
Contributed Services

Developer Release 3.01
June 2000

Developer Release 3.01 June 2000

© Copyright 2000

HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this document is provided "AS IS" WITH NO EXPRESS OR
IMPLIED WARRANTY: permission to copy, modify, and distribute this document for any purpose
is hereby granted without fee, provided that the above copyright notice and this notice appear in all
copies, and that the name of Hewlett-Packard Company not be used in advertising or publicity
pertaining to distribution of this document without specific, written prior permission.
Hewlett-Packard Company makes no representations about the suitability of this document for any
purpose.

Contents
Chapter 1 Preface . 1

Why Read This Book? . 1

Scope of This Book . 2

Chapter 2 Virtual File System . 5

Overview of VFS concepts . 6

Installation . 9

Using VFS . 10

Configuring and Running VFS . 15

VFS Design . 17

Attributes for each object . 24

Source code files and their purpose 26

Programmers Reference . 40

Chapter 3 Print Service .41

Installation . 42
Developer Release 3.01 June 2000 i

Run PrintServer and PrintClient . 42

Using the print service across cores 43

Configuring up the PrintServer environment 45

Design . 48

Chapter 4 Chat Service. 51

How to run Chat . 51

Configuration . 53

Design . 53

Index . 57
i i Developer Release 3.01 June 2000

Chapter 1 Preface
This book describes the contributed applications of e-speak, a middleware product
that simplifies creation of distributed electronic services.

E-speak provides the infrastructure needed to support the next level of internet
business collaboration through development of e-services. That said, e-speak
doesn’t do anything terribly interesting by itself. The interest is in the applications
that it can host rather than in the infrastructure.

This document describes the contributed services; applications written to show off
what e-speak can do. From the virtual file-system that shows how refined a service
can be by registering each file as a separate service/resource, to the minimalist
tunnel service that shows how even applications written entirely without consider-
ation of e-speak can still use e-speak, each sample application is written to take
advantage of the features that the infrastructure provides.

Take a look at each and try them out. While these are unsupported applications,
they show the core of what e-speak enables, and demonstrate how to write more
complex applications using the e-speak APIs. And if you have suggestions (or code)
that would improve them, please send them along so that they can be included in
the next release.

Why Read This Book? A

The goal of this book is to help you understand the contributed applications so that
you can make best use of the ideas they represent. These example programs repre-
sent the best coding practices we have learned about our code, and our best guesses
of how to make good use of the features it presents.
Developer Release 3.01 June 2000 1

Scope of This Book Preface
If you have a handle on the e-speak API, but are running into trouble when it comes
to actually implementing a service, these applications give you more complex
examples than those found in the documentation. In writing these applications, we
tried to explore the following problems:

• What should be a service?

• How does a service restart reliably?

• How are services located and used?

• How can the system be used to manage transient services?

• Can objects be passed by reference; and can their stubs and skeletons be
constructed on the fly?

• How to serve common interest groups?

• How should dynamic service location be used; and how does an application
manage which resource to pick?

Scope of This Book A

This book is divided into four chapters following this preface. Each chapter
describes one of the contributed applications:

• Virtual File System
A file-system implemented in e-speak that uses the core system to manage its
files. Each file is registered as a separate service, and the core persistence is
used to manage the file life-cycle instantiations of the service. The VFS includes
a sample browser for Windows that is similar to the file system explorer
included with the operating system.

• Print Service
A tool for managing access to printers and locating the nearest or best printer
for a job.
2 Developer Release 3.01 June 2000

Preface Scope of This Book
• Chat Service
Instant messaging implemented as an e-speak service. The chat service allows
discussion groups to form dynamically by allowing participants to express inter-
est in a subject rather than having central management of a member list.

Within each chapter you can find a section describing what the application does and
how it is architected, installation or initialization information, usage, how to config-
ure or customize, and a full description of the application design.
Developer Release 3.01 June 2000 3

Scope of This Book Preface
4 Developer Release 3.01 June 2000

Chapter 2 Virtual File System
VFS is a virtual file system that is built upon the e-speak infrastructure. VFS
provides the ability to create and manage file objects (henceforth referred to as
files) that are maintained somewhere in the e-speak environment. The files exist on
some device in the Internet, however, just like with a web URL, the user doesn't
really care what device hosts the file - he or she just wants to be able to access it.
VFS files are stored hierarchically; each user has a workspace consisting of one or
more cabinets. Each cabinet contains folders, which can hold other folders or indi-
vidual files.

Where VFS extends beyond a typical file system is in its use of the unique features
of e-speak. For example: the virtual folder hierarchy is unique to each user. Just as
a web browser maintains its own list of bookmarks, each user is able to build their
own hierarchy of files that are of interest to that user, and each user can refer to a
file by what ever name is meaningful to them. They are not bound to a name that is
common to all users.

VFS allows the user to create a workspace of cabinets that contain the folders and
files that interest them. This workspace is unique to each user and is available to the
user from any computer connected to the e-speak infrastructure. So unlike a web
browser, e-speak allows you to take all of your file references with you when you
change locations.

Users can share their cabinets with other users. For example, a provider could
create a cabinet containing recipes and share this cabinet with other users. Some-
one using this service could create their own cabinet containing only those recipes
that they like (using the browser application, the consumer could drag and drop the
recipes from the providers cabinet to their own cabinet). If the provider updates a
recipe (say, they change one of the ingredients), the consumer automatically sees
this update the next time they access the recipe.
Developer Release 3.01 June 2000 5

Overview of VFS concepts Virtual File System
VFS was created to exercise the e-speak client library and core software. It is not
intended to be a complete product. It attempts to exploit all the features of e-speak
and, in doing so, provide a complete test application of the e-speak features.

SFS is an extension of VFS that allows the client to manage files based on attributes
the client finds interesting such as the type of file, the creator of the file or the
contents of the file. A client can define his/her own vocabulary and assign values to
the attributes in that vocabulary and then structure the file system based on those
attributes.

Overview of VFS concepts B

The following graphic depicts the objects embodied by VFS and their relationship
to each other.

Figure 1 Relationship of VFS components

FileStore

FileStore
W orkSpace

Cabinet

Cabinet

Folder

Folder

Folder

Folder

File

File

File

File

File
6 Developer Release 3.01 June 2000

Virtual File System Overview of VFS concepts
As can be seen in Figure 1, everything starts with the workspace. The workspace
contains one or more cabinets. Each cabinet contains one or more folders. Each
folder can contain other folders and/or files. A file can be referenced from more
than one folder, or can be referenced from no folders. Each file is managed by one
file store, but there is no relationship between file stores and folders or cabinets. A
cabinet contains a reference to the default file store to simplify the creating of new
files, but there is no policy that requires all files in a cabinet to be stored in the same
file store.

Each of the components are described in more detail below:

Workspace
The workspace is associated with a user. It is analogous to the desktop metaphor of
the Windows environment. The workspace is a named resource (typically with the
user ID of the creator) and is discoverable to re-establish the previously saved envi-
ronment. The workspace contains a list of Cabinets and provides the APIs neces-
sary to manipulate these Cabinets. The workspace is also the anchor point for
connecting to e-speak.

Workspaces are implemented using the ESFolder feature of e-speak.

Cabinet
The cabinet is used to collect folders and files. Much like an office file cabinet, it
typically contains similar objects. Cabinets are also named and can be discovered.
Cabinets can only contain folders and provide the APIs necessary to manipulate
these folders.

Cabinets also contain a view (implemented using the Repository View feature of
e-speak). This view is essentially a flattening of the folder and file hierarchy into a
single list of files. A file can be contained in the view and not represented in the
folder hierarchy of the cabinet. In this way, files can be added to the cabinet with
no hierarchy required. (Note: This feature is currently not implemented)

Cabinets are implemented using the ESFolder and ESView features of e-speak.
Developer Release 3.01 June 2000 7

Overview of VFS concepts Virtual File System
Folder
The folder is used to hold other folders and files. Much like an office folder, it typi-
cally contains related objects. A hierarchy of folders simulates the hierarchy of files
and directories typical in a file system. Folders can only contain other folders and
files and provide the APIs necessary to manipulate these objects.

