, its getAccountManager() method can be used to retrieve the active
ESAccountManager. The ESAccountManager can now be used by the adminis-
trator to perform normal account maintenance activities.
126 Developer Release 3.01 June 2000

Account Manager A Simple Example
 ESConnection esconn = new ESConnection();

 ESAccountManager acctMgr = esconn.getAccountManager();

Now that we have retrieved the ESAccountManager, the administrator can create
an account based on an account name. First, an ESAccountProfile must be created
using that account name. The newly created ESAccountProfile is passed in as the
associated profile for the account to be created.

 ESAccountProfile acctProf = new ESAccountProfile("testAccount");

 String acct = acctMgr.createAccount(acctProf);

The account just created can be referred to by the java.lang.String returned
from the creation. The administrator can now add a description to the account. To
do this, he/she must first ensure that there is a valid vocabulary associated with it,
then must create an ESProfileDescription and add attributes to it that describe this
ESAccountProfile.

 ESVocabularyDescription vocDesc = new ESVocabularyDescription();
 vocDesc.addAttribute(ESConstants.SERVICE_NAME, "testVocab");
 vocDesc.addStringProperty("manufacturer");
 vocDesc.addStringProperty("model");
 vocDesc.addStringProperty("year");
 ESVocabularyElement vc = new ESVocabularyElement(esconn,
 vocDesc);
 ESProfileDescription desc = null;
 ESAttribute [] atts = null;
 ESVocabulary vocab = null;

 try {
 vocab = vc.register();
 } catch (NameCollisionException nce) {
 nce.printStackTrace();
 } catch (ESLibException esle) {
 esle.printStackTrace();
 } catch (ESInvocationException esie) {
 esie.printStackTrace();
 }

 desc = new ESProfileDescription(vocab);
 desc.addAttribute("manufacturer", "Honda");
 desc.addAttribute("model", "Civic");
 desc.addAttribute("year", "2000");

 try{
 acctMgr.addDescription(acctProf, acct, desc);
 } catch (ESInvocationException esie) {
 esie.printStackTrace();
 }
Developer Release 3.01 June 2000 127

A Simple Example Account Manager
Now that there is an active account, with an account description, the properties
just described in the ESProfileDescription can be used to find this account again.
To do this, an ESQuery is constructed, describing the value desired for the
attribute in question, and this query is used as the argument to a find() operation
in an ESServiceFinder. This retrieves the list of services (accounts, in this case)
that satisfy the requirements of the ESQuery, and then the service administrator
can switch to this account using the switchAccount() method of the active
ESConnection.
 ESServiceFinder finder = new ESServiceFinder(esconn);
 try {
 ESQuery query =
 new ESQuery(vocab,
 "(manufacturer == 'Honda') or (year == '2000')");
 ESService[] serviceList = finder.find(query);

 ESAccessor accessor = ((ESAccessorHandle) serviceList[i]).
 getAccessor();
 esconn.switchAccount(accessor);

 esconn.init();
 } catch (LookupFailedException lfe) {
 lfe.printStackTrace();
 } catch (ESInvocationException esie) {
 esie.printStackTrace();
 }

The service administrator can also change to the account simply by creating a prop-
erty file that describes the attribute and its value, and using that property file to
create a new ESConnection. The following code snippet shows this method of
changing to an account that has had an ESProfileDescription added to it.

 Properties prop = new Properties(System.getProperties);
 prop.put("manufacturer", "Honda");
 try {
 ESConnection testConn = new ESConnection(prop);
 } catch (ESInvocationException esie) {
 esie.printStackTrace();
 } catch (ESLibException esle) {
 esle.printStackTrace();
 }

Multiple queries can be included in the property file, one on each line, to create a
complex constraint for the desired account.

If there is a need to retrieve the ESAccountProfile of an account, for example,
when an account has been retrieved using one of the methods described above, the
getAccountProfile() method of the ESAccountManager can be used.

 try {
 ESAccountProfile retProf = acctMgr.getAccountProfile(
 acctProf, acct);
128 Developer Release 3.01 June 2000

Account Manager A Simple Example
 } catch (ESInvocationException esie) {
 esie.printStackTrace();
 }

A valid ESAccountProfile is required before an ESAccountProfile can be
retrieved. This is to prevent unauthorized access to the profiles of accounts in
e-speak. There are currently two valid ESAccountProfiles, the profile of the
“admin” account, and that of the account itself. No other account profiles are
authenticated to retrieve a third account profile.

The administrator can also set the ESAccountProfile for a given account, to
allow, for example, changing of the password for the account. As in the previous
example, a valid account profile is required in order to call the setAccountPro-
file() method on an account.

ESAccountProfile newProf = new ESAccountProfile(name, newPwd);
 try {
 ESAccountProfile retProf = acctMgr.setAccountProfile(
 acctProf, newProf);
 } catch (ESInvocationException esie) {
 esie.printStackTrace();
 }

The getAllAccounts() method can be used to retrieve a list of all the existing
accounts. This list can, for example, be useful for checking whether a particular
account name is already used. This method can be called with no authentication
required for the caller.

 try {
 String[] accounts = acctMgr.getAllAccounts();
 } catch (ESInvocationException esie) {
 esie.printStackTrace();
 }

Finally, to delete an account, the caller must again provide a valid ESAccountPro-
file, as well as the name of the account to be deleted. The account is only deleted if
the provided ESAccountProfile can be successfully authenticated.

 try {
 acctMgr.deleteAccount(acctProf, acct);
 } catch (ESInvocationException esie) {
 esie.printStackTrace();
 }
Developer Release 3.01 June 2000 129

A Simple Example Account Manager
130 Developer Release 3.01 June 2000

Appendix F E-speak Security
Introduction C

This document describes the current basic setup for using e-speak securely. Secu-
rity is subtle and it is dangerous to treat it as just another thing to “select the check
box”.

This is the first release of e-speak with security and inevitably there are many prac-
tical issues relating to how e-speak enabled services and clients make effective use
of security. These deployment issues will be discussed and decisions taken over the
coming months. Hence, this initial release of secure e-speak is mostly concerned
with basic deployment of the security architecture itself. After the architecture is
deployed, the security is ready to be activated to enforce particular security prop-
erties as necessary.

There are three main sections to this appendix. The first deals with the basic
aspects of the security model, and in particular PSE’s and certificates. The second
section then discusses a bootstrap process used for testing purposes. The third and
final section discusses security configuration files.

