e-speak

Architectural Specification

Developer Release 3.01
June 2000

A cxcian

© Copyright 2000

Hewlett-Packard Company. All Rights Reserved. The contents of this document are proprietary
and confidential to the Hewlett-Packard Company, and are limited in distribution to those with a
direct need to know. Individuals having access to this document are responsible for maintaining
the confidentiality of the content and for keeping the document secure when not in use. Transfer
to any party is strictly forbidden other than as expressly permitted in writing by Hewlett-Packard
Company. Unauthorized transfer to or possession by any unauthorized party may be a criminal
offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subdivision (b) (3) (ii) of the Rights in Technical Data and Computer Software clause at
52.227-7013.

HEWLETT-PACKARD COMPANY 3000 Hanover St. Palo Alto, CA 94304

Unix is a trademark exclusively licensed through X/Open Company, Ltd. WindowsNT is a
trademark exclusively owned and licensed through Microsoft Corporation. All other brand names
are trademarks of their respective owners.

Contents

Chapter 1

Chapter 2

Developer Release 3.01 June 2000

Introductioncv v i iieeneeeeennnnses 1

VISION ..o 1
Goals 2
Architectural Philosophy 3
Environment i 3
Intended Audience i 4
Structure 4
Conventionso it 5)

Architecture Overviewccevveeeeeeeee 7

Mediation Architecture 10
Resource Model 11
Metadata Systemot 12
NamingModel 13
AccessControl il 14
Communicationot 15
An End-to-End Example 18

1

Contents

Chapter 3

Chapter 4

The E-speak Service Interface (Informational) 20
E-speak Services, 20
Standardsc. i 20
SUMMALY . ..ot e e 21

Resource Descriptions, Resource Specifications
and Resource Typesccvceeececeanses 23

ResourceSpecification 23
ResourceDescription 28
Resourcetype 29

Core-Managed Resources.ceceeeeeses 31

Conventionso 31
ConnectionManager i, 32
Core Management Resource 32
Remote Resource Manager 35
MailboX . ..o 36
Name Frame i, 38
Finderresource 44
Protection Domain 46
Repository View 47
Resource Contract, 49

Developer Release 3.01 June 2000

Contents

Chapter 5

Chapter 6

Developer Release 3.01 June 2000

Resource Factory, 50
Resource Manipulation Resource 51
Vocabulary 55
The Account Manager Resource 59
TheuserInterface 62
Appendix: Method Names 63

Vocabularies . . v v vt v vttt eeeeeeennneeesdd?

Vocabulary Overviewc.covuvivenn... 67
Building a Vocabulary 68
Base Vocabulary 72
Base Account Vocabulary 73
Translators (Informational) 74

AccessControlcvvvveeeeeneeeossdsdb

Example Of Certificate-based Security (Informational) . 78

AuthorizationData 79
S v it et 80
E-speak AuthorizationTags 83
Maskst e 85
Serviceldentity 87
Names: Userids, GroupS....o ovvivenrninennnn.. 88

3

Contents

Chapter 7

Certificate Structure 89
Delegation i 97

Certificate Issuers and Registration (Informational) . .. 101

Trust Assumptions (Informational) 101
Certificate Revocation 103
Managing certificates (informational) 103
Private Security Environments (Informational) 105
Interoperability with X.509 (Informational) 105
SPKIBNF Formats coiiiiion... 106
References i 111

ESNamesoiiiiii i 117
Session Layer Security Protcol (SLS) 122
Protocol Data Unit PDU 139
E-speak Protocol Data Units (ESPDUs) 147
Client to Core Communication 149

Format of Payload for Core-Managed

Resource Messagesc.oiuiiniinanan.. 150
Core event MeSSaAgeS . . oot v e ie e e 151
Messages from the Resource Handler to the Client151
Initial Connectiontothe Core 152

Developer Release 3.01 June 2000

Contents

Chapter 8

Chapter 9

Chapter 10

Developer Release 3.01 June 2000

Core to core communication 152
E-speak Serialization Format 166
Referencesc. .. 169

Run-Time Exceptions 171
Recoverable Exceptions 172
ExceptionState 175
Exception hierarchy 177

Core Generated Events and Event
Distributor Vocabularies. e v v v .. .179

Events i 179
Core GeneratedEvents 180
Publication of Core-generated Events 183
Distributor Vocabulary 184

Events in a Distributed Environment (Informational) . . 185

Management........cci0eeeeenneess..187

Managed LifeCycle 187
Managed Variable Tables 190
Managed Service Interface 191

5

Contents

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Repository (Informational).............. 197

Repository Overview, 197
Repository Structure 197
InformationFlow 198
Increasing Scalability 200

The keyIndexType field: Efficient Repository Lookup .201

Localization.cccvveeeeeeeeeeooss 203

Current Implementation 203
Requirements i, 204
Number & Date Formats 205
High-level Design i, 207
ESString Wire Format 211

Future Developments 213

GloSSArY +vvvvevenenencncncncecesess 215

Developer Release 3.01 June 2000

Introduction

This document specifies the e-speak architecture. It defines the abstractions
presented by the system and the components that implement those abstractions,
and shows how the components interact to create useful services. The following
companion documents are also available:

e E-speak Programmers Guide defines the interface for e-speak programmers
and system developers building e-speak-enabled applications.

e FE-speak Installation Guide shows how to install e-speak and how to run some
simple applications.

e FE-speak Contributed Services describes several sample applications included
with the distributed software.

e FE-speak Tools Documentation shows how to use tools provided for analyizing
the system.

Vision
Computing with e-speak is a paradigm switch, aiming to bring a “just plug in, use the
services you need, and pay per usage” model to computation, as opposed to the
“install on your machine and pay per installation” model of computation prevalent
today. E-speak is the infrastructure that realizes the vision of such a model. Instead
of thinking of computing as some hardware you buy and the software you install on

it, e-speak encourages you to think of computing as a set of services you access as
needed.

Developer Release 3.01 June 2000 1

Goals

Introduction

Goals

The reality of computing today is that it is much more complex than a utility like the
electric or water system. An immense variety of computing resources exists, both
in type and in power, and a newer, faster, cheaper, or better resource is probably
invented by the time you finish reading this sentence. This dynamism is a formida-
ble challenge to interoperability.

At the same time, most of these resources are being connected to each other on a
range of scales, from homes to companies to the entire globe. The hardware neces-
sary to support such a computational utility is already available and getting better
by the day. On the software front, though the Web has essentially achieved the
status of a data utility, actual computation remains mainly confined to individual
machines and operating systems.

E-speak enables a computation utility by interposing on and mediating every
resource access in a process called virtualization. This broad abstraction yields a
model where machines, ranging from a supercomputer to a beeper, can be looked
at uniformly and can cooperate to provide and use services.

E-speak aims at enabling ubiquitous services over the network—making existing
resources (e.g., files, printers, Java objects, or legacy applications) available as
services, as well as lowering the barriers to providers of new services. The infra-
structure’s goal is to provide the basic building blocks for service creation, includ-
ing:

e Secure access to resources and service

¢ Usage monitoring, billing, and access control

e Advertising and discovery of new services

e Mechanisms for negotiation to find the “best” service

¢ Independence of operating system, language, and device

e Ability to support large enterprise-wide, intra-enterprise, and global deploy-
ments

Developer Release 3.01 June 2000

Introduction

Architectural Philosophy

Architectural Philosophy

This document specifies the e-speak architecture. There are four key concepts:

Resource: Any computational service, such as a file or a banking service, that is
virtualized by e-speak.

Client: An active entity that requests access to Resources or responds to such
requests.

Protection domain: The part of the e-speak environment visible to a Client.

Logical machine: An active entity that performs the operations needed to
implement e-speak.

E-speak is based on the following:

All Resource access is mediated; e-speak sees all Resource requests.

All Resource access is virtualized; e-speak maps between virtual and actual
references.

Names for Resources are shared by convention only; e-speak keeps a separate
name space for each Client.

This document does not specify anything outside of the e-speak architecture.
However, some implementation details are included to show some points. These
sections are marked “informational.”

Environment

E-speak is designed to work in a hostile, networked environment such as the Inter-
net. It isolates service providers and their clients from an inherently insecure
medium while allowing them to negotiate safely, form contracts, and exchange
confidential information and services without fear of attack.

Developer Release 3.01 June 2000 3

Intended Audience Introduction

Intended Audience

This E-speak Architecture Specification describes the lower-level interfaces of
e-speak for:

¢ Implementors of Client libraries to provide a higher level of abstraction for
e-speak

e Implementors of utilities and tools to manage and manipulate e-speak

¢ Implementors of e-speak emulation routines that are used in the run-time envi-
ronment for legacy applications

¢ Implementors of extensions to existing services and resources used by Clients
¢ System administrators who implement policies for security and resource lookup

¢ Those designing and building their own implementations of e-speak

Structure

This specification consists of the following major sections, in the order listed:
¢ An overview of the e-speak architecture

¢ A description of the data structures used by e-speak to describe Resources—
Resource metadata

e The interfaces to the e-speak platform that are exposed as “Core-managed
Resources”

¢ A description of Vocabularies, the mechanism for processing Resource descrip-
tions to discover and match Resources to the Client’s description of Resources
needed

¢ The e-speak mechanisms used for access control
¢ The e-speak communication architecture
¢ The exceptions that can be generated by the e-speak platform

¢ The e-speak Event Service

4 Developer Release 3.01 June 2000

Introduction

Conventions

The e-speak management architecture

The e-speak Respository used for storing Resource metadata (informational)
A description of how localization is implemented (informational)

A glossary of terms

A brief description of probable future extensions to e-speak (informational)

Conventions

There are several document conventions worth noting:

New terms are introduced in the document flow with italics.

Programmatically visible architectural abstractions are written with the first
letter of each word capitalized, such as Protection Domain.

Logical names, method names, and other programmatic labels are written in
Courier font.

Even though e-speak is independent of the programming language, the specifi-
cation uses Java syntax.

Sections describing material outside of the architecture are shown with the
word “Informational” in the chapter or section title.

Developer Release 3.01 June 2000 5

Conventions Introduction

6 Developer Release 3.01 June 2000

Architecture Overview

All system functionality and e-speak abstractions build on top of one single
first-class entity in the e-speak architecture—a Resource. A Resource is a uniform
description of active entities such as a service or passive entities such as hardware
devices. Unlike most platforms, e-speak deals only with data about Resources,
metadata, and not Resource-specific semantics. Thus, a file Resource within the
e-speak environment is simply a description of the attributes of the file and how it
can be accessed. The e-speak platform does not access the file directly. A
Resource-specific handler that is attached to the e-speak platform receives
messages from e-speak and directly accesses the Resource.

Access to e-speak is provided by the e-speak Service Interface (ESI). Client applica-
tions and Resource Handlers are linked with a library that provides this interface.
The library communicates with the e-speak platform using the Session Layer Secu-
rity Protocol (SLS). The e-speak platform mediates all Resource access. Every
access to a Resource through e-speak involves two different sets of manipulations:

1 The e-speak platform uses its Resource descriptions for dynamic discovery of
the most appropriate Resource, transparent access to remote Resources, and
sending Events to management tools.

2 The Resource-specific handler directly accesses the Resource such as reading
the disk blocks for a file.

E-speak treats all Resource accesses in exactly the same manner. This mediated yet
uniform access is the design principle that allows the e-speak environment to
accommodate any kind of Resource type flexibly, even Resources dynamically
defined after the e-speak system has started.

Developer Release 3.01 June 2000 7

Architecture Overview

The e-speak platform maintains an environment for each of its Clients, called a
Protection Domain. A Protection Domain is analogous to a “home directory” in an
operating system. It contains bindings to Resources created by the Client and
e-speak keeps track of memory usage due to these bindings.

A single instance of the e-speak platform is called a Logical Machine. Figure 1
shows a single Logical Machine. There may be multiple Logical Machines on a single
physical machine, or the components of a Logical Machine may be distributed
across multiple machines. Logical Machines are independent entities that commu-
nicate using the Session Layer Security Protocol as shown in Figure 2.

Client | -eeeeeeeeeeeeseeeeeeens » | Resource
Handler
Client
Library /
. \
Logical \
Machine AT
Protection
Domain
e-speak
Core \
& Repository

Figure 1 Resource access in e-speak

Developer Release 3.01 June 2000

Architecture Overview

————————— Client Clients
Client :
Library Client

Client
Library

Logical
Machine

§ Session Layer |
i Security
! Protocol

e-speak
Logical Machine

Logical
Csewion 11 Machine
i Layer ;
! Security |
! Protocol

Figure 2 Communicating e-speak logical machines

Each e-speak Logical Machine has a single instance of the e-speak Core. All
Resource access is through the Core that uses the Resource metadata to mediate
and control each access. To access a Resource, a Client sends a message to the
e-speak Core naming the Resource. The e-speak Core uses the Resource metadata
to locate the Resource Handler and forwards the message to the Resource Handler
that, in turn, physically accesses the Resource.

Although Figure 1 shows the Resource Handler being outside the Core (i.e., in a
separate process), the handler for some Resources is the Core itself; these
Resources are inside the Core and are called Core-managed Resources. E-speak
Clients can manage and interact with the Core by sending messages to these
Resources. For example, one kind of Core-managed Resource is a Resource
Factory. When a Client wants to create a new Resource instance, it sends a message
to the Resource Factory to register the Resource metadata with e-speak.

Developer Release 3.01 June 2000 9

Mediation Architecture Architecture Overview

Logically, there are three categories of Resource access:

A service provider can choose to register the metadata of its service. The
e-speak Resource model describes the contents of this metadata.

A Client or service provider may look up a service and bind to it, prior to access-
ing it. The search rules and the information model for descriptions are defined
by the registered Resource metadata.

A Client or service provider may invoke an entry point on a service. The previous
two are special cases of this last one, because they may be considered as invo-
cations on entry points of Core-managed services.

In all cases, the mediating e-speak Cores perform name resolution and generate
monitoring information as part of this access.

Clients who wish to access a service do so through the e-speak Core, which uses the
appropriate Resource metadata to route the Client request to the correct handler,
after having performed all desired name translation, and other e-speak functional-

ity.

The following sections outline the various components of the e-speak architecture
and describe the steps in a service access.

Mediation Architecture

Following are the main components of the mediation architecture:

10

A set of Core-managed Resources inside the e-speak Core. The Core-managed
services present the system functionality for managing the e-speak platform,
including creating Protection Domains and their contents and managing
Resource metadata.