Folders are implemented using the ESFolder feature of e-speak.

File
The file represents a single, physical object located somewhere in e-speak. Files are
created by a file store and can be referenced by a folder or cabinet view. The file
provides simple file operation APIs necessary to fetch and store the contents of the
file.

Files are implemented as remote resources.

File Store
The file store is an extension of the object store and is a remote service that
provides the physical management of a group of objects (file objects in the case of
VFS). The file store provides APIs to create and delete files.

A file store is implemented as a remote resource.
8 Developer Release 3.01 June 2000

Virtual File System Installation
Figure 2 Use case view of VFS

Figure 2 shows the typical use cases for VFS. One or more users running either the
Browser, Shell or another custom application using the VFS APIs interact with a
File Store to store and fetch files.

Installation B

The VFS source code was placed in the <installDir>/contrib/src/vfs directory when
you installed e-speak.

If you want to run VFS, you can use the precompiled class files found in <install-
Dir>/contrib/lib/vfs.

Browser

Shell

Custom
Application

user

user

user

S to re

File

File

File

File(s)
Developer Release 3.01 June 2000 9

Using VFS Virtual File System
Using VFS B

The VFS system is comprised of three major components. This section covers each
of these components in more detail. The three components are:

• File Store

• Browser

• Shell

File Store B

The file store is the service handler for the creation and deletion of files as well as
the service handler for each of the files created by this file store.

When the file store starts, it first reads the properties file specified as the argument.
The properties file specifies the e-speak connection parameters, the attributes of
the file store and any other configuration items needed. It next connects to the
e-speak core, initializes the directory where files are to be created, and registers
itself with the core. It also advertises itself to the default community if requested.

The file store handles primarily two requests: createFile and deleteFile. For create-
File, the file store creates a new file in the directory specified in the properties file,
create an e-speak resource to represent this file, and return a VFSObject class to the
caller. For deleteFile, the file store unregisters the file and deletes the physical file.

The file store process also handles requests for each of the files created by the file
store. Again, there are only two basic requests: fetch and store. The fetch request
returns the contents of the file as a byte array to the caller. The store request stores
the byte array provided by the caller in the physical file. Each fetch and store is
synchronized and buffered. Synchronization guarantees that a file cannot be read
(fetched) until any active write (store) operation has completed and that a file
cannot be written (stored) until all active read (fetch) operations have completed.
Simultaneous reading (fetching) is allowed. Buffering guarantees that the physical
limits of the core and the hardware does not cause a fetch or store I/O exception.
The current buffer size is 64KBytes but can become a negotiable parameter in a
future release.
10 Developer Release 3.01 June 2000

Virtual File System Using VFS
Browser B

The Browser is a Windows graphical client to the VFS system. To take advantage of
automatic application launching and to be comfortable for Windows users, the
Browser was written using the Microsoft extensions and therefor runs only on a
Microsoft operating system (such as Windows NT). It uses the VFS APIs to commu-
nicate with the VFS file store and VFS files. It is modeled after the NT Explorer
interface.

The application represents the workspace with each cabinet in a separate window
within the application. The cabinet window is split into two primary panes. The left
pane is the folder hierarchy and the right pane shows the contents of the selected
folder. An optional third pane displays the cabinet's repository view contents.

The interaction is very similar to the NT explorer application. The user can click on
the + sign next to a folder to expand that folder, select a folder, etc. In the right pane,
if the user double-clicks on a folder it is expanded. A file can be dragged from one
folder to another (this is a copy operation). Additional a folder can be dragged onto
another folder (again, this is a copy).

If the user double clicks on a file, the browser copies the contents of the virtual file
to the local hard drive (using the temporary directory) and ask Windows to launch
the associated application. If the application changes the file, the browser prompts
the user to save the changed contents back to the virtual file. If the user clicks OK,
the temporary file is read and the data is stored back to the VFS file.

The context menus (right click on a pane or object) are used to access specific func-
tions for the object in question. For example, right clicking on the left pane gives the
user options to create new folders, import folders, etc. Right clicking on a folder
gives the user options to export that folder, delete the folder, rename the folder, etc.
Similar options exist for files.

When the user creates a cabinet, the user is asked to specify the default file store
for that cabinet. This is used to specify the file store when importing files as well as
the default for creating new files. This file store can be changed by clicking on file,
cabinet, properties. It can also be overridden when creating a new file.
Developer Release 3.01 June 2000 11

Using VFS Virtual File System
If the user renames a file in a folder, the user is only changing the local name of that
file. The public name (the name used to search for the file or presented when a file
is discovered) is not changed. To change the public name, the user must choose the
rename context menu from the cabinet view pane (the third optional pane). The
cabinet view pane can be displayed by selecting the view, cabinet contents menu.

If the browser is stopped and restarted (or started on another e-speak system), the
user's workspace is discovered and all defined cabinets are opened. This demon-
strates the ability for the VFS environment to follow the user wherever they are.

The user is able to view any cabinet within the workspace in a number of ways. First
the user can view the contents of the selected cabinet. Alternatively the user can use
the search console to find files in any cabinet by specifying the name of the file or
something contained in that file. Finally, the user can create a semantic view of a
cabinet by creating new constraints, modifying existing constraints or removing
constraints from the semantic view. This allows the user to create a semantic view
that includes all the files in the cabinet that, for example, were created after a
certain date. The constraints that can be invoked are a function of the vocabulary
used.

Shell B

The shell package implements a simple command line interface (CLI) to interact
with the VFS file store. The shell can be run with input scripts that are very similar
to shell scripts in conventional shells. Since the purpose was mainly to enable auto-
matic tests to be added to the test suite, the shell is not yet very user friendly. Most
of the commands are still quite rudimentary and do not take all the options that are
available in other shell scripting languages.

The shell behaves like a client of the file system. It looks for the workspace of the
user who runs the shell and creates a new workspace if it cannot find the user's
workspace. Once the user's workspace is set up, the shell allows the user to create
and navigate an arbitrary hierarchy with the help of commands that are similar to
commands that appear in standard UNIX shells.
12 Developer Release 3.01 June 2000

Virtual File System Using VFS
Commands
The following is a list of commands that are accepted by the shell. We first provide
a one-line description of these commands, and subsequently, explain the behavior
of each command in more detail. Almost all the commands in shell are similar to
commands with a similar name on UNIX systems.

cat This command prints the contents of a file to the current output
stream.

cd This command changes the current working directory of the shell.

cp This command copies files and sub-directories.

echo This command streams the specified text to the current output
stream.

exec This command executes native binaries and shell scripts.

export This command exports (writes out) a VFS folder (-d option) or a VFS
file (-f option) onto the local disk.

find This command searches prints out all of the files and directories in
the specified directory.

import This command imports a directory on the local file system as a folder
in VFS (-d option) or imports a file on the local disk as a VFS file (-f
option).

lock This command explicitly locks a file for reading (-r option) or writing
(-w option).

ls This command lists the contents of the specified directory.

man This command describes the use of the specified command.

mkdir This command creates VFS directories.

mkfile This command creates VFS files.

mv This command moves files or directories.

pwd This command prints out the present working directory.

reset This command resets shell variables to their default value.

rm This command removes files or recursively removes directories and
their contents.
Developer Release 3.01 June 2000 13

Using VFS Virtual File System
rmdir This command removes empty.

set This command sets shell variables such as standard input and stan-
dard output of the shell to the specified value.

share This command reports or changes the share status of a cabinet.

show This command shows workspaces, cabinets, view or file lock infor-
mation.

unlock This command explicitly release a files read lock (-r option) or write
lock (-w option).

exit/quit This command exits the shell.
14 Developer Release 3.01 June 2000

Virtual File System Configuring and Running VFS
Configuring and Running VFS B

This section outlines the steps necessary to configure and run the VFS components.

FileStore B

The VFS File Store accepts a single required parameter which specifies the file
name of a property file. The property file specifies the properties for the e-speak
environment and the configuration for the file store instance to be started. The
e-speak properties are explained in <which document>. The file store properties
are explained in Table 1

Table 1 File Store Properties

Property Value
Type

Explaination

PublicName String Specifies the public name for this file store. This
is the name presented to the user and stored in
the FileStore attribute of each file resource.