The Basic Security Model C

A thumbnail sketch of the security model goes as follows:

Everyone (and everything) has a set of public/private keys. Entities are distributed
and interact with one another by means of secure sessions using the SLS protocol—
this includes firewall traversal technology. All entities can both use services offered
by others and also provide services to others. This means that all parties in secure
sessions have to be authenticated to each other. In particular, SLS secure sessions
authenticate both parties involved by using challenge-response negotiations based
on public-key cryptography.
Developer Release 3.01 June 2000 131

Introduction E-speak Security
Access control to services is done by exchanging digitally signed certificates as a
part of the SLS protocol providing secure sessions. These certificates act like “tick-
ets” that grant entities with authorisation to access and make use of services. Certif-
icates are signed by issuing entities (or Principals) and are issued to subject
principals who may use them. These certificates can also be chained together (using
delegation) to give composite authorizations.

Refer to the E-speak Architecture Specification chapter on “Access Control” for
further details concerning the security model.

PSE’s and Certificates C

A Private Secure Environment (PSE) represents a keystore containing
public/private key pairs. Each principal e-speak entity needs to have their own set
of keys and thus needs to store them securely within a PSE. The PSE itself can be
stored as a binary file in your local file system. This data is encrypted and a pass-
phrase is required to lock/unlock the data it contains.

The PSE is responsible for generating it’s own key pairs—in particular, it has been
designed so that private keys should never be exposed1.

The other main function of a PSE involves validating and signing certificates. Vali-
dating a certificate involves checking the signature of the certificate using the issu-
ers public-key (embedded within the certificate). Signing a certificate involves
using a private key held within a PSE to create a digital signature, based upon a
message digest of the certificate data.

PSE Manager C

The PSE Manager is a GUI tool that supports these basic tasks:

1 Creating a new PSE and saving it as a binary file.
This involves selecting a passphrase that is used as an encryption/decryption
key. It is important to keep this passphrase information secure—anyone
capturing your PSE can perfectly masquarade as you and access everything that

1 There is currently a method that can expose private keys – but this is only temporarily present
to accommodate a deprecated internal interface that soon it is unnecessary to support.
132 Developer Release 3.01 June 2000

E-speak Security Bootstrap process for testing
you can access. Also, losing or forgetting your passphrase means that you are
unable to unlock or access your own PSE. For automatic operation, the PSE
passphrase can be kept in a pass file stored on a floppy disk etc. There is a
configuration option for this.

2 Creating new keys-pairs.
The PSE Manager can create new key-pairs, each of which are given a symbol
label. These labels can then be used when constructing certificates. Note that
this labels are refered to as roles in config.cfg and some of the security code.

3 Creating and editing certificates.
Attribute certificates typically contain information about the issuer, the
subject, what is being authorised and the validity period. For convenience, the
PSE’s symbolic labels (or roles) for keys can be used to refer to known keys
when constructing certificates—thus avoiding tedious and error-prone data
entry of key information.

4 Validating and signing certificates as described above.

PSE data can be saved to binary files (using a passphrase for the encryption key)
and certificates can be saved to text files etc.

For further information on the PSE Manager, refer to the PSE Manager user docu-
mentation.

Bootstrap process for testing C

The bootstrap process for testing purposes is as below. When writing and deploying
secure applications, refer to the J-ESI doumentation and the E-speak Architecture
Specification.

1 Use the PSE Manager GUI tool to do the following:

a Generate a keystore object (i.e. a Private Secure Environment) and is typi-
cally called securestore.txt. This is presently shared by all partici-
pants—the core, the client and the service. Therefore, this configuration is
not distributed.
Developer Release 3.01 June 2000 133

Bootstrap process for testing E-speak Security
b Each participant has their own key-pairs. The current simple approach is to
generate three different key-pairs, one for each participant, with the follow-
ing labels : client, core, and service, all within the same PSE.

c Generate a basic attribute certificate, one for each pair of distinct partici-
pants (i.e. client as issuer, core as subject and so on for all distinct combi-
nations) which gives each participant arbitrary permission to perform
operations. The PSE Manager can be used to conveniently generate these
attribute certificates—it has access to all the keys that were generated. The
PSE labels associated with the key-pairs can be used to refer to the keys
within the certificates for convenience.

d After it is generated, the important thing is that the certificate must be
issued—this means it is signed by the Core itself. Thus, the certificate is
issued by the Core, and having the Core again as its subject, with an
all-powerful e-speak tag attribute:

(net.espeak.method (*) (*))

Again, the PSE Manager can perform this function of signing these certifi-
cate by any one of the participants.

Significantly, the PSE Manager GUI tool is generally standalone and does
not need any prior configuration, i.e., it does not require any configuration
before it can be used.

2 To operate the core with security turned on, a security configuration file needs
to be correctly loaded containing the appropriate attributes. The configuration
file is more fully explained in the following sections. But a high-level snapshot
goes as follows:

a The configuration file is like a Java properties file and is typically named
config.cfg. It is searched for in the current directory, the user’s home
directory or on the Java CLASSPATH.

b A very simple config.cfg file is shown on the next page.
134 Developer Release 3.01 June 2000

E-speak Security Configuration files
!===
! $Id: config.cfg,v 1.1.2.1.4.10 2000/05/16 07:17:42 ks Exp $
!===
! E-speak security properties file.
!===

!---
! Security properties.
!---
! Master flag controlling whether security is on or off.
net.espeak.security.activate=on

! Set a property prefix.
@prefix=net.espeak.security

! Default name of the keystore file
.pse.storefile=securestore.txt

! Gui mode runs a dialog for the passphrase.
!.pse.mode=gui
! Passphrase mode looks for the passphrase property.
.pse.mode = passphrase
! Passfile mode looks for a file containing the passphrase property.
!.pse.mode = passfile

! Define the passphrase.
.pse.passphrase = default passphrase

! Define the default role (i.e. the default PSE key label).
!.pse.role = client

The following section discusses configuration files in far more detail.

Configuration files C

The default configuration file is config.cfg. The file is looked for in the following
places:

• config directory under e-speak home as defined by property 'espeak_home'
directory specified by property 'net.espeak.util.config.file', or current directory
(from system property 'user.dir') if the property is not set directory specified by
'user.home' system property as a system resource from the classpath Java
system properties can be set on the java command line using the syntax -Dprop-
erty=value.
Developer Release 3.01 June 2000 135

Configuration files E-speak Security
• The name of the file to look for can be specified using the
'net.espeak.util.config.file' property. The file defined by the property
'net.espeak.util.config.master'is always loaded on top of all other files, if speci-
fied. The default for this property is null.

• All files found are loaded, in reverse order, with files found earlier being merged
on top of properties from files found later. The format of the files is java proper-
ties file format, with the following additions.