A Repository containing Resource metadata available to Clients of the Logical
Machine. These are the metadata that the Core evaluates during any service
access.

Developer Release 3.01 June 2000

Architecture Overview

Resource Model

¢ A routing engine that routes all service access messages based on the contents
of the metadata of Resources referred to in the parameters of the message. The
implications of this are discussed below.

Resource Model

The Resource is a representation of an e-service within e-speak. Service providers
register the metadata of their services (e-speak Resources) with the Core. This
includes the information depicted in Table 1.

Table 1 Resource Model

Description

An attribute-based specification of the Resource

Vocabulary

The definition of the attributes and their types used in
descriptions and lookups

Resource Handler Mailbox

The process/thread/task that handles the Resource

Contract

Denotes the Application Programming Interface (API)
supported by the provider, including version and
similar information

Resource mask, owner
public key and service ID

Access control information

Private Resource-specific
data

Data important to the provider of the Resource, such
as the provider’s internal name for the Resource. Not
interpreted by e-speak.

Public Resource-specific
data

Data important to the user of the Resource, such as a
stub for invoking methods. Not interpreted by
e-speak.

Developer Release 3.01 June 2000

11

Metadata System

Architecture Overview

The Resource metadata is maintained in the mediating Core’s Repository. All func-
tionality presented through the Core must have metadata within the Core. This is
true even for the functionality provided by the Core itself.

Metadata System

The e-speak metadata system is based on the following architectural and semantic
entities:

12

Vocabularies are created as first-class Core-managed services. Thus, the model
includes a metalanguage for creating a whole range of vocabularies with which
to describe services, much like that of XML. XML document type definitions
(DTDs) can be handled through the e-speak VocabularyBuilder.

The representation of vocabularies as Resources ensures that they can be
dynamically discovered and protected from illegal access, and that access to
them is mediated as required, like any other service in e-speak. In the e-speak
architecture, a created Vocabulary decides the validity of an attribute descrip-
tion provided by a registering service provider.

The Core-managed Vocabulary service also includes a matching engine that is
used to match Resource descriptions available in the Repository with search
requirements of Clients of e-speak.

Attribute-based service descriptions are used by service providers as part of
service registration. These attribute descriptions are sets of name-value pairs in
a specific vocabulary. The Vocabulary is either one that the service provider
previously created (using the Vocabulary Builder) or discovered through the
discovery facilities provided by the e-speak Core services.

Search Recipes are objects that hold a Client’s recipe for discovering a
Resource. The Core uses this to process the Resource discovery request. A
Search Recipe specifies what Resources the Client is looking for, how the
lookup should be done, and what should be done if multiple matches occur. The
Search Recipe contains the predicates and a Repository view mechanism with
which to constrain the search. A search predicate is constructed with a Vocabu-

Developer Release 3.01 June 2000

Architecture Overview Naming Model

lary and a constraint string expressed in that Vocabulary. The predicate is
expressed in a form based on the Object Management Group trader services
constraint grammar.

The operational realization of the metadata system includes support for includ-
ing arbitrary advertising services as part of extended searches, arbiters to opti-
mize matches found through the Core Repositories, and integration of
Vocabulary translation services with the lookup/discovery process. Advertising
services provide scalability to service lookup in e-speak by supplying a means to
find Resources not registered in the local Repository. Arbiters are used to effect
special purpose optimizations such as handling multiple hits in lookups. Trans-
lation services can be integrated with Core-managed Vocabulary services or
created as external services, thus allowing for translation between Vocabular-
ies.

Naming Model

The e-speak naming system is based on the following principles.

E-speak Names are Universal Resource Locators (URLSs).

Name spaces are maintained in container Core-managed Resources called Name
Frames. Name Frames can themselves contain other Name Frames, so each
e-speak Core has a hierarchy of Name Frames beginning from its “root” Name
Frame. By default when the Client specifies the name of a service, the e-speak
Core, starting with its root Name Frame, finds a mapping between the name and
aname unique to this Core. In addition a client can specify a name beginning in
the root Name Frame of another e-speak Core, by specifying the host in the
e-speak Name.

The e-speak Core provides the only valid reference to a service as a name in the
Client-specific name space. This is like a virtual address of a service. The physi-
cal address of a service, the Core’s name is not a valid Client reference for a
service.

Developer Release 3.01 June 2000 13

Access Control

Architecture Overview

e There are two ways for a Client to get a name for a service. First, another Client,
application, or service provider can pass it the name. Second, a Client may
obtain a per-Client name through a bind call that requires a Search Recipe as a
parameter. The e-speak system (Core and Client libraries) looks up the name in
local Repositories, known remote Repositories, and if necessary a global adver-
tising service to locate the appropriate service and create a binding for the Client
in its name space.

¢ Bindings in e-speak are objects that capture an algorithm. At their simplest,
bindings may capture a Search Recipe. These bindings may be resolved and
frozen to a specific Core name or names, resolved and cached, or simply
resolved on each access. This gives the e-speak system an active naming model.
Even when resolved, a Client reference may be bound to multiple Core names,
which may be arbitrated prior to service access. This may be done by using a
Client-specified arbitration service that picks one particular service from a list
of services represented in a binding.

Access Control

14

E-speak security is based on a Public Key Infrastructure (PKI). Specifically it uses
the Simple Public Key Infrastructure (SPKI) developed within the Internet Engi-
neering Task Force.

All entities in e-speak (Resources and Cores) are identified by public keys. To
authenticate an entity we verify it knows the private key corresponding to the given
public key. No entity should ever intentionally share its private key or give anybody
access to the private key.

Any entity can create a key-pair. Provided the private key is kept secret, the key-pair
is unique to that entity. However, having a key-pair gives you no power in the
system. It is necessary also to have certificates stating access rights issued to your
public key.

In e-speak access rights are stated in attribute certificates. So as well as the conven-
tional use of certificates to bind a name to a public key (e.g. X.509), we also use
certificates to bind access rights to public keys. This avoid having to have online
access control databases or access control lists.

Developer Release 3.01 June 2000

Architecture Overview Communication

To decide whether to honor an incoming request a Resource Handler must decide
if it has a certificate (or certificates) granting access rights for the request. If it finds
such a certificate, it must verify that the sender of the request knows the private key
corresponding to the public key in the certificate to which the access rights have
been given (formally this is the subject of the certificate). It does this by a crypto-
graphic protocol that is described in Chapter 7, “Communication”.

Finally before honoring the request, the Resource Handler must verify that it trusts
whoever issued the certificate. It does this by verifying that the certificate has been
signed by an entity that it trusts. Resource Handlers do not trust all certificate
issuer’s equally. A Resource Handler can choose whether to trust a given certificate
issuer and may restrict what access rights a given certificate issuer can issue.

Communication

E-speak uses a mailbox metaphor to describe the interactions between Clients and
the Core. This metaphor does not imply that any actual messaging is required, only
that the interfaces are defined in terms of mailboxes. Mailboxes consist of two
forms: an Outbox and a Core-managed Resource called an Inbox.

When a Client wants to use a Resource, it constructs a message consisting of a
message header and a payload and inserts the message in the Client’s Outbox. The
Outbox is connected to the Core, which processes the information in the message
header. If there is no error, the Core extracts Resource specific metadata and secu-
rity information from its Repository and inserts this in the message before forward-
ing the message to the designated Inbox. The Resource Handler reads the message
header and the inserted payload to determine how to deal with the request.

The Resource specific metadata and security information inserted by the Core into
a message can be used by the Resource Handler to determine how to process the
message.

As each message is routed the e-speak Core may generate events for logging and
monitoring.

Developer Release 3.01 June 2000 15

Communication

Architecture Overview

E-speak uses peer-to-peer communication. The Core has no concept of a reply
message. If the Resource Handler needs to return a value to the Client, it must spec-
ify a Resource listing an Inbox connected to the Client in the handler field of its
metadata. Hence, in replying to a message, the Resource Handler changes roles with
the Client.

Session Layer Security Protocol

16

All messages exchanged between e-speak Cores and between e-speak Cores and
Clients use the Session Layer Security protocol. This provides secure message pass-
ing between entities as well as unprotected message exchanges. Applications can
choose whether to use secure message passing or not.

Session Layer Security protocol is designed to support e-speak mediation. E-speak
mediation requires e-speak to modify certain parts of the message so that the
message can be routed between endpoints and means there are not a TCP connec-
tion between the endpoints. These requirements means that existing protocols such
as SSL (Secure Sockets Layer) or TLS (Transport Layer Security) are not suitable
for end to end security in e-speak.

Session Layer Security protocol allows multiple secure sessions to be multiplexed
over a single TCP connection. This means that two e-speak Cores can be connected
via a single TCP connection with many Clients and have many different secure
sessions to different e-speak Resources.

Session Layer Security protocol also supports tunnelling. During firewall traversal
we might want the firewall to control the client access rights to the internal LAN for
every packet. However, we might not want the firewall to see all the traffic in clear
(therefore, losing the end-to-end security property). With Session Layer Security
protocol we can nest a secure session inside another one, possibly with different
end points, allowing us to achieve both goals simultaneously.

Session Layer Security protocol is designed to support SPKI for access control. It
performs the negotiation of access rights that need to be proven represented by
multiple SPKI certificates.

Session Layer Security supports the following encoding types for messages.

Developer Release 3.01 June 2000

Architecture Overview Communication

e CLEAR_DATA: The message is not encrypted or protected against modifica-
tion.

e PROTECTED_DATA: The message is not encrypted but it is protected
against modification.

e SECURE_DATA: The message is encrypted and protected against modifica-
tion.

Session Layer Security has been designed to be independent of transport. However,
for interoperability between e-speak Cores and interoperability between e-speak
Cores and Clients, direct implementation over TCP is assumed. Other implementa-
tions are possible, including passing SLS messages over HTTP, or through shared
memory.

Core to Core Communication

Communication between e-speak Cores uses the Session Layer Security protocol.
Two core-managed Resources are used for remote communication between
e-speak cores: the Connection Manager (for connection management) and Remote
Resource Manager (for management of remote resource metadata).

The Connection Manager sets up the initial connection, manages it and closes it
down when it is no longer needed. It requires the host name (or IP address) and port
of the remote e-speak Core to set up a remote connection. The Connection Manager
has a well known name: es://<server>/CORE/ConnectionManager. So given the host
and port number (i.e. the <serve> part) a Connection Manager can negotiate with
the remote Connection Manager to establish a connection between the two e-speak
Cores. Once two Connection Managers have established a connection between
their respective cores exchange Resources with each other using their Remote
Resource Managers for Resource export and import. Resources.

The Remote Resource Manager is responsible for managing metadata: importing
and exporting resources from the remote e-speak core. The Remote Resource
Manager on any given e-speak core is: es://<server>/CORE/RemoteResourceMan-
ager. So given that two Connection Managers have established a connection
between two e-speak Cores. The Remote Resource Managers can communicate
with each other to exchange Resources.

Developer Release 3.01 June 2000 17

An End-to-End Example Architecture Overview

All resources can be exported by reference, in which case a copy of the metadata of
the Resource is sent to the remote core. In addition certain Core-managed
Resources can be exported by value, in which case a copy of the Resource is sent
to the remote e-speak Core.

Resource import and export serves a number of purposes in e-speak.

e Resource discovery is made more efficient for local Clients, because a copy
of the metadata is available locally.

¢ The lookup mechanism requires that a vocabulary is availably locally for
both Resource registration and lookup in that vocabulary. Using Resource
export, a vocabulary can be defined once and exported to wherever it is
needed.

e Name Frames can be defined containing a set of useful bindings (akin to an
environment for a Client). Using Resource export, these Name Frames can
be made available locally wherever a Client needs them. This can be particu-
larly useful for mobile clients.

An End-to-End Example

18

When the Client on Logical Machine A sends a message to its Core for a Resource
on Logical Machine B, the following steps take place (see Figure 3):

1 The Client constructs and Session Layer Security message setting the “to”
address to the Name of the Remote Resource(e.g.
es://<host_for_core_B>/resource/foo). The from address is set to the Name of
the Client (e.g. es: //<host_for core A>/client/bar). This message is
sent using TCP to Core A, where it is placed in the Client’s outbox.

2 A message handling thread in Core A, picks up the message and sends it to Core
A’s router. Core A’s router determines that the message is for Core B. It checks
that it has a connection with Core Band forwards the message to the relevant
inbox.

Developer Release 3.01 June 2000

Architecture Overview An End-to-End Example

3 A message handling thread on Core A picks the message up from the inbox and
transmits it to Core B (via a TCP connection) where it is placed in the outbox
for incoming messages from Core A.

4 The router on Core B resolves the Name for the “to address” in its root Name
Frame. The resolved name is a binding to the Resource metadata.

5 Core B’s router retrieves the Resource’s metadata. This tells it to which inbox
to send the message. It also extracts the Private Resource Specific data and
various security information that is used by the Resource Handler to process
the message.

6 A message handling thread picks the message up from the inbox and sends it to
the Resource Handler through a TCP connection.

7 Any communication between the Resource Handler and the physical Resource
is outside of the control of the e-speak Core.

. Resource
Client Handler Resource

A

v e-speak e-speak
core
| o8 | IE3
| |
Router B | | OB Router
Repository Repository
Logical Machine A Logical Machine B
OB = Outbox
IB = Inbox

Figure 3 Distributed e-speak

Developer Release 3.01 June 2000 19

The E-speak Service Interface (Informational) Architecture Overview

The processing for any return message is similar, except the roles of the respective
e-speak Cores are reversed (recall e-speak is asynchronous - the Core does not
distinguish between request and reply messages when routing them).

The E-speak Service Interface (Informational)

An e-speak Client is an application running in its own address space written using
an e-speak Service Interface (ESI). There is one ESI for each programming language
supported. An example ESI is shown in Chapter 1 of the E-speak Programmer’s
Guide. This provides a rich environment offering rapid, secure-service develop-
ment, deployment, and management in a heterogeneous networked environment.

E-speak Services

E-speak has Event, management and advertising services:

e The Event Service allows applications to collaborate by publishing Events and
subscribing to Event distributors. The e-speak Core uses the Event Service to
publish Events to the management service.

e The Management Services manage interconnecting sets of e-speak Cores,
managing the distribution of metadata, and e-services registered as e-speak
Resources.