Reliability Float Specifies the percentage odds that the contents
of a stored file will be retrieved successfully.

Availability Float Specifies the percentage odds that the file store
service is operating when the client requests it.

StorageCost Float Specifies the cost per megabyte per month for
data stored in the file store.

TotalCapacit
y

Long Specifies the total capacity in megabytes
available to any one user.
Developer Release 3.01 June 2000 15

Configuring and Running VFS Virtual File System
A sample property file is shown in Figure 3.

Figure 3 Sample File Store Properties File

To start a file store use the following command:

cd <installDir>\contrib\vfs\config
run -i VFSFileStore.ini

This command assumes that the VFS and e-speak classes are defined in the system
classpath variable. Property.file is the file name for the property file similar to the
sample file that contains the properties for your file store.

NumThread
s

Integer Specifies the number of service threads to start
for handling file requests (fetch and store
operations). The property effectively gates the
amount of traffic the file store supports.

Root String The path to the disk location where the real file
contents are to be stored.

Table 1 File Store Properties

Property Value
Type

Explaination

; General e-speak properties
username: File Store User
Password: passwd
Hostname: localhost
Portnumber: 12345
Protocol: TCP
Sessionname: File Store Session
Community: Local Community
Eventcontrol: 1
Homefolder: File Store Home
Separator: /

; File Store Properties
PublicName: Production File Store
Reliability: 99.9
Availability: 99.9
StorageCost: 0.05
TotalCapacity: 10
NumThreads: 10
Root: D:/FileStore
16 Developer Release 3.01 June 2000

Virtual File System VFS Design
Browser B

The browser also accepts a properties file similar to that of the file store. The differ-
ence is that none of the file store properties are required but an optional property
called WorkspaceName can be specified. If this property is not specified, the work
space is named from the user.name property supplied by Java. The browser is
started with the following command:

cd <installDir>\contrib\vfs\config
run -i VFSBrowser.ini

As with the File Store, this example assumes that the classpath is already set. This
command displays a splash screen followed shortly by the browser application.
Unlike the File Store, this command must run with the Microsoft Visual J++ envi-
ronment because it uses the Microsoft extensions.

VFSShell B

The shell accepts a property file similar to that of the browser. Like the browser, the
property file can contain a property called WorkSpaceName. If this property is not
specified the work space uses the name from the Java property user.name. The shell
is started with the following command:

cd <installDir>\contrib\vfs\config
run -i VFSShell.ini

The two optional parameters (INFILE and OUTFILE) allow the user to specify a file
name for the input and output, respectively, for the shell instead of using stdin and
stdout. If the INFILE parameter is specified, the shell terminates when end-of-file is
reached on the input file.

VFS Design B

This section outlines the design decisions taken in the implementation of the VFS
system using the e-speak technology. It also explains the programming model that
was used to implement the various abstractions in the VFS system.
Developer Release 3.01 June 2000 17

VFS Design Virtual File System
Figure 4 Key VFS class relationships

Figure 4 shows the relationships between the key VFS classes. We begin on the left
with the VFSWorkSpace class. The work space can reference one or more cabinets.
Each cabinet can reference one or more folders. Each folder can reference one or
more other folders as well as one or more files. Each file is managed by a file store.
18 Developer Release 3.01 June 2000

Virtual File System VFS Design
The cabinet has a reference to the default file store which it uses to create new files
if a specific file store is not provided. However, each file reference by the cabi-
net/folder hierarchy can be managed by a different file store and therefore can be
running on a completely different core. This demonstrates one of the key differ-
ences between VFS and a traditional file system.

Design of the Command Line Interface B

This section outlines the design decisions taken in the implementation of the CLI
for VFS. It explains some of the important limitations of the CLI when compared to
other UNIX shells. It also explains how new commands can be added to the CLI.

The CLI shell is implemented with each command accepted by the CLI implemented
as a separate class. The implementation of the shell is in class vfs.shell.VFSShell.
Each command is implemented in the class vfs.shell.VFS<command>Command
(source contrib/vfs/src/vfs/shell/VFS<command>Command.java).

The basic interpreter loop reads a command from the input stream and writes the
resulting output to the current output stream. The current input stream could be
“standard input”, i.e. the CLI console, or any file that has a sequence of commands
for CLI. The CLI expects each command to be in a separate line and the parser uses
white spaces as separators. Shell scripts can invoke other shell scripts. To make this
possible, the shell maintains a stack of the relevant state for each script so that
when a new script is to be executed, the state of the previous script gets pushed on
top of a stack. This stack gets popped when the new script ends its execution so that
the execution of the original script can continue. Currently, the scripts that the shell
accepts are rather simple scripts. It does not yet support variable declarations
within the script, nor does it have a convenient way to identify the arguments to the
script within the script. These are limitations of the shell as a scripting language.
The shell also does not support any form of partial matching or wildcards.

The shell is capable of executing executables from the local disk, however the CLI
shell is not capable of automatically intercepting the output of the native executable
to make it an entity in the VFS world. Nor is it yet capable of passing VFS files as
arguments to native executables. For instance, it is not capable of invoking notepad
on a VFS file and expects that each save of notepad result in the contents of the VFS
be updated. What can be done, however is that a script can be written that exports
Developer Release 3.01 June 2000 19

VFS Design Virtual File System
a VFS file to a well known place, invokes notepad on it, and re-imports the file after
the execution of notepad has completed. Similarly, if the native executable echo is
executed, the shell is not capable of trapping the output of echo.

To add a new command to CLI, follow these steps.

1 Implement the desired functionality in class
vfs.shell.VFS<command>Command. Follow the example of the other
commands (e.g. vfs/shell/VFSlsCommand.java).

Design and implementation of the file and file store abstractions B

The file resource is implemented as a remote resource in the VFS system. Users
access the file abstractions via the class vfs.clientapi.VFSObject which in turn
makes calls to methods in vfs.intf.VFSObjectIntf. The four classes that contain the
interface code that implement the file abstractions are:

• vfs.clientapi.VFSObject: This interface implements the methods that are used
directly by the user. The method hides things like buffer size restrictions and
adds any “sugar” that is needed to make the object interface more user friendly.

• vfs.intf.VFSObjectIntf: This interface contains the signatures of the methods
that are to be implemented by the filestore service. This file is auto generated by
the ESIDL compiler based on the contents of vfs/intf/VFSObjectImpl.esidl.

• vfs.intf.VFSObjectStub: This is the client's view of the VFS object. It extends
ESServiceStub and implements the stubs that provide the client with a network
object model view of the service. This file is auto generated by the ESIDL
compiler based on the contents of vfs/intf/VFSObjectImpl.esidl.

• vfs.server.filestore.VFSFileImpl: This class is an extension of vfs.server.Objec-
tImpl and contains the actual implementation of the file operations. This is the
actual resource handler for the file resource.

Consider the fetch method excerpted from vfs/clientapi/VFSObject.java (the other
methods have been deleted here for the sake of brevity):

public class VFSObject implements VFSObjectIntf {
<other methods deleted..>
/**

* This method fetches the contents of the file into a bytearray.
*

20 Developer Release 3.01 June 2000

Virtual File System VFS Design
* @return bytearray containing contents of file.
* @exception ESInvocationException Someone serious is wrong communicating
* with the core.