@prefix=<prefix>

This sets a property prefix to apply to properties starting with a dot. For example:

@prefix=net.espeak.security

.pse.mode = passphrase

results in net.espeak.security.pse.passphrase being set to ‘passphrase’.
After it is set, a prefix remains in force until changed or set null.

@mode=<mode>

If the <mode> is “override” (default) the values found in this file is used and all
previous values are ignored. After the config.cfg parser encounters a file with mode
set to “override”, no more files are parsed. If the mode is “merge” config.cfg files are
combined, if two files specify values for the same property, the value in the last file
to be parsed is used..

The name of the configuration file to look for can be set using the system property

net.espeak.util.config.file

which has the default value config.cfg.

If the system property

net.espeak.util.config.master

is set, the file of that name is loaded on top of all other files found.

The configuration is got by calling

ConfigIntf Config.getInstance()
136 Developer Release 3.01 June 2000

E-speak Security Configuration files
which returns a reference to a static instance of the default configuration. Other
files can be loaded directly if wanted, see util.Config for the API. Single property
files can be loaded using ConfigProps.

Property file syntax C

A java properties file contains property names and definitions. The name is sepa-
rated from the definition by ‘=’. Spaces before the property name and around the =
are ignored. The value of the property extends to the end of line, and includes trail-
ing spaces. Long property values can be broken across lines using \ to escape new
lines. The characters ! and # introduce end-of line comments. The character : may
be used as an alternative to =.

Property conversion C

The class util.Convert provides methods to convert property strings to and from
common types. The types int, boolean, and long are supported. The duration
converters accept times in the format 12h3m1.001s and convert them to longs in
milliseconds. Any zero component of a time can be omitted, and spaces may be
included. A zero time can be stated as 0s.

The boolean converter accepts on, true, yes for true and off, false, no for false,
regardless of case.

Argument specifications C

The mapping or argument switches to properties can be defined using util.ArgSpec.
This provides methods to process command-line arguments and map them onto
properties in a configuration.

Security properties C

The following are the properties supported by the security code.

• Master flag controlling security: net.espeak.security.activate, bool-
ean, default off. If this property converts to true, security is activated.
Developer Release 3.01 June 2000 137

Configuration files E-speak Security
• Property net.espeak.security.connectOnContact, default off, controls
whether secure sessions are established with newly encountered resources.
When it is off, sessions are not established unless required (by SessionRequire-
dException) or created explicitly.

• PSE mode: net.espeak.security.pse.mode. Values: gui, passphrase,
passfile. Default gui. If the mode is gui, a dialog is used to get the PSE pass-
phrase. If the mode is passphrase the property net.espeak.secu-
rity.pse.passphrase is used to get the passphrase (default null). If the
mode is passfile the property net.espeak.security.pse.passfile
(default passfile.txt) is used to get the name of a file which must contain a
net.espeak.security.pse.passphrase property defining the pass-
phrase.

• PSE key file: net.espeak.security.pse.storefile, default secure-
store.txt. Defines the name of the file containing public-private key pairs.

• PSE role: net.espeak.security.pse.role, default client. Define the
default role (symbolic PSE key name).

• PSE file protection mode:
net.espeak.security.pse.OSfileprotection, default true. This prop-
erty specifies whether local OS file protection should be applied and is supplied
purely as an aid for testing purposes. For full security protection, this option
should not be false.

• Certificate file suffix: net.espeak.security.pse.certfile, default
certs.adr. The value of this property is appended to the role name to get the
name of the certificate file to load. If the role is client the certificate file is cli-
entcerts.adr for example.

• ACL file suffix: net.espeak.security.pse.aclfile, default acl.adr. The
value of this property is appended to the role name to get the name of the ACL
file (trust assumptions) to load. If the role is client the ACL file is clientacl.adr
for example.

• Cipher suites: net.espeak.security.cipherSuites. The value is a list of
cipher suites in ADR syntax. The default is to use hmac, sha-1, and 128-bit blow-
fish.
138 Developer Release 3.01 June 2000

E-speak Security Configuration files
• Public key: net.espeak.security.pse.publicKeyAlgorithm using the values ELGA-
MAL and RSA. The default is ELGAMAL. Which one is being used can be found
using net.espeak.security.util.PublicKeyLib. Call public static String
getPublicKeyAlgorithm() to find out.

We support two public key algorithms: RSA and El Gamal. The entire system must
use one or the other, mixing is not supported. Public key classes are not loaded stat-
ically—they are loaded dynamically based on the configured algorithm.

When El Gamal is configured, support for RSA is not be loaded, and if RSA data is
encountered a NoSuchAlgorithmException is thrown. Which algorithm is used is
defined by the property.

Example config.cfg file C

!===
! E-speak security properties file.
!===
! Master flag controlling security.

net.espeak.security.activate=on
user.name="John Doe"

! Example time value.

foo.timeout = 12h 3m .0001s
! Set a property prefix.

@prefix=net.espeak.security
! Gui mode runs a dialog for the passphrase.

!.pse.mode=gui
! Passphrase mode looks for the passphrase property.

.pse.mode = passphrase
! Passfile mode looks for a file containing the passphrase property.

!.pse.mode = passfile
! Define the passphrase.

.pse.passphrase = default passphrase
! Define the default role (PSE key name).
!.pse.role = foo
Developer Release 3.01 June 2000 139

Configuration files E-speak Security
140 Developer Release 3.01 June 2000

Appendix G Firewall Traversal
This chapter discusses firewall traversal using e-speak. We present how services
can be accessed using e-speak while sitting behind a firewall. The proposed solution
does not require modification of the existing security infrastructure.This offers a
fast deployment but does not provide maximum security at the boundary.

Architecture C

The architecture of the security system is presented in Figure 11. This architecture
is very classic, the service is connected to the Engine Inside. The Engine Outside act
as a proxy in the DMZ for the Engine Inside. Connections are established to the
Engine Outside and then messages are routed to the Engine Inside.

E-speak offers end-to-end security so the number of engines relaying messages is
irrelevant. The security (Confidentiality, Integrity and Authentication) is estab-
lished between the services and the clients.

Figure 11 Security Architecture

Engine
Outside

Engine
Inside

Firewall

Service

JESI

Internet

DMZ

Engine
Outside

Engine
Inside

Firewall

Service

JESI

Service

JESI

Internet

DMZ
Developer Release 3.01 June 2000 141

Architecture Firewall Traversal
When the service connects to the Engine Inside, it registers its metadata with the
engine and establishes an outbound connection to the Engine Outside and exports
this metadata.