¢ The Advertising Service is used for distributed Resource discovery in large-scale
environments.

Standards

The e-speak platform builds upon and uses existing industry standards wherever
possible. In some cases, integration with industry standards is under way or
planned. The specific areas of integration include:

20 Developer Release 3.01 June 2000

Architecture Overview Summary

e Database access—The persistent back-end for the Repository uses Java Data-
base Connectivity, thus making it possible to send Repository queries to almost
any relational database.

e Advertising services—The Advertising Service back-end is provided by Light-
weight Directory Access Protocol.

e Transport protocols: The ESIP messaging stack supports pluggable transports.
TCP/IP, IrDA, WAP, and HTTP are all candidate transports.

e Service description: E-speak supports multiple different Vocabularies, including
forthcoming support for XML and X.500 schemas.

e Component models: These models integrate the e-speak service abstraction
with standard component models such as (Enterprise) Java Beans, CORBA, and
COM+.

e Management protocols and standards: Support for SNMP, ARM, and DEN is
planned.

¢ Languages: An E-speak library exists for Java, but e-speak has been designed to
be language independent. Any language can be used to construct an Session
Layer Security message which is all that is required to use e-speak.

Summary

E-speak presents a uniform service abstraction, mediated access, and manipulation
of Resource metadata. This creates an open service model, allowing all kinds of
digital functionality to be reasoned about through a common set of APIs. New
service types and semantics can be dynamically modeled using the common service
representation of an e-speak Resource.

The naming system provides active bindings and personal name spaces. The
connection between Clients and Resources can be reasoned about and formed at
run-time (upon each access if necessary) based on arbitrary search characteristics.
Personalization of views and environments and hot-plug replacement of Resources
all become possible.

Developer Release 3.01 June 2000 21

Summary

Architecture Overview

22

The access control is based on a Public Key Infrastructure using attribute certifi-
cates for scalable distributed security. This is supported by the Session Layer Secu-
rity protocol which allows messages to be protected against tampering,
eavesdropping or replay. In addition the Session Layer Security protocol allows
unprotected messages to be sent, should security not be needed. Session Layer also
supports authenticated tunneling for efficient and secure firewall traversal.

The metadata system defines Vocabulary models as first-class entities in the system
that can be reasoned about in the same manner as all other services. Translation
and lookup through scalable advertising services are integrated into the model.
Service location and discovery can thus seamlessly deal with a situation where the
Client describes its requirement in an X.500 schema, while the service provider
describes its service using an XML DTD.

The distribution model supports a flexible set of access methods. Thus, download-
ing printer drivers and the remote access of a file are equally well supported by the
model. The separation of the infrastructure into interacting Logical Machines builds
on the autonomous machine model provided by the Web.

These are the defining features of an open services platform. The collection of the
capabilities discussed above creates an environment where services on the Internet
can interact in a secure, dynamic, manageable way. The next chapter of the Internet
(e-services) is being written, and e-speak helps us understand it.

Developer Release 3.01 June 2000

Resource Descriptions,
Resource Specifications
and Resource Types

E-speak makes a distinction between the data representing the state of a Resource
and the data describing the management of the Resource. The Core mediates access
to any registered Resource. However, e-speak is concerned only with the Resource
state of Core-managed Resources, not with the Resource state of non-Core-
managed Resources.

A Resource is described to e-speak by its metadata. The metadata is composed of a
Resource Specification and a Resource Description. The Resource Description
consists of information that provides the means of discovery for Clients. The
Resource Specification includes:

e AnInbox that can be connected to the Resource Handler responsible for manag-
ing the Resource

e A specification of the security restrictions
e A variety of control fields

A Client registers a Resource by sending a message to a Resource Factory contain-
ing a Resource Description and a Resource Specification.

Together, Resource Descriptions and Resource Specifications include all informa-
tion the Core needs to enforce the policies specified by the Client registering the
Resource. If the registration succeeds, the Core returns a name bound to this
Resource to the Inbox specified by the Callback Resource in the Outbox envelope.

ResourceSpecification

The ResourceSpecification class is defined below.

public class ResourceSpecification

Developer Release 3.01 June 2000 23

ResourceSpecification Resource Descriptions, Resource Specifications and Resource Types

boolean byValue;

ESName contract;

FilterSpec filter;

ADR metadataMask;

ADR resourceMask;

ADR ownerPublicKey;

ADR ServicelId;

ESMap privateRSD; //Not exported if export by reference
ESMap publicRSD;

ESName owner; //Not exported

ESName resourceHandler; //Not exported
int eventControl;

ESUID uid;

String URL;

}

The type ESMap is serialized as ESArray (see Chapter 7, “Communication” for the
e-speak serialization format for ESArray). The e-speak convention for ESArray is
that it consists of a sequence of pairs. Thus, the first and second element are a pair,
the third and fourth element are a pair, and so on.

The current implementation of ResourceSpecification uses the type
ResourceReference where ESName is given. ResourceReference is the
abstract base class for ESName. ESName and not ResourceReference is passed
by the e-speak Application Binary Interface (ABI).

The owner and resourceHandler fields are not included when the ResourceSpecifi-
cation is serialized for export (see Chapter 7, “Communication”) and the
privateRSD field is only included in an export serialization if the export is export by
value (Chapter 7, “Communication”).

boolean byValue;

24

If the byValue flag is True, the internal state of this Resource is included with the
Resource Specification and Resource Description sent to another Logical Machine.
The Core provides the value for Core-managed Resources. Currently, no mecha-
nism is defined for providing the value of non-Core-managed Resources.

Developer Release 3.01 June 2000

Resource Descriptions, Resource Specifications and Resource Types ResourceSpecification

ESName contract;

The contract field is the name of the Contract Resource associated with the
Resource. A Contract embodies the contract between the user and the provider of
a Resource. It denotes such things as the Application Programmer Interface (API)
passed through the payload of a message. Every Resource must be registered in
some Contract.

FilterSpec filter;

class FilterSpec{
ESSet Vocabularies;
String constraint;

}

The filter field consists of a set of vocabularies and a constraint. This is intended for
use by a service provider to register a constraint that can be evaluated to determine
if the Resource should be returned in response to an evaluation of a SearchRecipe
in alookup request in a NameFrame (see “Name Frame” on page 38). The constraint
uses the UserProfile associated with the client. In this way a Resource can only be
discovered by certain Clients that satisfy the constraint.

ADR metadataMask;

The metadataMask controls which operations manipulating the Resource’s meta-
data has security disabled. The interface name in the metadataMask is always the
ResourceManipulationInterface. The format of the Resource Masks is specified in
Chapter 6, “Access Control”.

ADR resourceMask;

The resourceMask determines which operations supported by the Resource has
security disabled. The format of the Resource Masks is specified in Chapter 6,

“Access Control”.

Developer Release 3.01 June 2000 25

ResourceSpecification Resource Descriptions, Resource Specifications and Resource Types

ADR ownerPublicKey;

This field contains the owner public key. The format is specified in “SPKI BNF
Formats” on page 106.

ADR Serviceld;

This field contains the serviceld of the Resource. Servicelds are defined in “Service
Identity” on page 87.

ESMap publicRSD;

The first element in each pair of ESMap is a string used to tag the second element.
The second element is of type byte []. The PublicRSD field (public Resource-
specific data) can be of interest to users of the Resource. Therefore, the Client
registering the Resource can include information in this field. It is an error if either
the tag or byte array is null or if the tags are not unique.

ESMap privateRSD;

The first element in each pair of ESMap is a st ring used to tag the second element.
The second element is of type byte []1. The privateRSD field (private Resource-
specific data) is used by the Resource Handler when a Client sends a message to
this Resource. Therefore, the Client registering the Resource includes information
in this field. This data is delivered to the Resource Handler. The intent is that only
the Resource Handler have access to this data, but permission can be granted to any
task using the e-speak security mechanisms. It is an error if either the tag or byte
array is null or if the tags are not unique. This field is most often used to carry the
Resource Handler's designation for the Resource.

26 Developer Release 3.01 June 2000

Resource Descriptions, Resource Specifications and Resource Types ResourceSpecification

ESName owner;

The owner field is the ESName of the active Protection Domain of the Client that
registered the Resource. This field can be changed to another Protection Domain by
any Client that unlocks the proper permission. It is an error if the ESName is not
bound to a Protection Domain.

ESName ResourceHandler;

Messages sent to this Resource are delivered to this Inbox. This field is NULL for
Core-managed Resources. The Client that is connected to this Inbox receives
messages for this Resource. The format of these messages is defined in “Messages
from the Resource Handler to the Client” on page 151. This field can be NULL only
if the Resource being registered is Core-managed. It is an error if the ESName spec-
ified by the Client is not bound to an Inbox.

int eventControl;

ESUID

If eventControl is non-zero, then whenever the Resource metadata (the
Resource Description or the Resource Specification) is changed, an Event is
published to the Core’s Event distributor.

public class ESUID
{
byte[] UniquelId;

}

An ESUID contains a byte array that is up to 64 bytes long. An ESUID is guaranteed
by probabilistic means. In the current implementation is consists of a Core identity
component and Resource identity component as well as an indication if the associ-
ated Resource is local or remote (imported). The Core identity is unique (to a high
probability) and is 20 bytes long. The Resource identity is unique within a given
Core and is 12 bytes long.

Developer Release 3.01 June 2000 27

ResourceDescription Resource Descriptions, Resource Specifications and Resource Types

String URL;

This field is the ESName (represented as a string) by which the registering entity
refers to the Resource. It is an ESName (URL) which others can use to access the
Resource.

ResourceDescription

ResourceDescription contains an array of Vocabularies and the attributes
associated with each. Clients can specify a search request and ask the Lookup
Service to find Resources with attributes that match the lookup request. An
attribute specification includes a Vocabulary in which to interpret the attributes
that describe the Resource.

ResourceDescriptionis an array of AttributeSet as shown below.

public class ResourceDescription

{

AttributeSet[] attribSets;

}

Each element in the ESArray isan AttributeSet.

An AttributeSet consists of the ESName of a Vocabulary Resource and an
ESMap of name-attribute pairs.

The Vocabulary is one in which the attributes have meaning. See Chapter 5, “Vocab-
ularies”.

The first element of an ESMap pair is a string, the second elementisan Attribute.
The string is the name of the Attribute. It is an error if ESName is not bound to a
Vocabulary or if Attributes or their values are not valid in the named Vocabu-

lary.

28 Developer Release 3.01 June 2000

Resource Descriptions, Resource Specifications and Resource Types

Resource type

public class AttributeSet

ESName attrVocab;
ESMap attributes;
public class Attribute

String name;
Value value;
Boolean essential;

The name field is the name associated with At tribute. The Value type is defined
in “Vocabulary” on page 55. It can contain a single value or a set of values (sets of

values are not supported in the current release).

If essential is true, then this attribute must be included in any search request to

discover a Resource with this attribute in its Resource Description.

Resource type

The e-speak Core associates a type with every Resource registered. The following

defines the currently recognised Resource types.

class resourceType{
static int INBOX _CODE = O0;
static int META_ RESOURCE_CODE = 1;
static int PROTECTION DOMAIN CODE = 2;
static int RESOURCE_FACTORY CODE = 3;
static int CONTRACT CODE = 100;

static int CORE_DISTRIBUTOR CODE = 110;
static int IMPORTER_EXPORTER_CODE = 120;

static int MAPPING OBJECT CODE = 140;
static int NAME FRAME CODE = 150;
static int REPOSITORY VIEW CODE = 160;

Developer Release 3.01 June 2000

29

Resource type

Resource Descriptions, Resource Specifications and Resource Types

30

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

SECURE_BOOT CODE = 170;

SYSTEM MONITOR CODE = 180;
VOCABULARY_CODE = 190;
CORE_MANAGEMENT SERVICE CODE = 200;
DEFAULT VOCABULARY CODE = 210;
DEFAULT_CONTRACT CODE = 220;

FINDER SERVICE CODE = 230;
CONNECTION MANAGER CODE = 240;
REMOTE_RESOURCE_MANAGER_CODE = 250;
EXTERNAL CODE = 1000;
EXTERNAL_RESOURCE_CONTRACT CODE = 1001;
INBOX CODE = O0;

META RESOURCE CODE = 1;
PROTECTION_DOMAIN CODE = 2;
RESOURCE_FACTORY_CODE = 3;
CONTRACT_CODE = 100;
CORE_DISTRIBUTOR_CODE = 110;
IMPORTER_EXPORTER_CODE = 120;
MAPPING OBJECT_CODE = 140;
NAME_FRAME CODE = 150;

REPOSITORY VIEW_CODE = 160;
SECURE_BOOT _CODE = 170;
SYSTEM_MONITOR_CODE = 180;
VOCABULARY CODE = 190;
CORE_MANAGEMENT SERVICE_CODE = 200;
DEFAULT VOCABULARY CODE = 210;
DEFAULT CONTRACT CODE = 220;
FINDER_SERVICE_CODE = 230;
CONNECTION MANAGER CODE = 240;
REMOTE_RESOURCE_MANAGER_CODE = 250;
ACCOUNT_MANAGER_CODE = 260;
USER_ACCOUNT CODE = 270;
EXTERNAL_CODE = 1000;
EXTERNAL_RESOURCE_CONTRACT CODE = 1001;
DEFAULT ACCOUNT_VOCABULARY CODE = 1002;

Developer Release 3.01 June 2000

Core-Managed Resources

Clients interact with the e-speak Core by sending messages to Core-managed
Resources. For example, the Resource Factory is used to register new Resource
metadata. This section specifies the methods of each Core-managed Resource. It
also describes the internal state that is passed if the Core-managed Resource is
exported by value to another Logical Machine.

Conventions

All the methods described in this Chapter throw ESInvocationException (see
Chapter 8, “Exceptions”), the base class for exceptions thrown by the e-speak Core
to the Client during message processing. The e-speak Core throws the specific
exception, allowing the programmer to deal with individual exceptions where
appropriate and throw others up the call chain. Some methods also throw ESSer -
viceException. The same rules apply. Programmers can catch or declare the
parent class or deal with the specific exceptions thrown. Any of these method can
throw any of the ESRunt imeExceptions, which need not be declared by the
programmer.

For example, a programmer not wishing to deal with naming problems need only
include throws ESInvocationException in the method declaration. That

same programmer can catch a specific exception, say QuotaExhaustedExcep-
tion, and still deal with all other exceptions with this same throws declaration.