 */

public byte[] fetch()
throws ESInvocationException {

debug.enterProc(this, "fetch");
// Lock this file for reading
while (!file.testAndTry(READ_LOCK)) {}
int count = (int)file.getSize();
ByteArrayOutputStream out = new ByteArrayOutputStream(count);
int offset = 0;
int bufSize = MAX_BUFFER_SIZE;
while (offset < count) {

int whatsLeft = count - offset;
if (whatsLeft < MAX_BUFFER_SIZE) {

bufSize = whatsLeft;
}
out.write(file.fetchBuffer(offset, bufSize),

offset, bufSize);
offset += bufSize;

}
while (!file.release(READ_LOCK)) {}
debug.exitProc(this, "fetch");
return out.toByteArray();

}
}

This method buffers the fetch by invoking the method fetchBuffer. The fetchBuffer
method in vfs/intf/VFSObjectIntf.java, look as follows:

public interface VFSObjectIntf extends ESApplicationIntf {
<other methods deleted..>
public byte[]fetchBuffer(int offset, int size)
throws ESInvocationException;

}

The corresponding methods in vfs/intf/VFSObjectStub.java, look as follows:

public class VFSObjectStub extends ESServiceStub
implements VFSObjectIntf, ESSerializable{
<other methods deleted..>
public byte[] fetchBuffer(int arg0, int arg1)
throws ESInvocationException {

byte[] result = null;
ParameterList params = new ParameterList();
params.addObject(new java.lang.Integer(arg0), "int");
params.addObject(new java.lang.Integer(arg1), "int");
try {
Developer Release 3.01 June 2000 21

VFS Design Virtual File System
Object retObj = this.invokeSynchronous("vfs.intf.VFSObjectIntf",
"fetchBuffer", params);

result = (byte[]) retObj;
}
catch(ESInvocationException ex) { throw ex; }
catch(ESException ex) {

throw new UnexpectedExceptionException(ex);
}
return result;

}
}

The method above constructs a parameter list and invokes the fetchBuffer method
with the same signature on the service provider class using the invokeSynchronous
call in the client library. In fact, all the methods in VFSObjectStub.java that imple-
ment the methods declared in VFSObjectIntf.java and implemented in VFSOb-
ject.java have a similar structure.

However, at the service provider end, the methods with the same signature have the
actual implementations that do the fetch and store from the relevant sources for the
bytes that represent the contents of the file. The current VFS system uses the
private DATA of the file resource to store the name of the actual file on the disk that
pertains to this particular VFS file. Note that using private DATA allows for a variety
of possible implementations for the files.

For example, the bytes that make up the VFS file can be stored as a row in a data-
base table. The private DATA then contains the information that can enable the file
handler to determine where exactly the bytes that make up the contents of the file
exist. For instance, this information can be name of database + name of table + row
id of row that actually has the bytes. This private DATA of the file gets set when this
file is registered as a resource. Here is the code from vfs/server/filestore/VFSFile-
Impl.java that implements this method:

public class VFSFileImpl extends ObjectImpl {
/**

* This method fetches a buffer of size <size> beginning at offset
* <offset> from the file into a bytearray.
*
* @param offset int containing an offset into the file
* @param size int containing the number of bytes to fetch
* @return bytearray containing a portion of file.
* @exception ESInvocationException Someone serious is wrong
* communicating with the core.
*/

public byte[] fetchBuffer(int offset, int size)
22 Developer Release 3.01 June 2000

Virtual File System VFS Design
throws ESInvocationException {
debug.enterProc(this, "fetchBuffer");
String fileName = getFileName();
// Log this event
log("Fetch File", fileName);
try {

File file = new File(fileName);
int count = size;
int whatsLeft = (int)file.length() - offset;
if (whatsLeft < count) {

count = whatsLeft;
}
byte [] fileBuffer = new byte[(int)count];
FileInputStream in = new FileInputStream(file);
in.read(fileBuffer, offset, (int)count);
in.close();
ESMap changes = new ESMap();
changes.add(VFSResourceVocabulary.ACCESS_TIME, new

Timestamp(System.currentTimeMillis()));
updateAttributes(changes);
return fileBuffer;

} catch (IOException ioe) {
debug.caughtException(this, ioe);
debug.dumpStackTrace(this, ioe);
OutofOrderRequestException e = new

OutofOrderRequestException("VFSObjectImpl:fetchBuffer: " +
ioe.toString());

debug.throwingException(this, e);
throw e;

} finally {
debug.exitProc(this, "fetchBuffer");

}
}

}

The client stub class can also cache some information, especially meta-data about
the resource, but that depends on each implementation. In general, the client stub
does not cache any meta-data at all.

The file store implementation has a structure that is virtually identical to the imple-
mentation of the file implementation. The four classes that implement the file store
resource are:

• vfs.clientapi.VFSStore: This interface implements the methods that are used
directly by the user. The method adds any “sugar” that is needed to make the
file store interface more user friendly.
Developer Release 3.01 June 2000 23

Attributes for each object Virtual File System
• vfs.intf.VFSStoreIntf: This interface contains the signatures of the methods
that are to be implemented by the file store service. This file is auto generated
by the ESIDL compiler based on the contents of vfs/intf/VFSStoreImpl.esidl.

• vfs.intf.VFSStoreStub: This is the client's view of the file store. It extends
ESServiceStub and implements the stubs that provide the client with a
network object model view of the service. This file is auto generated by the
ESIDL compiler based on the contents of vfs/intf/VFSStoreImpl.esidl.

• vfs.server.filestore.VFSStoreImpl: This class is an extension of
vfs.server.StoreImpl and contains the actual implementation of the file store
operations. This is the actual resource handler for the file store resource.

The example above suggests that this is a common paradigm for implementing
services in the e-speak system. The interface file declares the signatures of the
methods that can be used by clients of the service. The client stub class implements
these methods by calling the methods with the same signature on the service
provider class. Any service that wants to provide the client a network-object model
of the service can be structured in this manner.

Attributes for each object B

Attributes are used by e-speak to describe an object. Attributes are defined within
a vocabulary that describes the valid attributes and their types. VFS is implemented
using two vocabularies, one for the file store and one for the rest of the objects.

File store B

The file store vocabulary contains attributes that describe the performance of the
file store and the capacity and cost of the file store.

• The Resource Type attribute is a String value that indicates this is a file store
resource.
24 Developer Release 3.01 June 2000

Virtual File System Attributes for each object
• The Reliability attribute is a floating-point number between 0 and 1 which
describes the level of reliability that the file store is guaranteeing for files stored
in this file store. Reliability indicates the chances of being able to read or write
to the file at any given moment.

• The Availability attribute is a floating-point number between 0 and 1 which
describes the level of availability that the file store is guaranteeing for files
stored in this file store. Availability indicates the chances that the file contents
are available if an error occur while processing that file.

• The Capacity attribute is a long value that describes the number of megabytes
available to each user.

• The Storage Cost attribute is a floating-point number that describes the dollar
cost per megabyte per month for storing files in the file store.

• The Public Name attribute is a String value that provides a friendly name for the
file store.

Workspace, Cabinet, Folder & File B

The resource vocabulary contains attributes that describe the nature of these objects.

• The Resource Type attribute is a String value that describes the type of
resource. Possible values are:

• File indicating a File resource,

• Folder indicating a Folder resource,

• Cabinet indicating a Cabinet resource, and

• Workspace indicating a workspace resource.

• The ResourceSubType attribute is a String value that describes the type of
resource within the parent resource type. For a File resource, the sub-type
attribute describes what type of file it is (Word document, spreadsheet, etc.).
For Folders and Cabinets it describes the predominate File sub-type this folder
or cabinet contains. For workspaces, this attribute is not used.
Developer Release 3.01 June 2000 25

Source code files and their purpose Virtual File System
• The Date & Time attributes are Timestamp values that record the last date and
time the associated operation occurred. There are three date & time attributes:
Creation, Last Access and Last Modified.

• The Size attribute is a long value that indicates the size of the object. For Files,
this is the length of the file in bytes. For all other objects, this is the number of
objects contained by that object (i.e., the number of files contained by the
folder).

• The FileStore attribute is a String value that indicates the file store associated
with the object. For Files, this indicates the file store that manages this file. For
Cabinets, this indicates the default file store used when creating files in this cabi-
net.

• The PublicName attribute is a String value that provides a friendly name for the
object. When a Cabinet, Folder or File is discovered and placed in a local
container, the public name is used as the default local name for the object. The
user can rename this object in their name space without affecting the public
name.

Source code files and their purpose B

The source for VFS consists of eight packages. They are:

1 vfs.browser - The browser GUI application classes

2 vfs.clientapi - The client API classes

3 vfs.infr - The interface classes

4 vfs.properties - The attribute filter classes

5 vfs.server - The server classes

6 vfs.server.filestore - The file store server classes (extensions of vfs.server
classes)

7 vfs.shell - The shell application classes

8 vfs.util - Utility classes for all the above
26 Developer Release 3.01 June 2000

Virtual File System Source code files and their purpose
vfs.browser package B

The Browser application is a sample VFS client application using the Microsoft
Windows Foundation Classes (WFC) to manage the GUI interface. The only knowl-
edge the browser has of e-speak is the Attribute, Event and Exception classes.