Firewalls usually offer means to establish outbound connections. HTTP proxies are
one of them. They are widely deployed and offer through the HTTP Connect method
a way to establish TCP connection to external systems. SOCKS V4 servers offer the
same functionality but support stronger authentication mechanism.

In order to achieve fast deployment of services with minimal architectural changes
on the boundary, e-speak can be configured to use HTTP proxies or SOCKS servers.

The requirements on the service provider side are as follows:

• An HTTP proxy or SOCKS server must be present in the firewall.

• A system in the DMZ must host an e-speak engine (Engine Outside).

The requirements on the client side are as follows:

• An HTTP proxy or SOCKS server must be present in the firewall.

The HTTP proxy approach is possible only if the proxy allows for the HTTP
Connect method on the Engine Outside port.

These approaches uses either SOCKS V4 or HTTP Proxies to allow inbound connec-
tion. SOCKS V4 and HTTP Proxies have been created explicitly for outbound
connections. Therefore these approaches have some drawbacks. Firstly, the service
is available from the outside as long as the connection to the Engine Outside is up.
This requires the connections to be long-lasting. Secondly, there is no control at the
boundary because the Engine Outside is not capable of such functionality. The
authentication and authorization is done at the service end-point, this means that
unauthorized messages can potentially be sent to the inside services.
142 Developer Release 3.01June 2000

Firewall Traversal Architecture
Deployment using HTTP proxies C

Figure 12 and Figure 13 presents classic deployment configuration using e-speak.

Figure 12 Client connecting directly to the Engine Outside

In this scenario, the client connects directly to the Engine Outside through J-ESI.

Follow these steps:

1 Setup the client espeak.cfg file with the following properties:
net.espeak.infra.cci.messaging.webproxyname=<proxy name>
net.espeak.infra.cci.messaging.webproxyport=<proxy port>
This explicitly tells the client to open a connection through the web proxy.

2 Setup the Engine Inside espeak.cfg file with the following properties:
net.espeak.infra.core.connector.webproxyname=<proxy name>
net.espeak.infra.core.connector.webproxyport=<proxy port>

3 The service needs to explicitly export itself to the Engine Outside using its
RemoteServiceManager.

Engine
Outside

Engine
Inside

HTTP
Proxy

HTTP
Proxy

Client

JESI

Service

JESI

Internet

Company A Company B

DMZ

Engine
Outside

Engine
Inside

HTTP
Proxy

HTTP
Proxy

Client

JESI

Client

JESI

Service

JESI

Service

JESI

Internet

Company A Company B

DMZ
Developer Release 3.01 June 2000 143

Architecture Firewall Traversal
Figure 13 Client connecting to the Engine Outside using a local engine

In this scenario, the client connects to a local engine, which in turn connects to the
Engine Outside.

Follow these steps:

1 Setup the Client Engine espeak.cfg file with the following properties:
net.espeak.infra.core.connector.webproxyname=<proxy name>
net.espeak.infra.core.connector.webproxyport=<proxy port>

2 Setup the Engine Inside espeak.cfg file with the following properties:
net.espeak.infra.core.connector.webproxyname=<proxy name>
net.espeak.infra.core.connector.webproxyport=<proxy port>

3 The service explicitly exports itself to the Engine Outside using its RemoteSer-
viceManager.

4 The client explicitly imports the service from the Engine outside using its
RemoteServiceManager.

NOTE: As explicit import and export are awkward, another alternative is to run an
advertising service in the DMZ attached to the Engine Outside and use it to do the
import and export implicitly. With this modification, the above scenario changes as
follows:

Engine
Outside

Engine
Inside

HTTP
Proxy

HTTP
Proxy

Client

JESI

Service

JESI

Internet

Company A Company B

DMZ

Client
Engine

Engine
Outside

Engine
Inside

HTTP
Proxy

HTTP
Proxy

Client

JESI

Client

JESI

Service

JESI

Service

JESI

Internet

Company A Company B

DMZ

Client
Engine
144 Developer Release 3.01June 2000

Firewall Traversal Architecture
1 setup the Client Engine espeak.cfg file as above.

2 setup the Engine Inside espeak.cfg file as above.

3 The service is advertised in the advertising service in the DMZ. This leads to an
implicit export from the Engine Inside to the Engine Outside.

4 The client finds the service by looking up in the DMZ advertising service. This
leads to an implicit import from the Engine Outside to the Client Engine.

The scenario in Figure 13 can be modified similarly.

Deployment using SOCKS Server C

The SOCKS protocol is supported internally by the VMs. No specific configuration
is needed except for the VM configuration itself.

Figure 14 shows one scenario where the SOCKS servers are used by the client and
the service provider.

Figure 14 Using SOCKS servers

Connector C

In some deployment cases, it is possible that installing the Engine Outside in the
DMZ is perceived as too complicated or impossible.

Engine
Outside

Engine
Inside

Socks
Server

Socks
Server

Client

JESI

Service

JESI

Internet

Company A Company B

DMZ

Engine
Outside

Engine
Inside

Socks
Server

Socks
Server

Client

JESI

Client

JESI

Service

JESI

Service

JESI

Internet

Company A Company B

DMZ
Developer Release 3.01 June 2000 145

Architecture Firewall Traversal
E-speak introduces a new way for service providers to reach service consumers.
The connector is the central point of the system. The connector is the Engine
Outside moved in a DMZ of a trusted party.

Figure 15 describe the deployment scenario for the connector.

Figure 15 Deployment of a connector in a trusted party’s DMZ

Company C is a trusted by Company B to host its services’ metadata. When
Company B wants to expose its services to the outside, it connects the Engine
Inside to the Engine Outside (Connector) and exports the description of the avail-
able services.

When the clients wants to access a service, its connect to the connector and search
for the given service and interact with it transparently.

Clearly Company C needs to be trusted by the service provider because it exposes
the service to the outside world.

An example of the connector is the e-service village where service providers and
services consumers can meet and establish relationship.

Engine
Outside

Engine
Inside

HTTP
Proxy

Socks
Server

Client

JESI

Service

JESI

Internet

Company A Company B

Firewall

Company C

Engine
Outside

Engine
Inside

HTTP
Proxy

Socks
Server

Client

JESI

Client

JESI

Service

JESI

Service

JESI

Internet

Company A Company B

Firewall

Company C
146 Developer Release 3.01June 2000

Appendix H Management
Currently system management in e-speak is undergoing a transition from a tradi-
tional network object model to a document exchange model. Infrastructure and
support for this model is still being developed and collaboration between parties on
common schemas and mechanisms is in the early phases. This document therefore
is very much work in progress and will remain as such until a variety of inter-related
elements within e-speak become available and reach stability.