Each class definition starts with a list of static declarations. Each represents the
code in the payload of the request that tells the Core which method to invoke.

Developer Release 3.01 June 2000 31

Connection Manager Core-Managed Resources

Connection Manager

The connection manager is described in (xref to communications chapter).

Core Management Resource

The core management Resource is not supported in the current release.

interface CoreManagementInterface extends ManagedServiceIntf
int ping(int pingValue)
throws ESInvocationException;
ESName [] getClientConnections ()
throws ESInvocationException;
boolean stopServingOutbox (ESName ProtectionDomain)
throws ESInvocationException;
boolean stopServingInbox (ESName Inbox)
throws ESInvocationException;
boolean startServingOutbox (ESName ProtectionDomain)
throws ESInvocationException;
boolean startServingInbox (ESName Inbox)
throws ESInvocationException;
boolean removeProtectionDomain (ESName ProtectionDomain)
throws ESInvocationException;
boolean denyNewClientSessions ()
throws ESInvocationException;
boolean acceptNewClientSessions ()
throws ESInvocationException;
long getTotalMemory ()
throws ESInvocationException;
long getFreeMemory ()
throws ESInvocationException;
void startJVMGC ()

throws ESInvocationException;

32 Developer Release 3.01 June 2000

Core-Managed Resources Core Management Resource

void stopJdVMGC ()

throws ESInvocationException;
void setJVMGCInterval (int millis)

throws ESInvocationException;
int getJVMGCInterval ()

throws ESInvocationException;
boolean isJVMGCRunning ()

throws ESInvocationException;
void startScavenger ()

throws ESInvocationException;
void stopScavenger ()

throws ESInvocationException;
void setStatsNum(int num)

throws ESInvocationException;
ESArray getScavengerStats()

throws ESInvocationException;

}

The Core Management Resource provides a way for a client to manage its own and
other cores. The Core Management Resource is also a managed Core-managed
resource: it implements the interface ManagedServicelntf described in (xref to
managment chapter).

The method ping checks that the core is up and returns the value specified

The method getClientConnections returns a list of protection domains that are
currently being used.

The methods stopServingOutbox and startServingOutbox tell the e-speak core to
stop or start serving the outbox associated with the protection domain specified.

The methods stopServingInbox and startServingInbox tell the e-speak Core to stop
or start serving messages to the Inbox specified.

The method removeProtectionDomain removes the Protection Domain specified.
Any client is using the Protection Domain is expected to be disconnected and any
Resources contained in the Protection Domain are deregistered.

Developer Release 3.01 June 2000 33

Core Management Resource Core-Managed Resources

34

The methods denyNewClientSessions and acceptNewClientSessions tells the e-
speak core to stop or start accepting new connections from clients.

JVM management methods

The following methods are specific to e-speak Cores implemented in Java. An e-
speak Core cannot implement these methods in which case it returns a Method-
NotImplemented exception.

The methods getFreeMemory and getTotalMemory get the free memory or total
memory in the e-speak Core’s Java Virtual Machine (JVM).

The methods startJVMGC() and stopJVMGC() start and stop the e-speak Core’s JVM
garbage collector.

The methods setJVMGCInterval and getJVMGClInterval() set and get in millisec-
onds the interval between runs of the JVM garbage collector.

The method isJVMGCRunning() returns true if the JVM garbage collector is
running.

Scavenger management methods

The current implementation of the e-speak Core has a scavenger that looks for
resources in the repository that are no longer valid and removes them. Examples of
resource that may no longer be valid include the following.

® Resources registered in a Protection Domain that has been removed.

¢ Resources imported from another e-speak Core after the connection to that
Core is closed.

An e-speak Core cannot implement these methods, in which case it returns a Meth-
odNotImplemented exception.

The methods startScavenger and stopScavenger enable and disable the scavenger
from running.

The scavenger also records statistics for each run as follows.

class ScavengerStats

{

Developer Release 3.01 June 2000

Core-Managed Resources Remote Resource Manager

Int runNo;

Long timeElapsed;

Int numInspected;

Int numCollected;

Int totalNumInspected;
Int totalNumCollected;
String phase;

1
The runNo field indicates the current run (the first run is run number 1).
The timeElapsed field is the time taken for the run in milliseconds.

The field numInspected indicates the total number of Resources inspected in this
run.

The field numCollected indicates the total number of Resources removed in this
run.

The fields totalNumlInspected and totalNumCollected are the running totals since
the e-speak Core was started.

The phase field contains the string “Mark” or “Sweep”, this denotes whether the run
is a “mark” or “sweep” run. Resources are only removed from the repository (and
the numCollected count incremented) on a sweep run. There is no notion of “mark”
or “sweep” phases on Resources in the cache.

The scavenger keeps statistics for a certain number of runs. This is set by method
setStatsNum in the CoreManagementInterface. The method getScavengerStats
returns an ESArray of containing an instances of ScavengerStats in each element.
(The current implementation returns an instance of the Java Vector class.)

Remote Resource Manager

The Remote Resource Manager is described in (xref to communications chapter).

Developer Release 3.01 June 2000 35

Mailbox

Core-Managed Resources

Mailbox

36

E-speak has both Outboxes and Inboxes, but only Inboxes are exposed to Clients
as Core-managed Resources. An Inbox is where a Client gets messages from the
Core. A Client can have more than one Inbox, but each Inbox must be explicitly
connected by the Client before it can be used to receive messages.

An Inbox cannot be exported.
The Inbox class implements the MailboxInterface defined below:

interface MailboxInterface

{

boolean isConnected()

throws ESInvocationException;

void connect (int slot)

throws ESInvocationException;

void disconnect ()
throws ESInvocationException;

void reconnect (int slot)

throws ESInvocationException;

}

An Inbox is a Core-managed Resource that provides a unidirectional communica-

tion channel from the e-speak Core to a Client. When a Client registers a Resource
with the e-speak Core, it must assign an Inbox Resource as the “Resource Handler”
for the Resource. Any service requests directed to the Resource are delivered to the
Client on the I/O channel associated with the Inbox that was named the Resource

Handler.

An Inbox can be in one of the two states: connected or disconnected. Upon
creation, the Inbox starts in the connected state. The creator of the Inbox becomes
the owner of the Inbox, and the Inbox is set up to use the I/O channel information
passed with the request to create the Inbox. The Inbox remains in the connected
state until the Client requests an explicit disconnect, or until the I/O channel asso-

Developer Release 3.01 June 2000

Core-Managed Resources Mailbox

ciated with the Inbox is closed, at which time it is put in the disconnected state. If
a Client sends a message to a Resource whose handler is an Inbox in the discon-
nected state, an exception is thrown by the e-speak Core.

You can argue that Inboxes are unnecessary and that the e-speak Core could store
the I/O channel information in the Resource Handler field directly. There are two
main reasons for having the Inbox store the I/O channel information and not the
Resource—one has to do with Client restart, and the other with delegation. These
are explained in the following subsections

Inbox and Client Restart

In the e-speak environment, a Client can recover from some types of failures, one
of which is the failure of a Client process. In case a Client process dies and restarts,
it can reconnect to the Core, discover and activate its previous Protection Domain,
and discover and connect to the Inboxes owned by it. That way it can continue to
serve the Resources that were registered by it during its previous incarnation.

Connecting to an Inbox involves updating the I/O channel information maintained
by the Inbox. Keeping the I/O channel information in the Inbox helps simplify the
Client’s job at restart, because it has to discover and connect to only a few of them.
If, instead, the I/0O channel information is stored in all the Resources registered by
the Client, it somehow needs to be updated all over the place upon reconnection by
the Client.

Inbox and Delegation of Resource Handling

Under certain circumstances, a Client may want to delegate the handling of one or
more Resources served by it to another Client. Inboxes make the delegation easy.
Let’s say Client A has registered 100 Resources, and named Inbox IB as its handler.
After a while, Client A wants Client B to take over the handling of all these
Resources. This can be achieved as follows:

1 Client A passes the name of the Inbox IB to the other Client, along with a certif-
icate to perform a reconnect operation on the Inbox.

Developer Release 3.01 June 2000 37

Name Frame

Core-Managed Resources

2 Client B requests the e-speak Core to reconnect it to the Inbox IB. The Core
replaces Client A’s I/O channel information with Client B’s I/O channel informa-
tion.

3 Any further service requests directed to any of the 100 Resources are diverted
to the I/O channel specified by Client B. The process of reconnection is
performed atomically; though logically the reconnect operation involves a
disconnect operation on behalf of Client A and connect operation by Client B,
no one really sees the transient disconnected state.

Name Frame

ESNames

Bindings

38

A Name Frame manages the bindings of ESNames to Resources. A Client’s default
Name Frame is part of its Protection Domain. This section first describes the struc-
ture of an ESName and a binding and then describes Name Frames and data struc-
tures used by Name Frames.

The only way a Client can refer to a Resource when communicating with the Core
is to specify an ESName for the Resource. ESNames are defined in fully in (xref to
ESName section of communications chapter).

In e-speak, a name is bound to a Mapping Object, which consists of an array of
accessors. An accessor can be one of two types, as represented in Table 2.

Table 2 Mapping Object accessor types and descriptions

Accessor Type Descriptions

Developer Release 3.01 June 2000

Core-Managed Resources Name Frame

Table 2 Mapping Object accessor types and descriptions

Search request A set of attributes, their corresponding values, and a
Vocabulary to use in interpreting them

Explicit binding Binding to a single instance of a Resource

Thus, a name can be bound to:

e Zero or more Resources

e Zero or more Search Recipes

e Some combination of explicit bindings and search request bindings

The term simple binding is applied to a name bound to a Mapping Object that has
a single explicit binding. The term complex binding is used otherwise.

Search Predicates, Search Recipes, and Name Search Policies

When a Client wants to find a Resource in e-speak, its query is translated to a Search
Recipe. A Search Recipe specifies three search criteria and a view on the set of
Resources registered in the Core. Each search criterion is expressed by a Search
Predicate. The first criterion is used to reduce the set of Resources to a subset
matching the Client’s requirements. The second criterion expresses the Client’s
preferences for Resources in this subset. It is used to reduce the subset to return a
singleton. Finally, the third criterion is used for arbitration when the subset cannot
be reduced to one element.

A Client can use the same name for Resources of different types (file name, user
name, and machine name, all called nancy, for example). Because the Core doesn't
know the intent of the Client when doing the name resolution, it might match an
ESName to the user nancy when the Client is trying to find the file nancy. There-
fore, the Client should provide the Core with additional information to define the
query. This information is defined in a Name Search Policy.

The class Search Predicate is described below:

class SearchPredicate

{

Developer Release 3.01 June 2000 39

Name Frame Core-Managed Resources

AttributePredicate[] attrPredicates;
}
class AttributePredicate
{

ESName Vocabulary;
byte[] predicate;

}
SearchPredicateis an array of AttributePredicates. AttributePredi-
cate consists of the name of a Vocabulary Resource and a predicate that is a
constraint expression contained in a byte array. The constraint expression must be
valid in the given Vocabulary.
Class SearchRecipe is defined below:
class SearchRecipe
{

SearchPredicate constraint;

SearchPredicate preference;

SearchPredicate arbitrationPolicy;

ESName repositoryView;
}
The constraint field specifies the first criterion.
The preference field specifies the second criterion. If the evaluation fails, the
resulting set as computed previously is simply returned. Otherwise, a new set is
returned.
If the result of the evaluation of preference has more than one Resource, and if
a Client needs to restrict the set of Resources returned, it can specify an arbitration
policy using a list of constraints defined in an Arbitration Vocabulary. Complex poli-
cies require the use of external arbitrators, and the tasks are responsible for imple-
menting the requester’s Arbitration Policy. These tasks can perform complex
actions outside of the Core.
ArbitrationPolicy specifies the third criterion and defines what action is to be
taken if there are multiple matches for a particular lookup.

40 Developer Release 3.01 June 2000

Core-Managed Resources Name Frame

The Repository View is a Core-managed Resource that constrains which set of
Resources are available to SearchRecipe. This is a subset of all the Resources
registered with the Core.

Class NameSearchPolicy is defined below:

class NameSearchPolicy

{

static final int NSP_ANY = 0;
static final int NSP_SIMPLE = 1;
static final int NSP_EXPLICIT = 2;
static final int NSP_PARTIAL = 3;

ESName contract;

int bindingType;

boolean matchSense;

}

NSP_ANY means match any binding types. NSP_ SIMPLE means match simple bind-
ing types. NSP_EXPLICIT means match explicit binding types. NSP_ PARTIAL

means match partial binding types (this is not implemented in the current release,
and causes undefined behavior if used).

If matchSense is false, the meaning of the Name Search Policy is negated, so

1listBindings returns the names of bindings that do not satisfy the Name Search
Policy.

Name Frame Methods

Some NameFrame methods throw ESServiceException. Chapter 8, “Excep-
tions” lists the exception hierarchy for NameFrame methods.
The NameFrame class is defined below:

class NameFrame

{

ESMap bindings;

void lookup (String baseName,
SearchPredicate arbPolicy,

Developer Release 3.01 June 2000 41

Name Frame Core-Managed Resources

ESName targetFrameHandle,
String toBaseName)
throws LookupFailedException, InvalidNameException,

StaleEntryAccessException;

boolean isBound (String baseName)
throws ESInvocationException;

void bind(String baseName, SearchRecipe recipe)
throws NameCollisionException, QuotaExhaustedException,

ESInvocationException, ESServiceException;

void rebind (String baseName, SearchRecipe recipe)
throws ESInvocationException, NameCollisionException;

void unbind (String name)
throws ESInvocationException, InvalidNameException

QuotaExhaustedException;

void rename (String oldName, String newName)
throws ESInvocationException, ESServiceException

InvalidNameException, NameCollisionException;

void copy(String toName, ESName from)
throws ESInvocationException, ESServiceException
NameCollisionException, InvalidNameException,

StaleEntryAccessException, QuotaExhaustedException;

void add(String name, ESName from)
throws ESInvocationException, InvalidNameException,

StaleEntryAccessException;
void subtract (String name, ESName from)

throws ESInvocationException InvalidNameException,

StaleEntryAccessException;

42 Developer Release 3.01 June 2000

Core-Managed Resources Name Frame

String[] listNames (NameSearchPolicy nsp)
throws ESInvocationException, NameNotFoundException;

String[] listBindings (String aBaseName,
NameSearchPolicy nsp,

ESName targetFrame

throws ESInvocationExceptionInvalidNameException,

StaleEntryAccessException, QuotaExhaustedException;

}

A Name Frame can be exported by value or by reference. In the case of export by
value, the Name Frame state is the bindings ESMap. The serialization for ESMap is
defined by the e-speak serialization format. ESMap is an ESArray in which the
convention is that consecutive elements are treated as pairs. In the case of bindings,
the first element of a pair is the string component of ESName; the second is a
MappingObject to which ESName is bound. A MappingObject consists of a set of
SearchRecipes and explicit bindings to resources. The explicit bindings are internal
pointers (repository handles) to the resource metadata in the e-speak Core’s repos-
itory. A MappingObject is serialized as an ESSet containing the SearchRecipes in
the MappingObject (explicit bindings are not contained in the serialized form trans-
mitted in the case of pass by value).