AboutDialog.java
This class provides the verbiage for the “about” tab.

AttributeItem.java
This class is used to contain each resource represented in one of the list view panes.
This includes the right hand pane, the search pane, the cabinet contents pane and
the Select file store dialog. This class extends the default ListItem class to support
storing the resource object associated with the item.

AttributeView.java
This class is used to manage the GUI for all the list view panes. It provides functions
common to all list view windows, such as AddCabinet, etc., which add the associ-
ated resource type to the view. It provides the view context menu to change the
view style (list, small icon, large icon, and report). It supports the item activate
method for file resources which is used to launch the file. It provides the view-prop-
erties context menu to display the attribute dialog for any resource.

AttributeViewListener.java
This class is used to implement the event listener interface and listens to events for
all the items displayed in the attribute view window (right hand pane). The
AttributeView.java class subscribes to the events and this class updates the display
when notified.

BrowseDialog.java
This class implements a utility function to display the directory structure on the
host system and allow the user to select a directory.
Developer Release 3.01 June 2000 27

Source code files and their purpose Virtual File System
BrowsePane.java
This class implements the bulk of the functionality of the VFS Browser application.
It provides the Explorer-like interface for Cabinets. The user has the option to
create, delete and copy Folders and Files within this cabinet and between cabinets.
If the View, Cabinet Contents menu item is selected, a third pane appears at the
bottom of the window. This pane contains a list of all the resources defined within
this cabinet (i.e., the contents of the Repository View associated with the Cabinet).

Browser.java
This class implements the WFC container object to manage the Multiple Document
Interface frame. There are a limited number of menu items that are implemented
here, most of the application is implemented in BrowsePane.java and Search-
Pane.java.

CabinetAttributesDialog.java
This class implements a dialog to display and edit the attributes for a Cabinet. The
only attribute that can be changed is the default file store for new files created in
this cabinet.

ChangeColumnsDialog.java
This class implements a dialog to change the columns in the context option.

ChooseVocabularyDialog.java
This class implements a dialog to allow the user to choose a vocabulary. The user is
allowed to select the vocabulary from the list of know vocabularies.

ConstraintDialog.java
This class implements a dialog to add or edit constraints in the semantic view. The
user is prompted for the vocabulary, constraint, boolean test and value for up to five
constraints.
28 Developer Release 3.01 June 2000

Virtual File System Source code files and their purpose
CreateVocabularyDialog.java
This class implements a dialog to allow the user to create a vocabulary. The user is
prompted for the name and the attributes of the new vocabulary.

DirectoryNode.java
This class is used to contain each folder displayed in the left-hand pane of the main
window. It extends the default TreeView class to support storing the type and
resource object associated with the item.

DragData.java

This class is used to contain the data being dragged from one window to another. In this
case, it is simply an object representing the resource being dragged.

FileInfo.java
This class is a set of helper methods to wrap the Windows APIs for obtaining infor-
mation about a file. Methods include:

• getFileTypeEnum which returns the list of valid file types on the hosting system

• getIcon which returns the icon index for the requested file

• getLargeIconIndex & getSmallIconIndex which returns the icon index for the
requested file

• getTypeName which returns the file type associated with the extension of the
requested file

FileStoreListDialog.java
This class implements a dialog to display all the known file stores in the local repos-
itory. The user is allowed to select the file store from the list.
Developer Release 3.01 June 2000 29

Source code files and their purpose Virtual File System
FolderWatcher.java
This class implements the event processing required to watch for changes to the
folder contents. If a new file or folder is added to the currently displayed folder, this
class updates the attribute view by adding new file or folder. Likewise, deletions are
also updated.

InputDialog.java
This class implements a utility function to prompt the user for a input value.

LaunchFile.java
This class implements the launching of the associated application with the
requested file. It fetches the file contents to a temporary location, determines which
application is associated with the file and launches that application. It waits either
for the application to terminate or for the file to be changed. If the file is changed,
it prompts the user to save the changed contents back to the file store.

MessageBoxOnTop.java
This class implements a dialog similar to the Microsoft MessageBox command,
except that this dialog is forced to be on top of all other windows. This was neces-
sary since this dialog is displayed from a separate thread and the dialog could be
lost behind other windows.

NewFileDialog.java
This class implements a dialog to specify the attributes for a new file. The user is
prompted for the file name and the file store to store the file. The user is provided
options for using the default file store or specifying the attributes of another file
store to use.

ProgressDialog.java
This class implements a dialog to display the current progress during long opera-
tions. In particular, this dialog is used for importing folders.
30 Developer Release 3.01 June 2000

Virtual File System Source code files and their purpose
PropertiesDialog.java
This class implements a dialog to display all the attributes set for a particular
resource.

SFSBrowser.java
This class implements the semantic view window. It allows the user to create and
name a view and to specify one to five constraints for searching the local repository.
Any files that satisfy the query are placed into the view folder.

SFSColumn.java
This class is a helper method for managing the columns of the semantic view.

SFSNode.java
This class puts the name of the SFS node into the dialog.

SearchPane.java
This class implements the search console window. It mimics the NT Find window
by allowing the user to specify one or more attributes to constrain the search of the
local repository. Once one or more resources are found, they can be dragged to
other parts of the application. A Cabinet can be dragged to the Container frame to
open that Cabinet. A Folder or File can be dragged to an open Cabinet to link that
folder or File to the Cabinet. In all cases, the drag operation is a copy operation.

SelectCabinetDialog.java
This class implements the dialog for choosing an existing cabinet. This dialog is
displayed when the user selects the File, Open Cabinet menu item. The local repos-
itory is searched for all cabinets and the user is presented with the list.

SplashScreen.java
This class implements the splash screen that appears briefly when the application
is started. Currently, it only displays a simple picture.
Developer Release 3.01 June 2000 31

Source code files and their purpose Virtual File System
SysImageList.java
This class provides an extension to the Imaglist class provided by Microsoft. It is
used for displaying the appropriate ICON image for files and folders.

TreeWatcher.java
This class is used to implement the event listener interface and listens to events for
all the items displayed in the tree view window (left hand pane). The Tree-
Watcher.java class subscribes to the events and this class updates the display when
notified. The current implementation provides support for only some events. When
the event system provides detailed information about the event this class can be
enhanced to provide complete update.

vfs.clientapi package B

The VFS API classes define the application-programming interface to communicate
with a Virtual File System. None of these classes are runable, rather they are
invoked by classes in the other sections.

The files are:

NoFileStoreFoundException.java
This class implements the only exception defined for VFS. This exception is thrown
when a request is made to select a file store but no matching file store could be
found. It extendsESServiceException to allow client applications to catch this
exception along with other e-speak exceptions if they so choose.

SFSFolder.java
This class manages the semantic view folder. The SFSFolder contains a list of files
that match the constraint set for this folder. If the folder is a sub-folder of another
folder, the names in this folder are always a subset of the names in the parent folder.
32 Developer Release 3.01 June 2000

Virtual File System Source code files and their purpose
VFSAttribute.java
This class provides an extension to the standard ESAttribute by also keeping track
of the vocabulary the attribute is in.

VFSCabinet.java
This class implements the Cabinet construct. This class extends the VFSFolder.java
class and therefore has all the functions of the Folder construct. Note, however,
that while technically a Cabinet can contain Files, the intention is not to do so. Cabi-
nets also define a Repository View to contain all the resources defined within the
Cabinet.

Typically an application gains access to this class by calling one of the methods of
VFSWorkSpace (e.g., createCabinet();).

In all cases, an application gains access to this class as a return value from
VFSHelper.findFileStore();). The application should never create this class on it's
own.

VFSFolder.java
This class implements the Folder construct. VFSFolder uses an ESFolder to imple-
ment the contents of the folder. Names are inserted into the ESFolder for each
sub-folder and each file contained in the folder.