Introduction C

This appendix describes the infrastructure and general philosophy of how web
based management tools and an XML management interaction framework are
provided in e-speak.

System Management in e-speak currently consists of four things:

• A managed service model.

• XML Schemas and dialogs that enable management.

• Client support for making services manageable.

• A set of tools that provide access to the management services from the web.

This document describes the first, third and fourth of the above with code exam-
ples.
Developer Release 3.01 June 2000 147

Managed Service Model Management
Managed Service Model C

The managed service model is simply two concepts that underpin the manageability
of e-speak services and e-speak clients:

• Managed State: a defined service state embodying the life cycle of a service.

• Managed Variable Table: sets of values that can be affected by a manager for the
purposes of configuration and control.

For this generic model to be useful, a client must map its service specific behavior
onto this model and expose this model to a management agent. As we see later, the
life cycle in the managed service model has many states, including initializing,
ready, and running. It is entirely up to the service writer how these states are
related to the service specific behavior.

For example a service might have no need of an initialization phase but must instan-
taneously pass this state to conform to the model. A service may also be in various
operational states while running, but running is the only way to express its condi-
tion from a management point of view.

In summary then, the managed service model embodies a view of service behavior
that is potentially common to many services. Therefore some custom management
agents must deal with issues of service behavior that fall outside this model.
148 Developer Release 3.01 June 2000

Management Managed Service Model
Managed Life Cycle C

The full state transition diagram is as follows:

State Descriptions C

Initializing: The internal dynamic state of the service is being constructed, for
example: a policy manager is being queried for configuration information and
resources are being discovered via search recipes or yellow pages servers. When
the service finishes this work it moves asynchronously into the ready or error
states.

Ready: The service is in a ready to run situation, this state is also equivalent to a
stopped or paused state.

Running: The service is running and responding to methods invoked on its opera-
tional interfaces. If an error occurs that implies that the service cannot continue to
run, it should move into the error state.

Error: The service has a problem and is awaiting management action on what to do
next.

initializing

closed

error

running

ready

Stop
Start

coldReset
coldReset

shutdown

shutdown

α

ω

warmReset

remove

Internal

External

state

Input

ready

error

error

error
Developer Release 3.01 June 2000 149

Managed Service Model Management
Closed: The service has removed/deleted much of its internal state and awaits
either a coldReset or remove transitions.

Inputs C

An input is the trigger that causes a state transition to occur. In any given state,
there is a defined set of permissible inputs that are available—only those that are
depicted in the diagram as leaving the current state and connecting with the next
state. To attempt to perform any other transition is illegal. Note that many inputs
can have the same name (e.g. error) but there is no ambiguity as long as the origi-
nating state is different.

Clients can provide any input with impunity. However, a management agent can
request only provide external inputs. For example, the manager can reasonably
request that a client perform a warm reset, but not to become ready, the client alone
can provide this input— when it’s internal initialization process has completed.

The available inputs are as follows:

start: move into the running state. Start to handle invocations on operational inter-
faces.

stop: move into the ready state. Stop handling invocations on operational inter-
faces.

ready: move into the ready state having finished initialization.

error: move into the error state, this transition is valid from any state.

shutdown: clean up any internal state required and move into the closed state. This
transition should not cause the deregistering of resources from the repository.

coldReset: cause a from complete reinitialization of the service and move into the
initializing state. The only exemption is that resources that are already registered
should not be reregistered.

warmReset: cause a partial reinitialization of the service—retaining some of the
existing service state move into the initializing state.

remove: cause the service to remove itself from existence. Any non-persistent
resources should be deregistered from the repository.
150 Developer Release 3.01 June 2000

Management Managed Service Model
Managed Variable Tables C

A managed variable table is at it’s simplest a table of name/string value pairs that
exist within the client but to which a manager has some level of access. Thus, a
management agent can control those aspects of a services behavior that is affected
by those variables to which it has access.

There is a degree of configurability associated with managed variables and their
variables that permit something more sophisticated than the simple get and set
operations one would expect to find.

Each table itself has a name to distinguish it from other tables. As we shall see later,
the managed service model itself provides for two such tables.

The most simple usage case for a managed variable would be for a variable which
the management agent has only read access but which the client varies as neces-
sary. The manager can monitor the changes (see events later) such that an operator
who understands the meaning of this variable (e.g. secondsToDetonation)
might gain some information.

The next level of sophistication is to enable the operator to affect the services
behavior by modifying the value of the variable. However, some service configura-
tion is only of practical use during initialization (e.g. some resource allocation
parameter). Knowing the instantaneous value of such a variable does not explain
the clients behavior (if it had been changed) and modifying it has no effect.

To account for this, a managed variable can have one or more values. The compul-
sory value is its “live” value i.e. the value that is contributing to its current behavior.
In the simplest case this is the only value that a variable has.

However, a variable can have other values, which are in effect “scheduled” values
and associated with the various reset operations in the client’s life cycle.
Developer Release 3.01 June 2000 151

Managed Service Model Management
For example, consider the following managed variable found in some unreasonably
hazardous device:

Let’s assume it takes some operator three minutes to reach safety or the devices off
switch. The operator brings up his management console and notices that the
current value of secondsToDetonation is 42, and dropping. Clearly the circum-
stances are undesirable: the current value does not provide long enough to escape
without injury. Increasing this value to three minutes or more and running away is
ideal but the value is read only.

Glancing down the list the operator notices that there are two reset values and
performs a cold reset. After the device has re-booted, and re-loaded the counters
default initial value (perhaps in ROM) it promptly starts counting down from 60
seconds. Still not good but at least the operator can try and stay up all night
performing cold resets every 59 seconds or less.

Having bought some time the operator looks a little more closely at the variable.
The warm reset value is writable. Now the operator can set this to thirty minutes
and go and disconnect the power supply.

Clearly a contrived example but it does demonstrate how relatively complex inter-
actions between initialization, configuration value and behavior can be repre-
sented.

A more likely scenario is where a client has a set of variables that configure its
behavior that must all be changed synchronously. A management agent can modify
its warm reset values at its leisure (being denied access to the live values) and then
perform a warm reset.

There is a restriction on variable table usage:

Variable Name Values

Value Condition Remote Access Value

secondsToDetonation Live Value Read Only 42

On Cold Reset Read Only 60

On Warm Reset Read/Write 60
152 Developer Release 3.01 June 2000

Management Managed Service Model
Uniqueness: names in a variable table must be unique within that table. It is not
possible to implement lists by having many entries with the same name.