All methods that create a new entry in a Name Frame return a Name Collision
Exception if the name already appears in the target Name Frame. An explicit rebind
or unbind is required before the name can be reused.

The 1ookup method is used to convert search requests to Resources’ bindings. The
name within this NameFrame of the binding to a SearchRecipe to be looked up
is baseName. The policy used for arbitration is arbPolicy, in case a lookup
results in a binding to multiple Resources. The name of the target NameFrame
where the resultant name binding is made is targetFrame. The name to bind in
the target frame with the the results of the lookup is toBaseName. A new ESName
is returned containing all the bindings obtained as a result of resolution.

The isBound method checks to see if the specified name (baseName) is bound in
this Name Frame. It returns true if the name is bound.

Developer Release 3.01 June 2000 43

Finder resource

Core-Managed Resources

The method bind binds SearchRecipe to a specified name (baseName) in this
Name Frame.

The method rebind changes the binding of the specified name (baseName) in this
Name Frame to the new SearchRecipe.

The method unbind removes the binding from NameFrame.
The method rename renames the binding associated with oldname to newname.
The method copy copies the binding of from to toName.

The method add adds the binding of £rom to the binding of name to give a new
binding for name.

The method subtract subtracts the bindings of from from the bindings associ-
ated with name to give a new binding for name.

The method 1istNames returns an array of strings corresponding to all bindings
that match NameSearchPolicy nsp. The Name Search Policy allows the Client to
specify the type of binding and/or Contract in which the Resource is registered.

The method 1istBindings lists all the bindings of the argument aBaseName that
match NameSearchPolicy nsp. These bindings are placed in the NameFrame
named by targetFrame. The return value is an array of String, each element
being the name of a new binding in targetFrame.

Finder resource

44

The finder resource is for finding services provided by the core.

interface FinderInterface {
FinderResults find(SearchRecipe recipe, int maxToFind)
throws ESInvocationException, LookupFailedException;
FinderResults find(FinderContext context)

throws ESInvocationException, LookupFailedException;

Developer Release 3.01 June 2000

Core-Managed Resources Finder resource

The method find(SearchRecipe recipe, int maxToFind) finds services based on the
SearchRecipe; maxToFind is the maximum number of results to return. If
maxToFind=0 then the request is to know if there are any search results.(But, no
need to know the actual results). If maxToFind=-1 the method returns all results
found.

class FinderResults({
ESname [] esnames
resourceType[] resType

FinderContext context;

!
The esnames field is the set of ESnames that match the search recipe.
The field esnames is set to null if there are no search results.

In the case when maxToFind=0 if the search is successful, esnames has a single
element and esnames[0] is null.

If there are no further elements to find (i.e. all matching services have been
returned) context is set to null.

A LookupFailedException thrown when there are errors in the e-speak Core while
performing the search. The class resourceType is defined in (xref to resource
description and specification chapter).

The class FinderContext contains an opaque byte array used as the parameter to
find(FinderContext) to get the next maxToFind set of matching results, if the
search results in more than maxToFind elements.

class FinderContext{
byte[] queryContext;

}

The method find(FinderContext context) is used to get more results when
find(SearchRecipe recipe, int maxToFind) indicates there are more than
maxToFind matching services (by returning a non null FinderContext object in
FinderResults).

Developer Release 3.01 June 2000 45

Protection Domain Core-Managed Resources

Protection Domain

46

A Client’s Protection Domain is analogous to a user’s home directory in an operat-
ing system. It contains a root Name Frame in which the Client can place bindings.

Each Protection Domain is associated with a quota. The goal of this is to track and
manage use of space in the Repository. To support this, each Protection Domain has
three fields associated with it: used, soft limit, and hard limit. A Protection Domain
is guaranteed to be able to allocate Resources up to its soft limit. A Protection
Domain can allocate Resources up to its hard limit, depending on the memory usage
of the Core. The default hard limit is 10,000,000 bytes, and the default soft limit is
30,000 bytes.

A Protection Domain cannot be exported.
The ProtectionDomain class is defined below:

interface ProtectionDomainInterface

{

ESName [] switchPD ()
throws ESInvocationException, PermissionDeniedException,
NameNotFoundException StaleEntryAccessException,

QuotaExhaustedException;
Object [] getQuotalInfo()
throws ESInvocationException PermissionDeniedException,
NameNotFoundException;
Object [] setQuota(long softQuota, long hardQuota)
throws ESInvocationException, PermissionDeniedException,

NameNotFoundException;

ESName newProtectionDomain (String name,

boolean persistent

throws PermissionDeniedException;

Developer Release 3.01 June 2000

Core-Managed Resources Repository View

The method switchPD switches the Client’s active Protection Domain to this
Protection Domain (i.e., the Protection Domain receiving the method invocation).
It returns an array of ESName. There are two elements in the returned array. The
first element is the ESName for the old Protection Domain. The second element is
the ESName for the new Protection Domain.

The Object [] array returned by getQuotaInfoand setQuota contains atleast
three values. The first is Long containing the total number of bytes currently
consumed in the Core by this Protection Domain. The second is Long containing
the soft limit in bytes. The third is Long containing the hard limit in bytes for this
Protection Domain.

The method newProtectionDomain, creates a new Protection Domain. The name
parameter is the name given when registering the new Protection Domain in the
default vocabulary. The parameter persistent is set to true, if the new Protection
Domain is to be made persistent. The return value is the ESName of the new Protec-
tion Domain.

The following initial names are defined in the default Name Frame of a new Protec-
tion Domain:

"CurrentPD" is bound to the Protection Domain itself

“Core” is bound to the core name frame (es://host/core) (see xref to comms chapter
section on ESNames).

Repository View
A Repository View contains references to a set of Resources.

When a Client does a lookup in a Repository View, the Core attempts to match only
those Resources included in the view. If no match is found, no accessor is added to
the Mapping Object.

A Repository View can be exported by reference or by value.
The RepositoryView class is defined below:

class RepositoryView

Developer Release 3.01 June 2000 47

Repository View Core-Managed Resources

ESName [] Resources;

boolean add (ESName res)
throws ESInvocationException PermissionDeniedException,

StaleEntryAccessException, NameNotFoundException,

QuotaExhaustedException;

boolean remove (ESName res)
throws ESInvocationException PermissionDeniedException,

StaleEntryAccessException, NameNotFoundException,

QuotaExhaustedException;

boolean contains (ESName res)
throws ESInvocationException PermissionDeniedException,
StaleEntryAccessException, NameNotFoundException;

boolean clear () ;
throws ESInvocationException QuotaExhaustedException

PermissionDeniedException, NameNotFoundException;

boolean addExternallLookupHandler (ESName res) ;
throws ESInvocationException PermissionDeniedException,

StaleEntryAccessException, NameNotFoundException;

boolean removeExternalLookupHandler ()
throws ESInvocationException StaleEntryAccessException

PermissionDeniedException, NameNotFoundException;

}
An externallLookupHandler is not used in this release. Any attempt to use
addExternalLookupHandler or removeExternalLookupHandler causes

undefined behavior.

48 Developer Release 3.01 June 2000

Core-Managed Resources Resource Contract

In general, all methods return true if they are successful, false if they fail. Clients can
add Resources to and remove Resources from a Repository View. Attempts to add
a Resource already in a Repository View fails, as does attempting to remove a non-
existing Resource. The method clear removes all Resources from the Repository
View. The method contains returns true if the Resource, res, is contained in the
Repository View.

Resource Contract

A Resource Contract is an agreement between a Client of a Resource and the
Resource Handler. This agreement includes the format of the payload in the
OutboxMessageAtom and InboxMessageAtoms of message. The agreement
also includes the secondary Resources required by the Resource, the Permissions
that are needed, and so on. Hence, a Resource Contract denotes the Application
Programming Interface (API) that is understood by the Resource Handler. The
current release provides no means for enforcing this agreement; it is a convention.

Two Resource Contracts are available at system start-up in addition to those for
Core-managed Resources. The default Resource Contract allows any Client to regis-
ter a Resource. It is useful for Clients wishing to define Resources that don’t specify
a particular interface, such as Callback Resources. The second Resource Contract
is for creating new Resource Contracts.

A Resource Contract contains a type string. This denotes the Resource type that is
registered in this Resource Contract. A Resource Contract also contains a set of
Vocabularies that can be used to describe and discover Resources of this type.

A Contract can be exported by value or by reference.
The ResourceContract class is defined below:

class ResourceContract

{

ESName [] Vocabularies;

string type;

void getVocabularies (ESName targetFrame) ;

Developer Release 3.01 June 2000 49

Resource Factory

Core-Managed Resources

throws ESInvocationException PermissionDeniedException,

StaleEntryAccessException, NameNotFoundException;

}

The method getVocabularies populates the Name Frame, targetFrame, with
the names of the Vocabularies supported by the Resource Contract. The Name
Frame targetFrame is cleared before the operation.

Resource Factory

50

A Client wishing to register a Resource with an e-speak Core uses the Resource
Factory. This is also used for creating Core-managed Resources.

The ResourceFactoryInterface class is defined below:

class ResourceFactoryInterface

{

void registerResource (
ResourceDescription descr,
ResourceSpecification spec,
Boolean persistence,
Object param,
ESName targetFrame,

String toBaseName

throws ESInvocationException PermissionDeniedException,
StaleEntryAccessException, NameNotFoundException,

NameCollisionException;

The registerResource method takes ResourceDescription and
ResourceSpecification as parameters. If persistence is true, the Core
preserves the metadata after the Client’s connection is closed and, in the case of
Core-managed Resources only, also the state; otherwise metadata and state are not
preserved after the Client’s connection is closed. The Object parameter is
Resource-specific information used for creating Core-managed Resources. Object

Developer Release 3.01 June 2000

Core-Managed Resources Resource Manipulation Resource

can be of any type supported in the e-speak serialization format. The targetFrame
parameter is the ESName of a Name Frame in which the name for the new Resource
is put. The toBaseName parameter is the name of the new Resource in the Name
Frame.

(TODO: Need to explain what the Object parameter contains for each type
of Resource)

Resource Manipulation Resource

Every instance of e-speak provides a MetaResource that provides access to meta-
data (Resource Descriptions and Resource Specifications). Once a Resource has
been registered using a Resource Factory, the only way to access its metadata is
through a message sent to the MetaResource.

MetaResources are not exported.

The Resource Manipulation Interface is defined below. All methods can throw
PermissionDeniedException, StaleEntryAccessException and NameNotFoundException

interface ResourceManipulationInterface

{

void unregister (ESName resource)
throws ESInvocationException;

void setResourceOwner (ESName resource)
throws ESInvocationException;

ESName getResourceOwner (ESName resource)
throw ESInvocationException;

ESName getResourceProxy (ESName resource)
throws ESInvocationException;

void setResourceProxy (ESName resource,
ESName resourceHandler)

Developer Release 3.01 June 2000 51

Resource Manipulation Resource

Core-Managed Resources

52

throws ESInvocationException;

ESName getResourceContract (ESName resource)
throws ESInvocationException;

ADR getMetadataMask (ESName target)
throws ESInvocationException;

void setMetadataMask (ESName target, ADR mask)
throws ESInvocationException;

ADR getResourceMask (ESName target)
throws ESInvocationException

void setResourceMask (ESName target, ADR mask)
throws ESInvocationException

ADR getOwnerPublicKey (ESName target)
throws ESInvocationException;

void setOwnerPublicKey (ESName target, ADR key)
throws ESInvocationException

ESMap getRSD (PublicESName resource)
throws ESInvocationException;

void setPublicRSD(ESName resource,ESMap rsds)
throws ESInvocationException;

ESMap getPrivateRSD (ESName resource)
throws ESInvocationException;

void setPrivateRSD (ESName resource, ESMap rsds)
throws ESInvocationException;

ResourceDescription getResourceDescription (ESName target)

Developer Release 3.01 June 2000

Core-Managed Resources

Resource Manipulation Resource

throws ESInvocationException;
void setResourceDescription (ESName resource,
ResourceDescription desc)

throws ESInvocationException;

int getEventControl (ESName resource)
throws ESInvocationException;

void setEventControl (int setting)
throws ESInvocationException;

boolean isPersistent (ESName target)
throws ESInvocationException;

boolean isTransient (ESName target)
throws ESInvocationException;

void setPersistent (ESName target)
throws ESInvocationException;

void setTransient (ESName target)
throws ESInvocationException;

ESUID getESUID (ESName target)
throws ESInvocationException;

ESName getUrl (ESName target)
throws ESInvocationException;

long getQuota (ESName target)
throws ESInvocationException;

ResourceType getType (ESName target)
throws ESInvocationException

Developer Release 3.01 June 2000

53

Resource Manipulation Resource Core-Managed Resources

54

ADR getServiceID(ESName target)
throws ESInvocationException

void setServicelID (ESName target, ADR id)
throws ESInvocationException

}

The convention for a Resource-specific data (RSD) array is that is consists of a
sequence of pairs—the first element of each pair is a string used to tag the second
element. (This is how it is used here— see e.g., get PublicRSD).

Most of the methods in a MetaResource are for setting or getting the fields of its
Resource metadata. Some aspects of these methods warrant explanation and are
discussed below.

The unregister method removes (unregisters) the Resource, resource, from
the Repository. This removes ResourceDescription and ResourceSpecifi-
cation; no more messages can be sent to the Resource after this operation.

The setResourceOwner method sets the owner of the Resource, resource, to
the ESName of the calling Client’s Protection Domain.

The setResourceProxy and getResourceProxy methods set and get the
Resource Handler.