Typically, applications gain access to this class via one of the other classes methods
(e.g, getFolders();).

VFSObject.java
This class is a value-added class that wraps the VFSObjectStub class. It provides
higher-level functions to simplify the callers coding by providing the methods
necessary to interact with a virtual file. VFSObjects are created by the VFSStore
object and can be discovered via the VFSResourceVocabulary.
Developer Release 3.01 June 2000 33

Source code files and their purpose Virtual File System
VFSResourceContract.java
This class implements the contract class for the file resource. This class implements
theESContract class and provides the methods to interact with the contract.

VFSResourceVocabulary.java
This class contains a collection of read-only values to facilitate the naming of the
various VFS attributes. Applications should use the strings defined here to specify
attributes instead of hard-coding them.

VFSStore.java
This class is a value-added class that wraps the VFSStoreStub class. It provides
higher-level functions to simplify the callers coding by providing the methods
necessary to interact with a file store.

VFSStoreContract.java
This class implements the contract class for the File Store. This class implements
theESContract class and provides the methods to interact with the contract.

VFSStoreDescription.java
This class extends the ESServiceDescription class and provides a type-safe imple-
mentation of the service description information.

VFSStoreElement.java
This class extends the ESServiceElement class and provides a type-safe implemen-
tation of the service element functionality.

VFSStoreFinder.java
This class extends the ESAbstractFinder class and provides find methods that are
tailored to the VFS File Store environment.
34 Developer Release 3.01 June 2000

Virtual File System Source code files and their purpose
VFSStoreVocabulary.java
This class contains a collection of read-only values to facilitate the naming of the
various file store attributes. The constructor insures the e-speak vocabulary exists.
Applications should use the strings defined here to specify attributes rather than
hard-coding them.

VFSWorkSpace.java
This class implements the virtual workspace construct. VFSWorkSpace uses an
ESFolder to implement the contents of the workspace. Names are inserted into the
ESFolder for each Cabinet contained in the workspace.

This is the entry point for applications using the VFS system. The constructor
searches the local repository for an existing workspace by this name and uses it if
one is found. Otherwise, it creates a new empty workspace. The workspace creates
and manages Cabinets. The workspace also supports the search function to locate
VFS resources within the local repository.

vfs.intf package B

VFSObjectIntf.java
This file is automatically generated by the ESIDL compiler. It defines the interface
methods of the VFSObject construct. It is not called or accessed directly.

VFSObjectStub.java
This file is automatically generated by the ESIDL compiler. The class implements
the virtual file construct. It is a front-end to the file construct, which is implemented
by the server. The main functional methods are fetch and store. In most cases, an
application gains access to this class as a return value to one of the other classes
(e.g., Folder.getFiles();).
Developer Release 3.01 June 2000 35

Source code files and their purpose Virtual File System
VFSStoreIntf.java
This file is automatically generated by the ESIDL compiler. The class defines the
interface methods of the VFSStore construct. It is not called or accessed directly.

VFSStoreStub.java
This file is automatically generated by the ESIDL compile. The class implements the
virtual file store construct. It is a front-end to the file store construct, which is
implemented by the server. The main functional methods are createFile and delete-
File.

vfs.properties package B

The properties classes implement the semantic file system attribute filtering func-
tions. The properties services filter a new VFS object when it has been written to
extract additional attributes from the contents of the object.

PropertiesContract.java
This file defines the constants used to describe the contract for a properties service.

PropertiesImpl.java
This file provides an abstract implementation for a properties service. All real prop-
erty services must extend this class to reduce the development effort and take
advantage of global changes.

PropertiesIntf.java
This file is automatically generated by the ESIDL compiler. It defines the interface
methods of the Properties construct. It is not called or accessed directly.
36 Developer Release 3.01 June 2000

Virtual File System Source code files and their purpose
PropertiesService.java
This file represents the office properties service to the e-speak core. It provides the
management interfaces necessary to manage this service from a management envi-
ronment. If supports registering, unregistering, starting, stopping, etc., the service
via the management interface.

PropertiesStub.java
This file is automatically generated by the ESIDL compiler. The class implements
the properties construct. It is a front-end to the properties construct, which is imple-
mented by PropertiesServer.java..

PropertiesVocabulary.java
This class contains a collection of read-only values to facilitate the naming of the
various properties attributes. The constructor insures the e-speak vocabulary
exists. Applications should use the strings defined here to specify attributes rather
than hard-coding them.

office/OfficePropertiesImpl.java
This file provides the implementation support for the Microsoft Office document
filtering service.

office/OfficePropertiesService.java
This class implements the management interfaces for the Office Properties service
environment.

office/OfficePropertiesVocabulary.java
This class contains a collection of read-only values to facilitate the naming of the
MS Office properties attributes. The constructor insures the e-speak vocabulary
exists. Applications should use the strings defined here to specify attributes rather
than hard-coding them.
Developer Release 3.01 June 2000 37

Source code files and their purpose Virtual File System
office/StartOfficeProperties.java
This class starts a instance of the Office Properties service. It handles files with the
extension specified by the fileType property value.

vfs.server package B

The server classes implement the Resource Handler functions for the external
resources defined with VFS. This includes the file store and the File constructs.

ObjectImpl.java
This class implements the resource handler for the VFS Object construct.

StoreImpl.java
This class implements the resource handler for the VFS Store construct.

StoreService.java
This class represents the object service to the e-speak core. It provides the manage-
ment interfaces necessary to manage this service from a management environment.
If supports registering, unregistering, starting, stopping, etc., the service via the
management interface.

filestore/StartFileStore.java
This class starts the file store service resource handler. It connects to the core,
creates a ServiceContext and uses the management interface to register and start
the service.

filestore/VFSFileImpl.java
This class extends ObjectImpl.java. It implements the resource handler methods
specific to the VFS File construct. It is created by the file store and supports two
simple file I/O operations: storeBuffer and fetchBuffer.
38 Developer Release 3.01 June 2000

Virtual File System Source code files and their purpose
filestore/VFSFileStoreImpl.java
This class extends StoreImpl.java. It implements the file store resource handler
methods specific to the VFS File construct. It handles all the file store calls from the
client side interface. The two main functions are createObject and deleteObject.

filestore/VFSFileStoreService.java
This class extends StoreService.java. It provides the management interfaces
specific to the File Store construct.

vfs.shell package B

The shell package implements a sample VFS client application that supports a
command line interface (CLI) to VFS. This is useful for creating test suites that can
be automatically run to test VFS and the underlying e-speak software. The following
classes make up the implementation of the CLI shell:

VFSShell.java
This file contains the implementation of the shell. The CLI shell gives the user a unix
shell like environment for creating and browsing files in a directory structure. The
shell is also capable of taking as input sequences of commands and redirecting
output to any file in the local file system. The shell is also capable of importing and
executing local executables in the foreground and background as in normal Unix
shells.

VFSCommand.java
This file contains the abstract class that is overridden by all the VFS command
classes.

VFS<command>Command.java
These files contain the implementation for each of the commands. For example, the
implementation of “ls” is contained in VFSlsCommand.java.
Developer Release 3.01 June 2000 39

Programmers Reference Virtual File System
VFSShellException.java
This file implements an exception that indicates an error was encountered process-
ing a command.

VFSStack.java
This file contains a stack implementation that is used by the shell to keep track of
the context of execution when embedded scripts are called. It is also used by
VFSShell to navigate paths that are parts of commands.

2.0.1 VFSStackException.java

These are the two kinds of exceptions in the shell. The only externally visible excep-
tion is VFSShellException. VFSStackException is used internally in the shell to do
error handling with stacks.

vfs.util package B

VFSStrings.java
This class provides all the english message templates used by VFS.

Programmers Reference B

For a detailed description of the VFS classes, refer to the web-based documentation
at javadoc\overview-frame.html.
40 Developer Release 3.01 June 2000

Chapter 3 Print Service
PrintServer uses the service advertisement mechanism and core software of the
e-speak architecture. PrintServer is not intended to be a complete product.

Each print server knows how to print certain types of documents (e.g., .pdf, .ppt) in
certain formats (e.g., color or duplex). Each print server has a speed and a quality
rating. When the server starts, it registers its attributes with the e-speak core.