Configuration Parameter Table
The configuration parameter table is an instance of a managed variable table with a
reserved name that identifies it as such. The table holds generic configuration data
for the client.

Resource Table
The resource table is another instance of a managed variable table, identical in
behavior to the configuration parameter table except that the names in the client’s
table refer to other services with which the client has some relationship. For exam-
ple, if a particular client makes use of a mail service then this relationship can be
made visible to a management agent through the resource table. Thus a manage-
ment agent might reconfigure the client to use an alternative but equivalent service.
While there might seem no obvious need to separate out this particular aspect of
configuration, doing so makes it possible for a management agent to discover the
topology and integrity of a network of connected services without the need for
service specific interpretation of the variable table (all entries in the resource table
are resources).

The name used for an entry in a resource table can be any symbolic name the client
chooses, while the value must be the valid e-speak URL of the actual service.

System Management Events C

Events can be considered as notifications of some significant occurrence. In the
context of system management, events must exist to convey notification of some
change of state with regards the Managed Service Model. The following events are
therefore defined:

ManagedServiceStateChange: This event conveys information regarding some
managed service state transition to any interested management agent. In this case,
the event is the name of the input provided to the management life cycle FSM.
Clearly, the management agent must have known what the previous state was in
order that this information be meaningful.
Developer Release 3.01 June 2000 153

Managed Service Programmers Guide Management
ManagedVariableValueChange: This event conveys information regarding a
value modification in a clients configuration or resource table.

Managed Service Programmers Guide C

Writing a Simple Managed Service C

In this section we create a simple managed service1.

First, to get familiar with the tools we look at the most minimal Java program that
is “manageable” through e-speak.

A Minimal Service
Consider the following program:

import
net.espeak.management.managedservice.simplemanagedservice.SimpleXMLManagedService
;
import net.espeak.infra.cci.exception.ESException;
import net.espeak.jesi.management.ServiceContext;

public class VerySimpleExample extends SimpleXMLManagedService {
 public static final String SERVICE_NAME = "VerySimpleService";
 public static final String LOCALHOST = "127.0.0.1";
 public static final int COREPORT = 12346;

 public VerySimpleExample() throws ESException {
 super(new ServiceContext(LOCALHOST, COREPORT, "tcp"), SERVICE_NAME);
 makeManageable();
 }

 protected void stateChangeOccurred(String transition, String oldState,
 String newState) {}

 protected void resourceChangeOccurred(String resource, String oldValue,
 String newValue) {}

 protected void variableChangeOccurred(String variable, String oldValue,
 String newValue) {}

1 For reference, a fully working example of a managed service is supplied in: net.espeak.man-
agement.managedservice.simplemanagedservice.ExampleService
154 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
 protected boolean acceptStateChange(String transition, String oldState,
 String newState) {
 return true;
 }

 protected boolean acceptVariableChange(String variable, String oldValue,
 String newValue) {
 return true;
 }

 protected boolean acceptResourceChange(String resource, String oldValue,
 String newValue) {
 return true;
 }

 public static void main(String[] args) {
 try {
 new VerySimpleExample();
 } catch (ESException e) {
 e.printStackTrace();
 }
 }
}

VerySimpleExample (above) subclasses SimpleXMLManagedService, a utility class
that in most circumstances provides adequate manageability support. We consider
more sophisticated examples later.

For now let’s just consider the constructor:

public VerySimpleExample() throws ESException {

 super(new ServiceContext(LOCALHOST, COREPORT, "tcp"),

SERVICE_NAME);

 makeManageable ();

 }

First, the super class is initialized with a connection to the local core2, second the
makeManageable() method makes the service visible to any management agents.

2 For simplicity, the host and port are hardwired into the example and assume the core is run-
ning on the local host and uses port 12346, which is the value in the default version of xmlman-
agement.ini. These values can be changed but the host must be the host name/IP address of a
host running a core and the port number must match that used by the core.
Developer Release 3.01 June 2000 155

Managed Service Programmers Guide Management
Managing the Service
We are now ready to try the program out, but first we must have a core running. For
convenience, there is a configuration file which starts all the services required for
management. Go to your e-speak installation directory and type:

espeak –i config\management\xmlmanagement.ini

After a few moments, run a web browser and go to:

http://127.0.0.1:2000/servlet/services

You see a screen similar to the following:

This is a list of the visible “web enabled” services on your local core, in this case the
services started by xmlmanagement.ini.

Click the Service Manager link and you see the following page:
156 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
This is the main service manager screen and displays a list of all the manageable
services to be found on your local core.

Note that while we call this the Service Manager, it should be remembered that it is
clearly a web based interface onto the actual Service Manager. While the service
manager is aware of the status of services in real time, the browser is not; so you
should use the “Update” buttons provided to keep the display current. For related
reasons, navigate between Service Manager screens using the links provided and
avoid the use of the back button, particularly if you actively interacting with the
services through the service manager.

Now we are ready to run VerySimpleExample. Compile the program and run it.
After a few moments go back to the service manager screen and click the Update
button. Now you see your program available for management:
Developer Release 3.01 June 2000 157

Managed Service Programmers Guide Management
Click the Management link next to VerySimpleService:
158 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
This is the management page for your service. At the moment, your service is not
being managed so click the Manage Service button:
Developer Release 3.01 June 2000 159

Managed Service Programmers Guide Management
So what does this mean? Earlier in the document we discussed the concept of the
Managed Life Cycle of a service. If you look back at the state diagram, you see that
the start state was initializing. Because we have not changed service state in our
program, we remain in this state forever.

Changing Service State
Now let’s try something slightly more interesting. Consider this next program, very
similar to the last:

import
net.espeak.management.managedservice.simplemanagedservice.SimpleXMLManagedService
;
import net.espeak.infra.cci.exception.ESException;
import net.espeak.jesi.management.ServiceContext;
import
net.espeak.management.managedservice.managedstate.ManagedServiceStateMachine;

public class VerySimpleExample2 extends SimpleXMLManagedService {
160 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
 public static final String SERVICE_NAME = "VerySimpleService2";
 public static final String LOCALHOST = "127.0.0.1";
 public static final int COREPORT = 12346;

 public VerySimpleExample2() throws ESException {
 super(new ServiceContext(LOCALHOST, COREPORT, "tcp"), SERVICE_NAME);
 makeManageable();
 performTransition(ManagedServiceStateMachine.TO_READY_TRANSITION);
 }

 protected void stateChangeOccurred(String transition, String oldState,
 String newState) {}

 protected void resourceChangeOccurred(String resource, String oldValue,
 String newValue) {}

 protected void variableChangeOccurred(String variable, String oldValue,
 String newValue) {}

 protected boolean acceptStateChange(String transition, String oldState,
 String newState) {
 return true;
 }

 protected boolean acceptVariableChange(String variable, String oldValue,
 String newValue) {
 return true;
 }

 protected boolean acceptResourceChange(String resource, String oldValue,
 String newValue) {
 return true;
 }

 public static void main(String[] args) {
 try {
 new VerySimpleExample2();
 } catch (ESException e) {
 e.printStackTrace();
 }
 }
}

Here, the only real difference is in the constructor, where we have added the line:

performTransition(ManagedServiceStateMachine.TO_READY_TRANSITION);
Developer Release 3.01 June 2000 161

Managed Service Programmers Guide Management
Have another look at the service state diagram and you see an internal transition
taking the service to the Ready state. The line of code, above, causes this transition
to occur. Lets compile and run this program to see what happens when viewed
through the Service Manager.