There is no method for setting the Resource Contract, because this cannot be
changed once the Resource has been registered.

The method getQuota () returns the total charge in bytes to the owner’s quota due
to that Resource.

The methods getMetadataMask and setMetadataMask are used for getting and
setting those operations for which security is disabled for a particular Resource’s
metadata: anybody can invoke the methods listed in this mask to manipulate the
particular Resource’s metadata. The methods getResourceMask and setResource-
Mask perform the analogous function for the operations supported by the Resource
itself.

Developer Release 3.01 June 2000

Core-Managed Resources Vocabulary

Vocabulary

A Vocabulary is used to describe Resources and to specify lookup requests. Vocab-
ularies are also used to define the state of Events.

The Vocabulary class is defined below:

class Vocabulary

{

String description;
AttributePropertySet props;

String getDescription ()
throws ESInvocationException;

AttributePropertySet getProperties|()
throws ESInvocationException;

boolean mutateProperties (AttributePropertySet props)
throws ESInvocationException QuotaExhaustedException,

StaleEntryAccessException;

}

The method getDescription returns a human-readable string describing the
Vocabulary.

The methods getProperties and mutateProperties are for getting and
setting the AttributePropertySet of a Vocabulary. The method mutatePro-
perties returns true if the Vocabulary’s AttributePropertySet is changed, false
otherwise. The definition of AttributePropertySet is given below:

class AttributePropertySet

{

ESMap AttributeProperty

}

class AttributeProperty

{

String attrName;

Developer Release 3.01 June 2000 55

Vocabulary

Core-Managed Resources

56

ValueType valuetype;
Value defaultValue;

String definition;

boolean multiValued;

int rangeKind;

double minRange;

double maxRange;

String description;

int keyIndexType;

static
static
static
static
static
static

static

}

final
final
final
final
final
final

final

int
int
int
int
int
int

int

NO_RANGE =
LEFT_ RANGE
FULL_RANGE

RIGHT RANGE

NO_INDEX =
HASH INDEX
TREE_INDEX

The first element of each pair in AttributePropertySet ESMap is the attr-
Name of AttributeProperty; the second element is AttributeProperty

In AttributeProperty, attrName is the name of the attribute.

The definition field is a constraint to be evaluated to compute the value. This is for
future enhancement, such constraints are not supported in the current release.

If multivalued is true, defaultValue is assumed to be an ESSet of Values
(see the e-speak serialization format for the definition of ESSet).

The fields rangeKind, minRange, and maxRange specify the range of default-
Value. NO_RANGE means that minRange and maxRange do not specify any
restrictions. LEFT RANGE means a value below minRange; RIGHT RANGE means
a value above maxRange; FULL RANGE means a value between maxRange and

minRange.

The description field is a human-readable description of the attribute property.

Developer Release 3.01 June 2000

Core-Managed Resources

Vocabulary

The keyIndexType field is to support efficient lookup in a repository based on a
Database Management System (DBMS). Valid values of keyIndexType are:
NO_INDEX, HASH_INDEX and TREE_INDEX. If the value is HASH_INDEX or
TREE_INDEX the attribute is used as an index by the DBMS. This is discussed
further in the (xref to “Repository” (informational) chapter).

ValueType is defined below. The defaultvalue field holds the value defined
by valuetype. The list of possible types is given in the definition of ValueType.
The serialization of Value is defined by the e-speak serialization format of the

nonterminal ValueAlt.

The valueType class is defined below:

class ValueType

{

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

static

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

final

string typeName;

String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String

string description;

string matcher;

Developer Release 3.01 June 2000

STRING TYPE = "String";

LONG TYPE = "Long";

DOUBLE_TYPE = "Double";

BOOLEAN TYPE = "Boolean";

BIG DECIMAL TYPE = "BigDecimal";
TIMESTAMP TYPE = "Timestamp";
DATE TYPE = "Date";

TIME TYPE = "Time";

INTEGER TYPE = "Integer";

FLOAT TYPE = "Float";

CHAR TYPE = "Char";

BYTE ARRAY TYPE = "ByteArray";
BYTE TYPE = "Byte";

SHORT TYPE = "Short";

SET_TYPE = "Set";
NAMEDOBJECT TYPE = "NamedObject";
OTHER_TYPE = "Other";

57

Vocabulary

Core-Managed Resources

58

The typeName field is a string name of the value type object; valid values are those
in the strings defined in the class definition.

The description field is the human-readable description of the value type, for

example, int.

The matcher field is the string name of a matching function, for example,

isLessThan.
class Value{
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte
static final byte

byte tCode;
object wval;

}

STRING_TYPE_CODE = 0x00;
LONG_TYPE_CODE = 0x01;
DOUBLE_TYPE_CODE = 0x02;
BOOLEAN TYPE CODE = 0x03;
BIG_DECIMAL TYPE_CODE = 0x04;
TIMESTAMP_TYPE CODE = 0x05;
DATE TYPE CODE = 0x06;

TIME TYPE CODE = 0x07;
INTEGER_TYPE CODE = 0x08;
FLOAT TYPE CODE = 0x09;
CHAR_TYPE_CODE = 0xOA;

BYTE ARRAY TYPE CODE = 0xO0B;
BYTE TYPE CODE = 0x0C;

SHORT TYPE_CODE = 0x0D;

SET TYPE CODE = OxOE;
NAMEDOBJECT TYPE CODE = O0xOF;
OTHER_TYPE CODE = OxFF;
INVALID BASE TYPE CODE = OXFF;

Permissible values of tCode are shown in the class definition. The type code defines
the object contained in the class instance. The e-speak serialization format defines
the serialization format for all these object types with the following exceptions.

Developer Release 3.01 June 2000

Core-Managed Resources The Account Manager Resource

In the case of tCode being SET_TYPE_CODE, val contains a set of values. This is not
supported in the current release.

BIG_DECIMAL, DATE, TIMESTAMP, TIME and NAMEDOBJECT are sent as
strings. These types are taken from the following java packages.

¢ java.math.BigDecimal
e java.sql.Date
e java.sql.Time

¢ java.sql.Timestamp

The Account Manager Resource

The Account Manager is Resource is for managing a notion of user accounts on an
e-speak Core. A user account contains various information about the user including
its PSE (Private Security Environment). This enables a user to authenticate to the
Account Manager (via userid, password) and to retrieve their PSE. In the current
implementation they need a passphrase to unlock their PSE to access their key
material (see Chapter 6, “Access Control”).

The class AuthInfo defines the basic information used by the Account manager to
identify a user

class AuthInfof
String userName;
String passPhrase;

String homeAddress;

}

The home address indicates the “home e-speak Core of a user” in host:portNumber
format. An example is:

myhost .myCo.com:1234

The class UserProfile defines the basic information stored by the Account Manager
for each user.

Developer Release 3.01 June 2000 59

The Account Manager Resource Core-Managed Resources

class UserProfile({
AuthInfo authInfo;
String userESURL;
String userInformation;
String userType;
ProfileAttributeSet preferences;
bytel[]l pse;

}

The userESURL is the ESName of the representing the user’s Account Resource this
is a Protection Domain. This ESName is bound to the user’s Protection Domain in
a Name Frame created by the Account Manager (rather than the default Name
assigned to the Protection Domain in the e-speak Core’s root Name Frame). Note
that this ESName also includes the host and portNumber of the user’s “home e-
speak Core”. An example of a userESURL is:

es://myhost.myco.com:12345/Core/AccountManager/myhost .myco.com: 1234 /myName

When the Account is registered a Protection Domain is created and registered in the
Base Account Vocabulary (see section“Base Account Vocabulary” in Chapter 5,
“Vocabularies”) with attributes from AuthInfo and UserProfile. This means the
Account Resource (Protection Domain) can be discovered using attribute based
lookup, just like any other e-speak Resource.

UserType and UserInformation are arbitrary strings that can be assigned by an
application. These are defined in the BaseAccount Vocabulary, so they can be used
to lookup Users.

The PSE is opaque, the byte array is not interpreted by the e-speak Core.

The <ProfileAttributeSet preferences> field is a set of name, value pairs defined as
follows.

class ProfileAttributeSet({
AttributeSet attrs;

String format;

60 Developer Release 3.01 June 2000

Core-Managed Resources The Account Manager Resource

If the format string is set to "VOCAB'", the AttributeSet attrs is defined in a vocabulary
specifed in the attrVocab field of the AttributeSet (see Chapter 3, “Resource
Descriptions, Resource Specifications and Resource Types”), otherwise the format
string is set to "NONE" and the AttributeSet attrs contains an arbitrary set of name-
value pairs that are not necessarily be valid in any vocabulary.

The ProfileAttributeSet contains secret information. The intent is that this informa-
tion should not to be visible to any application other than the one that registered the
account..

public interface AccountManagerInterface

public String registerUser (UserProfile up)
throws PermissionDeniedException, StaleEntryAccessException,

NameNotFoundException;

public boolean unregisterUser (AuthInfo authInfo,
String accountName)
throws PermissionDeniedException, StaleEntryAccessException,

NameNotFoundException;

public boolean authenticateUser (AuthInfo authInfo)
throws PermissionDeniedException, StaleEntryAccessException,

NameNotFoundException;

public UserProfile getUserProfile (AuthInfo authInfo,
String accountName)
throws PermissionDeniedException, StaleEntryAccessException,

NameNotFoundException;

public boolean setUserProfile (AuthInfo authInfo, UserProfile up)
throws PermissionDeniedException, StaleEntryAccessException,
NameNotFoundException;

public String[] getAllUsers ()

Developer Release 3.01 June 2000 61

The user Interface Core-Managed Resources

throws ESInvocationException;

public boolean addDescription(AuthInfo authInfo,
String accountName, AttributeSet as)

throws ESInvocationException;

public String getUserESURL (String accountName)
throws ESInvocationException;

}

The function getAllUsers returns a list of the ESNames (in stringified form) of the
Account Resource (Protection Domains) of all registered users.

The function addDescription is used for adding a new AttributeSet to the user’s
Account Resource (Protection Domain). This can be in any vocabulary, not just the
Base Account Vocabulary.

The accountName parameter in getUserProfile and getUserESURL is must match the
userName in the AuthInfo of the intended account.

The function getUserESURL returns a String corresponding to the ESNames(URLs)
of the user’s Account Resource (Protection Domain).

The user Interface

This is not implemented in the current release

interface UserInterface (
public String getDescription ()

throws PermissionDeniedException, NameNotFoundException;

public AttributePropertySet getProperties()

throws PermissionDeniedException, NameNotFoundException;

public void mutateProperties (AttributePropertySet props)
throws PermissionDeniedException, NameNotFoundException;

62 Developer Release 3.01 June 2000

Core-Managed Resources Appendix: Method Names

Appendix: Method Names

In messages sent to Core-managed Resources (xref to communications chapter).
The method is identified by a string. The following strings are used.

AccountManagerInterface
PF_REGISTERUSER
PF_UNREGISTERUSER
PF_AUTHENTICATEUSER
PF_GETUSERPROFILE
PF_SETUSERPROFILE
PF_GETALLUSERS
PF_ADDDESCRIPTION

ConnectionManagerInterface
OPENCONNECTION
GETCONNECTIONS
CLOSECONNECTION
CLOSECONNECTIONFROMREMOTE

CoreManagementInterface
PING
GETCLIENTCONNECTIONS
STOPSERVINGOUTBOX
STOPSERVINGINBOX
STARTSERVINGOUTBOX
STARTSERVINGINBOX
REMOVEPROTECTIONDOMAIN
DENYNEWCLIENTSESSIONS
ACCEPTNEWCLIENTSESSIONS
GETTOTALMEMORY
GETFREEMEMORY

START JVM GC
STOP_JVM_GC
SET_JVM_GC_INTERVAL
GET_JVM_GC_INTERVAL
IS_JVM_GC_RUNNING
START_SCAVENGER
STOP_SCAVENGER
GET_SCAVENGER_STATS
SET_NUM_STATS

FinderInterface
FIND
FINDNEXT

Developer Release 3.01 June 2000 63

Appendix: Method Names Core-Managed Resources

MailboxInterface
ISCONNECTED
CONNECT
DISCONNECT
RECONNECT

ManagedServiceIntf (implemented by Core management resource)
GETNAME
GETDESCRIPTION
GETOWNER

GETUPTIME
GETVERSION
GETERRORCONDITION
GETSTATICINFO
COLDRESET
WARMRESET

START

STOP

SHUTDOWN

REMOVE

GETSTATE
GETVARIABLEENTRIES
GETVARIABLENAMES
GETVARIABLEENTRY
SETVARIABLE
GETRESOURCEENTRIES
GETRESOURCENAMES
GETRESOURCEENTRY
SETRESOURCE

NameFrameInterface
LOOKUP
ISBOUND

BIND

REBIND

UNBIND

RENAME

COPY

ADD

SUBTRACT
LISTNAMES
LISTBINDINGS
NEW_SUB_FRAME

ProtectionDomainInterface
SWITCHPD

GETDEFAULTFRAME
SETDEFAULTFRAME

64 Developer Release 3.01 June 2000

Core-Managed Resources

Appendix: Method Names

GETQUOTAINFO
SETQUOTA
NEW_PROTECTION_DOMAIN

RemoteResourceManagerInterface
EXPORTRESOURCE
IMPORTRESOURCEFROMMSG
IMPORTRESOURCE
EXPORTRESOURCEFROMMSG
UNEXPORTRESOURCE
UNEXPORTRESOURCEFROMMSG
UPDATEEXPORTEDRESOURCE
UPDATEEXPORTEDRESOURCEFROMMSG
UPDATEIMPORTEDRESOURCE
UPDATEIMPORTEDRESOURCEFROMMSG
EXPORTONCONNECTING

RepositoryViewInterface
ADD

REMOVE

CONTAINS

CLEAR

ADD_ELOOKUP
REMOVE_ELOOKUP

ResourceContractInterface
REGISTERRESOURCE
GETVOCABULARIES

ResourceFactoryInterface
REGISTER_RESOURCE

ResourceManipulationInterface
UNREGISTER

GETESUID
SETRESOURCEOWNER
GETRESOURCEOWNER
GETRESOURCEPROXY
SETRESOURCEPROXY
GETRESOURCECONTRACT
GETPUBLICRSD
SETPUBLICRSD
GETPRIVATERSD
SETPRIVATERSD
GETRESOURCEDESCRIPTION
SETRESOURCEDESCRIPTION
GETEVENTCONTROL
SETEVENTCONTROL
ISEXPORTEDBYVALUE
SETEXPORTTYPE

GETQUOTA
GETMETADATAMASK
SETMETADATAMASK

Developer Release 3.01 June 2000

65

Appendix: Method Names Core-Managed Resources

GETRESOURCEMASK
SETRESOURCEMASK
GETOWNERPUBLICKEY
SETOWNERPUBLICKEY
GETSERVICEID
SETSERVICEID
ISPERSISTENT
ISTRANSIENT
SETTRANSIENT
SETPERSISTENT
GETURL

GETTYPE

UserInterface (not implemented in the current release)
GETDESCRIPTION

GETPROPERTIES

MUTATEPROPERTIES

VocabularyInterface
GETDESCRIPTION
GETPROPERTIES
MUTATEPROPERTIES

66 Developer Release 3.01 June 2000

Vocabularies

This section specifies the construction and use of Vocabularies. It describes:
e Attributes as name-value pairs

¢ The use of common matching rules for standard data types

¢ C(reating a new Vocabulary with supported value types

¢ Interoperability between different Vocabularies

Vocabulary Overview

A Resource Description is expressed using a Resource Description language called
a Vocabulary. A Vocabulary is a Resource; to end the recursion, the Core bootstraps
the description process by implementing a Base Vocabulary. This Base Vocabulary
can be used to describe Resources in the absence of any other Vocabulary.