When a user selects a document and specifies the formats, speed and quality for
printing the document, the print client requests a print service from the e-speak
core. Based on the advertised services and the client criteria, e-speak gives the
client a resource for performing the print job. The client passes the print job to the
resource and, when the resource has finished with the job, it sends a message back
to the client indicating completion.

A functional diagram of the PrintServer sample application running on the e-speak
architecture.

user

 P rin tC lien t P rin tS e rv ice Im p l

printer

print
file

print
data
Developer Release 3.01 June 2000 41

Installation Print Service
Installation C

The Print Client application uses the new swing classes for its user interface. Verify
that your CLASSPATH environment includes the swing libraries by adding ‘swing-
all.jar’ if you are using JDK1.1.x.

Run PrintServer and PrintClient C

The following instructions describe how to run PrintServer and PrintClient. The
print server is dependent on the perl helper program ‘printit.pl’ (specified in
‘Print.ini’) which on Windows-NT can print a variety of file types assuming that
there are applications loaded that understand those file types. The provided sample
program can run with PrintServer on PrintServer on UNIX with appropriate
changes in the helper programs in ‘Print.ini’.

Starting the Server C

• cd into the Print Server config directory

cd <installDir>\config

• Verify the ‘Print.ini’, and ‘Printer.xml’ settings and edit as needed. For more
information about the configuration file format, see‘“Setting up the environment”
on page 52.

• Start the server

..\bin\espeak -i

.\config\samples\printerserver\config\singlecore\ps.ini

Starting the client C

• cd into the Print Server config directory

cd <installDir>\config

• Start the client
42 Developer Release 3.01 June 2000

Print Service Using the print service across cores
..\bin\espeak -i

.\config\samples\printerserver\config\singlecore\pc.ini

• The client appears on the screen.

• Select the parameters of the print job, select the file, and the client discovers the
server that can service the request.

Using the print service across cores C

A key-feature of e-speak is its ability to advertise a service across many cores such
that the service is transparently available to remote machines The service provider
must explicitly advertise the service.
Developer Release 3.01 June 2000 43

Using the print service across cores Print Service
The print server uses the advertising service so that it can be located from other
cores sharing the same group server. Simply start one core (including the connec-
tion factory and ad service) with the server, and then start a second core (same
requirements) with the client, and they find each other automatically.

Starting the server C

• cd into the PrintServer config directory

cd <installDir>\config

• start the server

..\bin\espeak -i ..\samples\printerserver\config\multicore\ps.ini

Starting the client C

• cd into the PrintServer config directory

cd <installDir>\config

• You can start the Core, Connection Factory and Advertising service to talk to the
first core by

..\bin\espeak -i

..\samples\printerserver\config\multicore\PC-Core.ini
hostname=<your hostname>

• Edit the property file used by the PrintClient and make changes to reflect the run
location or the second core and the group server name. The property file is spec-
ified as an argument to the PrintClient in ‘PC.ini’.

• Start the PrintClient

..\bin\espeak -i

.\config\samples\printerserver\config\singlecore\pc.ini
44 Developer Release 3.01 June 2000

Print Service Configuring up the PrintServer environment
Configuring up the PrintServer environment C

If you are not running e-speak using Sun JDK1.2 then you need to download the
‘Swing’ java extensions from Sun in order to use the print client. Swing is available
from http://java.sun.com/products/jfc

To compile the PrintServer application, cd into the PrintServer directory and type
‘compile’ on Windows, or ‘make’ on UNIX This compiles the Java source and copies
the .class files to the lib directory.

Print.ini file format
The Print.ini file configures what file types are supported, and what command to
issue for each file type. The format of this file is shown below:

filetypes section

• The file extension and the associated command to print the file Variables
%%temp_file%% and %%file_type%% are replaced by the PrintServer when the
job is sent to the printing application

For example:

[filetypes]
ppt=perl printit.pl %%temp_file%% %%file_type%%
pdf=echo Could not print Acrobat file %%temp_file%% of type %%file_type%%
doc=perl printit.pl %%temp_file%% %%file_type%%
xls=perl printit.pl %%temp_file%% %%file_type%%
txt=notepad /p %%temp_file%%
ini=notepad /p %%temp_file%%

This example uses the printit.pl sample utility to print ppt, doc, and xls docu-
ments to the default system printer on the PrintServer. Notepad is used to print
txt and ini files. If a pdf file is sent to the PrintServer, it is not printed, but the
echo command sends a message back to the PrintClient.

Note that when using the sample printit.exe, the PrintServer system must have
the associated applications, Word, Excel, PowerPoint, to print the associated
document types.
Developer Release 3.01 June 2000 45

Configuring up the PrintServer environment Print Service
Printer.xml file format
The Printer.xml file configures the way that the print server advertises itself to
clients. You can specify for example the quality, speed, file types, and color capabil-
ities of the printers that the server has access to.

For example, the following Printer.xml file describes a single HP LP5 printer capa-
ble of text output.

<?xml version=”1.0”?>
<ESpeak version=”E-Speak 1.0beta” operation=”RegisterService”
xmlns=”http://localhost/e:/Esxml/Schemas/espeak.xsd”>
 <resource>
 <resourceDes xmlns=”” name=”HP Vectra PC”>
 <!-- Specify PC Supplier Vocabulary -->
 <query xmlns=””>
 <queryBlock xmlns=””>
 <WHERE xmlns=””>
 <!-- absence of query implies Base Vocabulary -->
 <condition xmlns=””>
 <IN xmlns=””>
 <pattern xmlns=””>
 <ResourceName xmlns=””>printervocab</ResourceName>
 <ResourceType xmlns=””>Vocabulary</ResourceType>
 </pattern>
 </IN>
 </condition>
 </WHERE>
 </queryBlock>
 </query>
 <!-- Begin: attributes -->
 <attrSet xmlns=””>
 <!-- End: Use PC supplier vocabulary -->
 <attr xmlns=”” name=”Manufacturer” required=”true”>
 <value xmlns=””>HP</value>
 </attr>
 <attr xmlns=”” name=”Model” required=”false”>
 <value xmlns=””>LP 5</value>
 </attr>
 <attr xmlns=”” name=”DPI” required=”false”>
 <value xmlns=””>1200</value>
 </attr>
 <attr xmlns=”” name=”Speed” required=”false”>
 <value xmlns=””>10</value>
 </attr>
 <attr xmlns=”” name=”Quality” required=”false”>
 <value xmlns=””>10</value>
 </attr>
 <attr xmlns=”” name=”FileType” required=”false”>
 <value xmlns=””>txt</value>
 </attr>
46 Developer Release 3.01 June 2000

Print Service Configuring up the PrintServer environment
 <attr xmlns=”” name=”Location” required=”false”>
 <value xmlns=””>Lobby 49U</value>
 </attr>
 <!-- End: attributes -->
 </attrSet>
 </resourceDes>
 </resource>
</ESpeak>

Client-property-file format:
hostname=<hostname of e-speak core>

portnumber=<port of e-speak core>

community=<group server name>

An example client-property-file can be found in ‘<installDir>\samples\Print-
Server\config\client.prop’:

portnumber=12346

community=printgrp
Developer Release 3.01 June 2000 47

Design Print Service
Design C

This section details the design of the print example implementation. It also explains
the programming model used to implement the various abstractions in the print
example system.

PrintServer
The actual print server program.

PrintClient
A basic application that presents the user with a list of print job options, prompts
the user for a file, discovers the PrintServer and processes the print job.

PrintJobInfo

fileData[] : byte
quality : int
color : boolean
duplex : boolean
speed : int

sendObject()
receiveObject()
PrintJobInfo()

PrintServer

main()
PrintServer()

(from src)

PrintServiceIntf

print()
getLocation()

<<Interface>>

ESService
(from jesi)

<<Interface>>

ESSerializable
(from messaging)

<<Interface>>

PrintServiceImpl

PrintServiceImpl()
getLocation()
print()

JFrame
(from swing)

PrintClient

main()
PrintClient()
init()
discoverAndAddLocations(
)printIt()
newWindow()
run()

(

48 Developer Release 3.01 June 2000

Print Service Design
PrintJobInfo
Contains a single print job including the bytes required to represent the file to print.