After the VerySimpleService2 is running, go to back to the Service Manager and
click the All Services link and click the Update button. Your new program is avail-
able for management:

As before, go to the Services Management screen and click the Manage Service
button. You see the following:
162 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
The state of your service is now listed as ready and three new buttons have
appeared. Looking back at the service state diagram, you can see that when a
service is in the Ready state a manager can request that it can start, stop or perform
a warm reset. Click the Start and the following screen appears:
Developer Release 3.01 June 2000 163

Managed Service Programmers Guide Management
Clicking the Stop button takes you back to the previous screen. All very interesting,
but how does this relate to the program we’re running? At the moment the program
isn’t affected at all by these management changes.

Adding Custom Service Behavior
So far the service doesn’t do anything interesting, so let’s take a look at how we can
improve the situation:

import
net.espeak.management.managedservice.simplemanagedservice.SimpleXMLManagedService
;
import net.espeak.infra.cci.exception.ESException;
import net.espeak.jesi.management.ServiceContext;
import
net.espeak.management.managedservice.managedstate.ManagedServiceStateMachine;

public class VerySimpleExample3 extends SimpleXMLManagedService
 implements Runnable {
164 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
 public static final String SERVICE_NAME = "VerySimpleService3";
 public static final String LOCALHOST = "127.0.0.1";
 public static final int COREPORT = 12346;
 protected boolean running = false;
 protected Thread runThread = null;

 public VerySimpleExample3() throws ESException {
 super(new ServiceContext(LOCALHOST, COREPORT, "tcp"), SERVICE_NAME);
 makeManageable();
 performTransition(ManagedServiceStateMachine.TO_READY_TRANSITION);
 }

 public void run() {
 while (true) {
 synchronized (runThread) {
 if (!running) {
 return;
 }
 }
 System.out.println("Running " + System.currentTimeMillis());
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 }

 protected synchronized void stateChangeOccurred(String transition,
 String oldState, String newState) {
 if (newState.equals(ManagedServiceStateMachine.RUNNING_STATE)) {
 running = true;
 runThread = new Thread(this);
 runThread.start();
 } else if (runThread != null) {
 synchronized (runThread) {
 running = false;
 }
 try {
 runThread.join();
 } catch (InterruptedException e) {}
 runThread = null;
 }
 }

 protected void resourceChangeOccurred(String resource, String oldValue,
 String newValue) {}

 protected void variableChangeOccurred(String variable, String oldValue,
 String newValue) {}

 protected boolean acceptStateChange(String transition, String oldState,
 String newState) {
 return true;
 }
Developer Release 3.01 June 2000 165

Managed Service Programmers Guide Management
 protected boolean acceptVariableChange(String variable, String oldValue,
 String newValue) {
 return true;
 }

 protected boolean acceptResourceChange(String resource, String oldValue,
 String newValue) {
 return true;
 }

 public static void main(String[] args) {
 try {
 new VerySimpleExample3();
 } catch (ESException e) {
 e.printStackTrace();
 }
 }
}

Here we have given the program a runnable thread and added some code to the
stateChangeOccurred() method. This method is called after any change of
service state. If you compile and run this program, then when you start and stop it
from the Service Manager you also see the thread started and stopped.

Managing Variables
It is also possible to manage the data within your service. Consider the next deriva-
tive of the service:

import
net.espeak.management.managedservice.simplemanagedservice.SimpleXMLManagedService
;
import net.espeak.infra.cci.exception.ESException;
import net.espeak.jesi.management.ServiceContext;
import
net.espeak.management.managedservice.managedstate.ManagedServiceStateMachine;

public class VerySimpleExample4 extends SimpleXMLManagedService
 implements Runnable {
 public static final String SERVICE_NAME = "VerySimpleService4";
 public static final String LOCALHOST = "127.0.0.1";
 public static final int COREPORT = 12346;
 public static final String MESSAGE_VAR = "Message";
 protected boolean running = false;
 protected Thread runThread = null;
 protected String message = "running";

 public VerySimpleExample4() throws ESException {
 super(new ServiceContext(LOCALHOST, COREPORT, "tcp"), SERVICE_NAME);
166 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
 createVariable(MESSAGE_VAR, message, true);
 makeManageable();
 performTransition(ManagedServiceStateMachine.TO_READY_TRANSITION);
 }

 public void run() {
 while (true) {
 synchronized (this) {
 if (!running) {
 return;
 }
 System.out.println (message + " " + System.currentTimeMillis());
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 }

 protected synchronized void stateChangeOccurred(String transition,
 String oldState, String newState) {
 if (newState.equals(ManagedServiceStateMachine.RUNNING_STATE)) {
 running = true;
 runThread = new Thread(this);
 runThread.start();
 } else if (runThread != null) {
 running = false;
 try {
 runThread.join();
 } catch (InterruptedException e) {}
 runThread = null;
 }
 }

 protected void resourceChangeOccurred(String resource, String oldValue,
 String newValue) {}

 protected synchronized void variableChangeOccurred(String variable, String
oldValue,
 String newValue) {
 if (variable.equals(MESSAGE_VAR))
 {
 message = newValue;
 }
 }

 protected boolean acceptStateChange(String transition, String oldState,
 String newState) {
 return true;
 }

 protected boolean acceptVariableChange(String variable, String oldValue,
 String newValue) {
Developer Release 3.01 June 2000 167

Managed Service Programmers Guide Management
 return true;
 }

 protected boolean acceptResourceChange(String resource, String oldValue,
 String newValue) {
 return true;
 }

 public static void main(String[] args) {
 try {
 new VerySimpleExample4();
 } catch (ESException e) {
 e.printStackTrace();
 }
 }
}

Here we have added a normal class variable called “message” which we print in the
run method. What we have also done in the constructor is create a Managed Vari-

able that informs the system manager that such a variable exists, i.e. what it’s name
is, what it’s initial value is and whether it can be remotely modified:

createVariable(MESSAGE_VAR, message, true);

This is sufficient to make the variable visible to the Service Manager, but we also
want the our program to reflect changes to the value of this variable made by the
service manager. To achieve this we have added some code to the vari-

ableChangeOccurred() method. This code simply verifies which Managed Vari-

able has changed and ensures that the appropriate action is taken. In this case, it
simply updates the local message variable.
168 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
Viewing this service through the Service Manager looks as follows:

You can see that in addition to the service state, our managed variable is visible.
Clicking the variable name opens the following screen:
Developer Release 3.01 June 2000 169

Managed Service Programmers Guide Management
Here you can change the value of the variable. Try changing the value and observe
the output of your service change while it is running.