A Vocabulary is defined by AttributePropertySet, which is an array of
AttributeProperty. Every e-speak system comes with an architected Base
Vocabulary.

These rules are followed regarding Vocabularies:
¢ Attributes expressed in different Vocabularies cannot be matched.

e Attributes in one Vocabulary can be converted into attributes in another Vocab-
ulary if a Translator Resource exists that is capable of the desired conversion.

¢ Vocabularies can be extended dynamically by adding new attributes.

e Any process can create a new Vocabulary dynamically.

Developer Release 3.01 June 2000 67

Building a Vocabulary Vocabularies

e All attributes in an Attribute Set must belong to the same Vocabulary. If a
Resource has capabilities that can be described in multiple Vocabularies, it can
use multiple Attribute Sets to represent it in the Resource Description sent to the
e-speak Core, as long as each Attribute Set uses only attributes belonging to one
Vocabulary.

The e-speak Core ships with one Basic Vocabulary preloaded. It is expected that the
Basic Vocabulary are always in the Core and is accessible to all Clients. Clients are
free to define their own Vocabularies. The creator of a new Vocabulary is responsi-
ble for the dissemination of information about the new Vocabulary to potential
users.

Building a Vocabulary

68

A Vocabulary is built the same way as any other resource, using the Resource
Factory. The request specifies an AttributePropertySet as the definition of
the Vocabulary. The Attribute Property Set is an array of Attribute Property
components. Each component has a number of fields, as shown in Table 3.

Developer Release 3.01 June 2000

Vocabularies Building a Vocabulary

Table 3 Components of an attribute property

Type Field Meaning

String name Attribute name

String description Human-readable description

Value type valueType See Table 4 for encoding

Value default Default value

Boolean multiValued True if multiple values

Boolean mandatory Must be specified if True

Int rangeType 0 no range 1 lower limit
2 both 3 upper limit

Double minValue Smallest allowed value

Double maxValue Largest allowed value

The e-speak Vocabulary Builder supports the value types shown in Table 4.

Table 4 Supported value types

Data type Designator Matching rules Operations
Big decimal “BigDecimal” eq, ne, It, le, gt, ge +,-, %,/
Boolean “Boolean” eq, ne AND, OR
Byte "Byte” eq, ne

Byte array “ByteArray” eq, ne

Developer Release 3.01 June 2000 69

Building a Vocabulary Vocabularies

Table 4 Supported value types (Continued)

Data type Designator Matching rules Operations

Char “Char” eq, ne * (concatehate,
returns String)

Date “Date” eq, ne, It, le, gt, ge

Double “Double” eq, ne, It, le, gt, ge +, - %/

Float “Float” eq, ne, It, le, gt, ge +,- %/

Int “Integer” eq, ne, It, le, gt, ge +,- %/

Long “Long” eq, ne, It, le, gt, ge +, - %

Object “NamedObject”

Short “Short” eq, ne, It, le, gt, ge +,- %/

String “String” eq, ne + (concatenate)

Time “Time" eq, ne, It, le, gt, ge

Time stamp “Timestamp” eq, ne, It, le, gt, ge

All arithmetic and/or logical operations defined for each value type are supported.
For example, a constraint can specify “a+b<c”. Remember, equality testing on float-
ing point numbers can give unexpected results.

70 Developer Release 3.01 June 2000

Vocabularies Building a Vocabulary

A value type can be specified using a designator, such as:

ValueType intType = new ValueType (“Integer”) ;

Building a New Vocabulary

Any Client with an appropriate certficate can create a new Vocabulary using the
Resource Factory (xref to Resource Factory in Core Managed Resource Chapter).
The Client must provide an AttributePropertySet that includes a definition of
the attribute properties used by the new Vocabulary. The Resource Description
defines the part of the metadata used for discovery of this Vocabulary Resource.

The following example shows the specification of a Car Vocabulary that has only
two attributes: Model and Price:

AttributeProperty pl = new AttributeProperty(
“Model” ,new ValueType (“String”)) ;

AttributeProperty p2 = new AttributeProperty(
“Price” ,new ValueType (“Double”)) ;

and is added to a property set:

AttributePropertySet p = new
AttributePropertySet () ;

p.add (pl) ;

p.add(p2) ;

Developer Release 3.01 June 2000 71

Base Vocabulary Vocabularies

Base Vocabulary

Each Vocabulary consists of a set of attribute properties; a string representing the
name, something that carries the type of the value, and attribute properties. The
Vocabulary also includes a set of matching rules. The Base Vocabulary is available
at system start-up. It includes the attributes and value types shown in Table 5.

Table 5 Base Vocabulary definition

Attribute name Value type Comments

Name String

Type String

ResourceSubtype | String

ESGroup String

ESCategory String

Description String

KeyWords String Multivalued

Version String

ESDate Date “YYYY-MM-DD"

ESTime Time “HH:MM:SS"

ESTimeStamp TimeStamp “YYYY-MM-DD
HH:MM:SS.FFFFFFFFF”

HashAlgorithm String

HashCode BigDecimal To authenticate contents

72 Developer Release 3.01 June 2000

Vocabularies Base Account Vocabulary

The hash algorithm is specified using well-known names, for example, MD5.

The description string for the Base Vocabulary is: "E-speak base vocabulary".

Base Account Vocabulary

The Base Account Vocabulary is also available at startup. It is used for discovering
user accounts.

Table 6 Base Account Vocabulary

Attribute name Value type
UserName String
Userinfo String
UserType String
UserlLocation String
UserESURL String

The above attributes match the fields defined in AuthInfo and UserProfile. For more
information, see“The Account Manager Resource” section in Chapter 4, “Core-
Managed Resources.”

The description string for the Base Account Vocabulary is: "E-speak base user
vocabulary".

Developer Release 3.01 June 2000 73

Translators (Informational) Vocabularies

Translators (Informational)

The interoperation of different Vocabularies is supported through Vocabulary
Translators. The translator can map attributes from one Vocabulary into another,
but there is no direct linkage between a Translator Resource and any Vocabulary
Resource. A translator service is not part of the e-speak architecture.

The translator implements:

ESName [] [2] getVocabularyPairs() ;

which queries the translator about Vocabularies known to it. The translator returns
an array listing all Vocabularies that it can translate in an ordered set. Each element
in this array is a pair of Vocabulary names.

boolean isCompatible (Vocabulary vocabularyl,
Vocabulary vocabulary?2)

checks if the translator can translate from the first given Vocabulary into the second
given Vocabulary. If the translator can perform the translation operation on the
given pair of Vocabularies, it returns true. If the translator cannot perform the trans-
lation, or if it does not understand either of the Vocabularies, it returns false. The
translation is done by:

SearchRecipe translate(SearchRecipe s,
Vocabulary v2;

which returns a Search Recipe in the specified Vocabulary.

74 Developer Release 3.01 June 2000

Access Control

The basis of e-speak access control is a Public Key Infrastructure (PKI). In the
remainder of this chapter we assume the reader is familar with the principles of PKI,
sometimes also known as Public Key Cryptography. There are many texts to which
the reader can refer [see for example Schneier, Pfleeger, Stallings].

All entities in e-speak (users, services, cores etc) are identified by public keys. To
authenticate an entity we verify it knows the private key corresponding to the given
public key. No entity should ever intentionally share its private key or give anybody
access to the private key.

The means by which a private key is protected is implementation dependent: not
part of the architecture. It is very important that the private key is held securely, so
it is not unintentionally made available to others. In the default implementation the
private key is encapsulated inside a Private Security Environment (PSE) object,
described below.

Any entity can create a key-pair. Provided the private key is kept secret, the key-pair
will be unique to that entity. However, having a key-pair gives you no power in the
system. It is necessary also to have Certificates stating the access rights issued to
your public key.

To decide whether to honor an incoming request a service must decide if the
accompanying certificate (or certificates) grant access rights for the request.
Before that, it verifies that the sender of the request knows the private key corre-
sponding to the public key in the certificate to which the access rights have been
given (formally this is the Subject of the certificate). It does this by a cryptographic
protocol described in Chapter 7, “Communication” .

Finally before honoring the request, the service must verify that it trusts whoever
issued the certificate. It does this by verifying that the certificate has been signed by
an entity that it trusts.

Developer Release 3.01 June 2000 75

Access Control

Comparison with X.509 Certificates

The most common use of certificates is in X.509 based infrastructures to link an
entity’s name to its public key (technically the X.509 Distinguished Name). This is
how certificates are used in the web. A drawback is that, typically, having used the
certificate to verify the name, a service needs to consult an authorization database
to determine the access to be granted.

E-speak certificates are more general than this. They are signed (authenticated
statements) linking a public key to a Name or a Tag. (Certificates linking a Name to
another Name also exist, and are described below.) The word "tag" distinguishes the
field concerned from an X.509 "attribute", whose function is broadly similar. A Tag
typically states an access right. Thus to make an access control decision a service
does the following:

¢ Examines the tag in the certificate to see if it grants access
¢ Checks the entity making the request knows the corresponding private key
e Verifies the certificate has been issued (is signed by) an entity it trusts

X.509 name certificates are issued by entities called Certificate Authorities. To
avoid confusion with this, in e-speak we refer to entities issuing certificates as Issu-
ers. E-speak Issuers can issue either Name or Attribute certificates.

Another feature in e-speak not found in X.509 is that it implements a split trust
model. An entity does not have to trust all Issuers equally. It need not trust any given
Issuer at all. Those it does trust, it can only trust to issue certificates granting access
to a subset of its operations.

Conversely, issuing certificates in e-speak is not a reserved prerogative: anyone can
do it. Whether or not the certificate will grant access to any Resource depends on
whether the Resource Handler trusts the Issuer for the service in question. The list
of which Issuers are trusted for what is called Trust Assumptions. This is discussed
later in this chapter.

76 Developer Release 3.01 June 2000

Access Control

Derivation from SPKI

E-speak implements the Simple Public Key Infrastructure (or SPKI) [see RFC 2692-
2693]. In addition to the properties already described, SPKI specifies a structure
and set of operations on Tag and Name certificates. These are used to parse and
process the certificates when making access control decisions. The processing and
access control is discussed later in this chapter. Certain tags (e-speak tags) are
defined that will be checked explicitly by the e-speak infrastructure before an
access is authorized. However, applications can choose to use any syntactically
valid SPKI tag. E-speak will check that certificates containing such tags are valid,
but will not use them for an access control decision. The application will have to
interpret these non e-speak tags when making access control decisions. Core
managed Resources will ignore non e-speak tags.

Certificate Management

The process by which an Issuer decides to issue a certificate granting access rights
to an entity is implementation dependent and therefore not part of the architecture.
The general process would be for entities to register either with some Issuer or with
a separate Registration Authority (RA). For registration, the entity may need to
provide credentials such as credit card number, social security number, bank
details, employee ID, user id., and full name. Once the registering body is satisfied
it will issue a certificate, or give instructions for issue. The registering body can be
fully automated, or can queue registrations for human inspection.

A given entity can have several certificates that have been issued to it. If no strategy
is adopted to structure and manage certificate issuing then there can be very large
numbers of certificates required. Administrators and operators would find it diffi-
cult to run e-speak systems, and operations such as access revocation would be
extremely hard. Hence we discuss and recommend certain strategies for certificate
management. These are based around familiar concepts such as user-groups (or
roles), found in several common operating systems. These are not part of the archi-
tecture. The management strategy practised must reflect the business requirements
of the deploying organization.

Developer Release 3.01 June 2000 77

Example Of Certificate-based Security (Informational) Access Control

Example

78

Anybody can create a key-pair in e-speak and then register to get an Issuer to issue
certificates to the public key. There is no notion of a centralized, all powerful,
trusted Certificate Authority. Instead entities choose which Issuers they trust for
what. Authentication in e-speak relies on proof of knowledge of the private key:
there is no centralized authentication service. Hence the e-speak security architec-
ture is a global, fully distributed and single sign-on.

Of Certificate-based Security (Informational)

Consider the diagram below. Two large ".com" companies are accessing a portal to
use services provided by the portal. For simplicity we have shown only 3 services.

Service A

Service B

Service C

The data held by the services can be sensitive, so both companies would like to be
sure that their employees are accessing the correct portal and services. In addition,
having made arrangements for access to the portal (and paid fees), both companies
might prefer to be responsible for managing their own lists of employees and
control who can access the portal’s services.

From the portal’s point of view, it probably only wants to deliver services to paying
customers and only to deliver those services that each customer has paid for.

Developer Release 3.01 June 2000

Access Control

Authorization Data

Suppose CO_1 has done a deal with the portal to access services A, B and C, and
CO_2has done a deal to access service A and C only. Lets further suppose that CO_1
and CO_2 are each running an Issuer , called Issuerl and Issuer2 respectively. The
portal configures A and C to trust both Issuerl and Issuer2; it configures B to trust
Issuerl only. Then CO_1 and CO_2 can issue certificates to each of their employees.
CO_T1’s certificates will be honored at A, B and C, but CO_2 certificates will only be
honored at A and C.