PrintServiceIntf
This is the print service interface which doubles as the skeleton.

PrintServiceImpl
The print service implementation.
Developer Release 3.01 June 2000 49

Design Print Service
50 Developer Release 3.01 June 2000

Chapter 4 Chat Service
Chat was created to exercise the event mechanism and core software of the e-speak
architecture. Chat is not intended to be a complete product.

How to run Chat D

The following instructions describe how to run Chat.

user

 E S C h at

 S u b sc rib erIm p l

post
message

show
message

notify
event

 even td istr ib u tor

distribute
event

e-speak-core
Developer Release 3.01 June 2000 51

How to run Chat Chat Service
Setting up the environment D

The Chat example runs with JDK 1.1.x, JDK 1.2 or Microsoft’s JVIEW The ‘Swing’
libraries must be installed on the system (they are bundled with JDK 1.2). Swing is
available from http://java.sun.com/products/jfc/download.html

The CLASSPATH must be set to include the swingall.jar package, e-speak’s JAR’s
and the local directory.

To compile the chat application, cd into the <installDir>\samples\ESChat directory
and type Makefile This compiles the Java source and copies the .class files to the lib
directory.

Starting the Server D

• cd into the chat directory

cd <installDir>\src\samples\ESChat\config\singlecore

• Start the event distributor

run -i ESChatServer.ini

Starting the client D

• cd into the chat directory

cd <installDir>\src\samples\ESChat\config\singlecore

• Start the chat client

run -i ESChatClient.ini

• The client appears on the screen.

• Click the Join button to join the chat group.

• Enter text into the input field, click the Post button and the message is sent to
the server, which distributes it to the clients.
52 Developer Release 3.01 June 2000

Chat Service Configuration
Configuration D

The chat client ‘.pr’ files use property files to set the location and port number of the
e-speak core to connect to.

The format of this file is:

hostname=<hostname>

portnumber=<port number>

Other than the contents of the property files, there is no difference between the files
in the singlecore directory and those in the multicore directory.

Design D

This section outlines the design of the chat system implementation. It also explains
the programming model used to implement the various abstractions in the chat
system.
Developer Release 3.01 June 2000 53

Design Chat Service
Source Code and Purpose D

ESChat
This is the main class for the Chat application user interface. It instantiates an event
publisher (for sending chat messages) and the event subscriber (for receiving chat
messages.) It also presents the graphical user interface for receiving and sending
messages.

SubscriberImpl
The SubscriberImpl class implements the ESListenerIntf so that messages can be
received.

notify(

Event e)

ChatEventDist

main()
usage()
ChatEventDist()

(from src)

MessageDialog

MessageDialog()
handleEvent()

(from src)

Frame
(from awt)

SubscriberImpl

setTextArea()
notifySync()
notify()
SubscriberImpl()

(from src)

ESChat

$ H_SIZE : int = 400
$ V_SIZE : int = 200

ESChat()
handleEvent()
main()
usage()
sendMessage()
Register()
subscribe()

(from src)
54 Developer Release 3.01 June 2000

Chat Service Design
The notify method is activated when the subscriber receives a message sent by one
of the chat clients. The message data is stored in the payload part of the event
(extracted using getPayload()) which is then dynamically downcast from Object to
Message.

notifySync(

Event e)

This method receives synchronous event notifications but is not used in this exam-
ple (the client doesn’t send synchronous events).

MessageDialog
The message dialog class is used by the client to display any errors that happen
during processing.

ChatEventDist
This class is an external event distributor which instantiates ESDistributor. It
distributes events of type ‘espeak.eschat’, an arbitrary string that was chosen to
represent chat events.
Developer Release 3.01 June 2000 55

Design Chat Service
56 Developer Release 3.01 June 2000

Index
A
aboutdialog.java 27
attributeitem.java 27
attributes for each object 24
attributeview.java 27
attributeviewlistener.java 27

B
browsedialog.java 27
browsepane.java 28
browser.java 28

C
cabinet 7
cabinetattributesdialog.java 28
changecolumnsdialog.java 28
chateventdist 55
choosevocabularydialog.java 28
client-property-file format 47
commands

using 13
configuring

installation 53
printserver environment 45
VFS 15

constraintdialog.java 28
createvocabularydialog.java 29

D
designing

command line interface 19
the file and file store abstractions 20

directorynode.java 29
dragdata.java 29

E
eschat 54

F
fileinfo.java 29
filestore 8, 10, 15, 24
filestore/startfilestore.java 38
filestore/vfsfileimpl.java 38
filestore/vfsfilestoreimpl.java 39
filestore/vfsfilestoreservice.java 39
filestorelistdialog.java 29
folderwatcher.java 30

I
inputdialog.java 30

L
launchfile.java 30

M
messageboxontop.java 30
Developer Release 3.01 June 2000 57

Index
messagedialog 55

N
newfiledialog.java 30
nofilestorefoundexception.java 32

O
objectimpl.java 38
office/officepropertiesimpl.java 37
office/officepropertiesservice.java 37
office/officepropertiesvocabulary.java 37
office/startofficeproperties.java 38

P
print service

across cores 43
print.ini file format 45
printclient 48
printer.xml file format 46
printjobinfo 49
printserver 48
printserviceimpl 49
printserviceintf 49
progressdialog.java 30
propertiescontract.java 36
propertiesdialog.java 31
propertiesimpl.java 36
propertiesintf.java 36
propertiesservice.java 37
propertiesstub.java 37
propertiesvocabulary.java 37

R
run printserver and printclient 42
running

VFS 15

running chat 51

S
searchpane.java 31
selectcabinetdialog.java 31
setting up the environment 52
sfsbrowser.java 31
sfscolumn.java 31
sfsfolder.java 32
sfsnode.java 31
shell 12
splashscreen.java 31
starting

client 42, 44, 52
server 42, 44, 52

storeimpl.java 38
storeservice.java 38
subscriberimpl 54
sysimagelist.java 32

T
treewatcher.java 32

U
using

VFS 10

V
VFS

runningVFS
configuring 15

using 10
VFS concepts 6
VFS design 17
VFS.browser package 27
VFS.clientapi package 32
58 Developer Release 3.01 June 2000

Index
VFS.intf package 35
VFS.properties package 36
VFS.server package 38
VFS.shell package 39
VFS.util package 40
vfsattribute.java 33
vfscabinet.java 33
vfscommand.java 39
vfscommand.java 39
vfsfolder.java 33
vfsobject.java 33
vfsobjectintf.java 35
vfsobjectstub.java 35
vfsresourcecontract.java 34
vfsresourcevocabulary.java 34
vfsshell 17
vfsshell.java 39
vfsshellexception.java 40
vfsstack.java 40
vfsstore.java 34
vfsstorecontract.java 34
vfsstoredescription.java 34
vfsstoreelement.java 34
vfsstorefinder.java 34
vfsstoreintf.java 36
vfsstorestub.java 36
vfsstorevocabulary.java 35
vfsstrings.java 40
vfsworkspace.java 35

W
workspace 7
Developer Release 3.01 June 2000 59

	Preface
	Why Read This Book?
	Scope of This Book

	Virtual File System
	Overview of VFS concepts
	Installation
	Using VFS
	File Store
	Browser
	Shell

	Configuring and Running VFS
	FileStore
	Browser
	VFSShell

	VFS Design
	Design of the Command Line Interface
	Design and implementation of the file and file store abstractions

	Attributes for each object
	File store
	Workspace, Cabinet, Folder & File

	Source code files and their purpose
	vfs.browser package
	vfs.clientapi package
	vfs.intf package
	vfs.properties package
	vfs.server package
	vfs.shell package
	vfs.util package

	Programmers Reference

	Print Service
	Installation
	Run PrintServer and PrintClient
	Starting the Server
	Starting the client

	Using the print service across cores
	Starting the server
	Starting the client

	Configuring up the PrintServer environment
	Design

	Chat Service
	How to run Chat
	Setting up the environment
	Starting the Server
	Starting the client

	Configuration
	Design
	Source Code and Purpose

	Index