Dynamic Variables
So now we can change the value of our variables remotely, but what would happen
if we changed the value locally? If the management system is to know the state of
your service from second to second then obviously it needs to be told. This next
example uses an additional managed variable, which is updated locally:

import
net.espeak.management.managedservice.simplemanagedservice.SimpleXMLManagedService
;
import net.espeak.infra.cci.exception.ESException;
import net.espeak.jesi.management.ServiceContext;
import
net.espeak.management.managedservice.managedstate.ManagedServiceStateMachine;
import java.util.Date;
170 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
public class VerySimpleExample5 extends SimpleXMLManagedService
 implements Runnable {
 public static final String SERVICE_NAME = "VerySimpleService5";
 public static final String LOCALHOST = "127.0.0.1";
 public static final int COREPORT = 12346;
 public static final String MESSAGE_VAR = "Message";
 public static final String TIME_VAR = "Time";
 protected boolean running = false;
 protected Thread runThread = null;
 protected String message = "running";

 public VerySimpleExample5() throws ESException {
 super(new ServiceContext(LOCALHOST, COREPORT, "tcp"), SERVICE_NAME);
 createVariable(MESSAGE_VAR, message, true);
 createVariable(TIME_VAR, new Date ().toString (), false);
 makeManageable();
 performTransition(ManagedServiceStateMachine.TO_READY_TRANSITION);
 }

 public void run() {
 while (true) {
 synchronized (this) {
 if (!running) {
 return;
 }
 System.out.println (message + " " + System.currentTimeMillis());
 super.setVariable(TIME_VAR, new Date ().toString ());
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 }

 protected synchronized void stateChangeOccurred(String transition,
 String oldState, String newState) {
 if (newState.equals(ManagedServiceStateMachine.RUNNING_STATE)) {
 running = true;
 runThread = new Thread(this);
 runThread.start();
 } else if (runThread != null) {
 running = false;
 try {
 runThread.join();
 } catch (InterruptedException e) {}
 runThread = null;
 }
 }

 protected void resourceChangeOccurred(String resource, String oldValue,
 String newValue) {}
Developer Release 3.01 June 2000 171

Managed Service Programmers Guide Management
 protected synchronized void variableChangeOccurred(String variable, String
oldValue,
 String newValue) {
 if (variable.equals(MESSAGE_VAR))
 {
 message = newValue;
 }
 }

 protected boolean acceptStateChange(String transition, String oldState,
 String newState) {
 return true;
 }

 protected boolean acceptVariableChange(String variable, String oldValue,
 String newValue) {
 return true;
 }

 protected boolean acceptResourceChange(String resource, String oldValue,
 String newValue) {
 return true;
 }

 public static void main(String[] args) {
 try {
 new VerySimpleExample5();
 } catch (ESException e) {
 e.printStackTrace();
 }
 }
}

Here we have added a new Managed Variable that represents the time, which we
update in the run method of our service. Viewing our service through the Service
Manager now looks something like this:
172 Developer Release 3.01 June 2000

Management Managed Service Programmers Guide
Here we can see our new (read only) Time variable. Now when you start the service,
each time you click the Update button, you see the most recent value of the time
variable.
Developer Release 3.01 June 2000 173

Managed Service Programmers Guide Management
174 Developer Release 3.01 June 2000

	The Basics
	About This Document
	Introduction
	Programming Model
	E-speak Services
	Service Contracts
	Service Vocabularies
	E�speak System Services
	Client-Service Interaction

	A Simple Example
	Client Service Discovery
	Client Service Usage
	Service Creation
	Complete Example

	Basic Services
	Getting Connected to E-speak
	ESConnection
	Connection Configuration

	E-speak Services
	ESContract
	ESVocabulary

	Client: Finding Services
	ESContractFinder
	ESVocabularyFinder
	ESServiceFinder
	ESQuery
	Finding Services Using XQL
	Queries in Multiple Vocabularies
	Using Introspection

	Service Deployer: Creating Services
	Service Description
	XML Descriptions of Services
	Registering and Starting Services
	Creating Services Described in Multiple Vocabularies
	Restarting Existing Services
	Registering Vocabularies and Contracts

	Accessing Descriptions: ESAccessor

	Extended Services
	Managing Bindings Using Folders
	Creating Folders
	Creating and Finding Folders with Descriptions
	Navigating Folders
	Scopes

	Repository Views
	Categories
	Delegators

	Communities
	Advertising across internet and locally
	Setting Current Community
	Advertising to Groups
	Finding in Communities

	Security
	Masks
	Authorizing Access
	Example
	Remote Connection Manager

	Events
	Event Model
	Subscribing to Events
	Publishing Events
	Distributing Events
	List of Service Events
	List of Core-Generated Events

	Thread-Safe Programming: ESThread
	Messaging Classes
	IDL Compiler
	Generating code
	Input Files
	Service Description
	Type Description

	Output Files
	Interface File
	Stub File
	Message Registry File
	Type File

	Command Line Parameters
	IDL Requirements
	Description in ESIDL file
	Description in Java file

	Interceptors
	Account Manager
	Programming Model
	Profile Description
	Account Profile
	Account Manager

	A Simple Example

	E-speak Security
	Introduction
	The Basic Security Model
	PSE’s and Certificates
	PSE Manager

	Bootstrap process for testing
	Configuration files
	Property file syntax
	Property conversion
	Argument specifications
	Security properties
	Example config.cfg file

	Firewall Traversal
	Architecture
	Deployment using HTTP proxies
	Deployment using SOCKS Server
	Connector

	Management
	Introduction
	Managed Service Model
	Managed Life Cycle
	State Descriptions
	Inputs
	Managed Variable Tables
	System Management Events

	Managed Service Programmers Guide
	Writing a Simple Managed Service