Each time a service sees a certificate from either company that grants access, it
increments the bill for that company. This leaves each company in control of who
among its employees gets access to the services for which it has paid. Each
company is in control of revocation (e.g. if the employee leaves). In addition the
portal can immediately revoke access to an entire company, by removing the
company’s Issuer from the list of trusted Issuers.

Each company may want to make sure that their employees are accessing only
genuine services. To do so CO_1’s Issuer issues a Tag certificate binding each of
service A, B and C’s public keys to a tag such as : "CO_1 approved". It must then
ensure that its employees configure their clients to check for this tag before access-
ing the service. Similarly CO_2’s Issuer issues a Tag certificate to services A and C
conferring an attribute that is meaningful to CO_2.

Note that this requires very little authorization data to be held and managed by the
portal. It only needs to remember the public keys of CO_1 and CO_2’s Issuer. If
access control were based on authenticating a name and mapping accesses to that
name, then the portal would have to keep a list of all employees in each company
that can access any of the services, and which accesses are allowed for each name
- much more data to manage and maintain.

Authorization Data

The informal structure of an authorization certificate is:
Certificate header: a constant field starting " (cert "
Issuer: the public key of the Issuer

Subject: the public key or the name of the entity granted the certificate

Developer Release 3.01 June 2000 79

Tags

Access Control

Tags

80

An optional "delegation" field
Tag: Details of what is authorized
Optional validity qualification and comment.

In this structure, it is the tag that requires most attention by client applications.

As e-speak implements SPKI, any valid SPKI tag can appear in a certificate. The
BNF for SPKI is given in the SPKI BNF Format section. In this section we give some
example SPKI tags that can appear in certificates and explain the BNF for a tag.

E-speak defines a set of standard tabs (see "E-speak Authorization Tags" on page
83), that is checked automatically by the infrastructure. The examples given in this
section are not standard e-speak tags, so they would have to be checked explicitly
by the application.

An SPKI tag is an S-expression, that is a list enclosed in matching "(" and ")".
The BNF for a tag is:

<tag> = " (" "tag" <tag-expr>* ")"
<tag-and> = " (" "*" "and" <tag-expr>+ ")" ;
<tag-expr> = <byte-string> | <tag-simple>

| <tag-prefix> | <tag-range>

| <tag-set> | <tag-and>

| <tag-star> ;

<tag-simple> = " (" <byte-string> <tag-expr>* ")"

<tag-prefix> = " (" "*" "prefix" <byte-string> ")"

<tag-ranges> = " (" "*" "range" <range-orderings> <low-lim>? <up-
lim>? ")™"

<tag-set> = " (" "*" UWget" <tag-expr>* ")"

<tag-star> = " (" "xkm n)n

Developer Release 3.01 June 2000

Access Control Tags

<tag-and> = " (" "*" vgand" <tag-expr>+ ")" ;1

<range-ordering>= "alpha" | "numeric" | "time" | "binary" | "date"
<up-lim> = <lte> <byte-string> ;

<low-lim> = <gte> <byte-string> ;

<lte> = "1" | "le" ;

<gte> = "g" | "ge" ;

A tag is a list of lists, with each list denoted by brackets. In its simplest form (tag-
simple), a tag is simply composed of byte-strings. The access control machinery
must interpret the meaning of the tag when making an access control decision. The
following examples are adapted from SPKI examples previously published as Inter-
net drafts. An example form for tags applying to a file system is:

(tag (files <pathname> <access>))
An instance of such a tag is:
(tag (files //ftp.espeak.net/pub/EspeakArch.pdf read))

A client presenting a certificate containing the above tag is allowed read access to
EspeakArch.pdf (assuming authentication was successful).

<tag-set> field
Groups of permissions can be granted using the "tag-set" form:

(tag (files //ftp.espeak.net/pub/EspeakArch.pdf (* set read
write))

This grants read and write acess to the file.
<tag-prefix> field

A set of permissions having a common prefix can be granted using the "tag-prefix"
form:

(tag (files (* prefix //ftp.espeak.net/pub/) (* set read write))

This grants read and write access to any file under the pub directory.

1 The <tag-and> field is an e-speak specific extension to SPKI.

Developer Release 3.01 June 2000 81

Tags

Access Control

82

<tag-star> field
The "tag-star" form stands for the set of all valid s-expressions and byte strings.

(tag (files (* prefix //ftp.espeak.net/pub/) (*))

The above tag grants all permissions on all files under pub.

(tag (files (*) (*))

Note that trailing "(*)" can be omitted. So the above is equivalent to:
(tag (files))

The two last tags both grant all permissions on all files anywhere.
(tag (*))

The above grants all permissions on anything. This might look as though it is confer-
ring a lot of power. However, e-speak has a split trust model: the issuer of the certif-
icate containing this tag might only be trusted by a single Resource.

<tag-and> field

The "tag-and" form is not used in writing a certificate. It expresses the authoriza-
tions conferred by the set of tags in the following expression. This is analagous to a
set-intersection operation: the authorization resulting from a "tag-and" form will be
that satisfying each and every one of the following tags. So it is more restrictive than
that of any of the tags on its own.This form is used internally when authorization
depends on more than one certificate. The process is described under Tag Intersec-
tion.

<tag-range> field

The "tag-range" form stands for the set of all byte strings lexically (or numerically)
between the two limits. The ordering parameter (alpha, numeric, time, binary, date)
specifies the kind of strings allowed. For example, the following tag indicates the
authorization to issue purchase orders whose value is less than $5000.

(tag (purchaseOrder (* range numeric le 5000)))

The following indicates a salary between $50,000 and $100,000

(tag (salary (* range numeric ge 50000 le 100000)))

Developer Release 3.01 June 2000

Access Control E-speak Authorization Tags

E-speak Authorization Tags

E-speak tags are valid SPKI tags that will be checked by the infrastructure. For core-
managed Resources the e-speak core will check that a valid certificate is presented
containing a tag that authorizes the operation. For non-core-managed Resources, it
is assumed that the resource handler will check there is a valid certificate contain-
ing a tag that authorizes the operation. However, the e-speak core cannot enforce
this; the resource handler is responsible for Resource security.

E-speak tags that authorize access to services have the following form:

(tag (net.espeak.method <interface> <methods> <serviceIds))

The following tag authorizes the "stop" operation in the serviceManagementInter-
face for the identified Resource.

(tag (net.espeak.method ServiceManagementInterface stop

XXXXYYYYZZZZ))

The forms tag-star, tag-prefix, tag-set and tag-range can all be used within an e-
speak tag. So the following tag authorizes operations on the ServiceManagement
interface in two different Resources.

(tag (* set (net.espeak.method ServiceManagementInterface stop
XXXXYYYYZZZZ)
(net .espeak.method ServiceManagementInterface (* set

stop start) aaaabbbbbccccc)))

The long strings at the end represent the Serviceld, described below.

The following form authorizes every method on every ServiceManagementInterface
on Resources that trust the issuer.

(tag (net.espeak.method ServiceManagementInterface (%) (*)))

Or equivalently:

(tag (net.espeak.method ServiceManagementInterface))

Developer Release 3.01 June 2000 83

E-speak Authorization Tags Access Control

The following authorizes any method within the given interfaces (core managed
Resources) on any object:

(tag (
(net .espeak.method
(* set
ResourceFactoryInterface
ResourceManipulationInterface
ManagedServiceInterface
CoreManagementInterface
NameFrameInterface

)

)

Lets assume we have an interface called "file" and the servicelD is set to a notional
path name (anon default value). The following tag authorizes the read operation on
all files below the pub directory.

(tag (net.espeak.method file read (* prefix es.espeak.net/pub/)))

If serviceld’s are set to ordered numerical or alphabetical values, then the tag-range
form can be useful in the <serviceld> portion of a tag.

Currently we have only defined e-speak tags for the Network Object Model. This
assumes a set of services with one or more interfaces, each interface containing one
or more methods. The programming of J-ESI and the interaction with core-
managed Resources follow this model. However, e-speak can support other
programming models: an XML document exchange model and a direct messaging
model have both been implemented. The tags used by these models are part of the
programming models. There are not part of the core architecture, since the core
does not need to interpret them: the resource handlers do it.

84 Developer Release 3.01 June 2000

Access Control

Masks

Masks

The Mask controls which operations will have security disabled. The Mask for a
Resource is part of the metadata for that Resource (see Chapter 3, “Resource
Descriptions, Resource Specifications and Resource Types”,
section.“ResourceSpecification”). If an operation appears in a Resource Mask,
anybody can invoke that operation.

Masks are specified as tags. The basic method tag format is
(net .espeak.method <interface name> <method names)

In the metadataMask the interface name is the core interface being specified, and
the method name is the operation in that interface. For metadata this will be be the
ResourceManipulationInterface, and the method name one of its methods. For the
resourceMask the interface name will be one of the interfaces supported by the
Resource.

In the resource mask for an external Resource the interface name is the fully-quali-
fied name of the interface class. For a Core-managed Resource, the interface name
is the not quallified, so we just have “NameFramelnterface” and “ProtectionDo-
mainInterface” etc. The method name is the name of the method in the interface,
plus the concatenated argument types. This allows overloaded methods to be distin-
guished.

The metadata mask is used by the in-core metaresource when performing metadata
operations. The resource mask is passed to the service handler by the core for the
service handler to use when performing operations on the service itself.

The masks are completely general tags, so the mask tag itself, or any of its fields,
can use the tag matching features such as sets, prefixes and ranges. The interface
and method names, for example, do not have to be string literals, they can be sets
or prefixes.

This tag masks method foo in interface net.espeak.examples.Examplelntf:
(net.espeak.method net.espeak.examples.ExampleIntf foo)

This tag masks method foo in interface net.espeak.examples.Examplelntf and
method bar in interface net.espeak.examples. ExampleZ2Intf

(net.espeak.method (*set

Developer Release 3.01 June 2000 85

Masks Access Control

(net .espeak.examples.ExampleIntf foo)
(net .espeak.examples.Example2Intf bar)
)

)

This tag masks all methods beginning with foo:

(net .espeak.method net.espeak.examples.ExampleIntf (* prefix foo))
This tag masks methods foo and bar:

(net .espeak.method net.espeak.examples.ExampleIntf (* set foo bar))
Methods with prefix foo or bar:

(net .espeak.method net.espeak.examples.ExampleIntf
(* set (* prefix foo) (* prefix bar)))

All methods in the interface:

(net .espeak.method net.espeak.examples.ExampleIntf)
This is equivalent to

(net .espeak.method net.espeak.examples.ExampleIntf (*))
since missing trailing elements match anything.

All methods foo in InterfaceA and bar in InterfaceB:

(* set (net.espeak.method InterfaceA foo)
(net .espeak.method InterfaceB bar))

All methods:
(net .espeak.method)
or simply

(*)

86 Developer Release 3.01 June 2000

Access Control Service Identity

Service Identity

The serviceld field in the Resource specification (see Chapter 3, “Resource Descrip-
tions, Resource Specifications and Resource Types”) can contain any valid SPKI
tag-expression, defined as a "tag-expr" in the BNF (see "SPKI BNF Formats" on page
106). This tag-expression can be set by anybody with a certificate, from an Issuer
trusted by the MetaResource, authorizing setServiceld in the MetaResource. The
serviceld field is delivered to the resource handler with each message for the
Resource.

The service identity is used by the resource handler when verifying standard e-
speak tags (see "Verifying tags and tag intersection" on page 98).

Default Serviceld

A default assignment is made by the core when it encounters a standard e-speak
authorization tag without an authorized service id. The format is:

<serviceld> = "(" "net.espeak.service" <service class> <service name> <unique id>
"y
<service class> is set to the first available value of:

1.) The name attribute in the Resource specification contract, if any.

2.) The contract type, if any.

3.) A 64-bit random no. if neither of the above exists.
<service name> is set to:

1.) The "name" in the Resource description

2.) A 64-bit random no., if 1) is not found.

<unique id> is a 64-bit random no.

A secure random number generator should be used, so that the probability of acci-
dental authorization when the default has been used will be infinitesimal..

Developer Release 3.01 June 2000 87

Names: Userids, Groups.... Access Control

Advantages of Servicelds

The serviceld is intended for use by applications to identify services without using
the Resource name or access path (ESNames). This decouples authorization from
resource naming and has several advantages:

¢ Service ESNames can be changed without affecting authorization

e Authorization can be revoked by changing a service's identity, without
changing its ESName

e In areplicated service replicas can all have the same identity

e Tag patterns (the "tag-star' form) can be used effectively, limiting the number
of certificates issued

None of this is possible using ESName for service identity.

Protection of Servicelds

Service identity plays a crucial role in authorizing access to a service (see "Verifying
tags and tag intersection" on page 98). It is essential that the setServicelD operation
source is protected, so that a valid certificate is required to invoke it.

Names: Userids, Groups....

88

E-speak also supports SPKI name certificates, of two types. In the first place, an
Issuer can issue a certificate that binds a public key to a name. This has similarities
to X.509 certificates which bind a public key to an X.509 Distinguished Name. (A
Distinguished Name is a name in a special format, distinguishing it globally from
any other name.)

SPKI name certificates do not restrict the syntax of the name, other than requiring
them to be a bytestring. Instead, names are scoped by the public key of the issuer.
Referring back to our example (see "Example Of Certificate-based Security (Infor-
mational)" on page 78), both CO_1 and CO_2 could have an employee named John
Doe. Assuming each company had an Issuer that issued name certificates binding
these names to public keys, the fully qualified name for each John Doe is:

Developer Release 3.01 June 2000

Access Control Certificate Structure

Public key of CO_1 issuer: John Doe
Public key of CO_2 issuer: John Doe

Hence the portal (and anybody else) would have no difficulty distinguishing
between the two instances of John Doe.

The second type of name certificate binds a name to a name. For example we might
want to bind John Doe to the name "users". This kind of certificate confers member-
ship of the group "users" on the userid John Doe. It can be used to build a role- or
group- based security model, such as represented below (see "Managing certificates
(informational)" on page 103).

O—
O—D
O—
O—

~{

Public keys Hames Group Hams Services

KEY: _ -
Hame-Fublic Key Hame-Name Authorization
certificate certificate centificate

The algorithm which relates a public key to an authorization in this case is
described below (see "Name Reduction" on page 96). [See also RFC 2693]

Certificate Structure

The two kinds of certificates in e-speak are Authorization Certificates that bind a
tag to a public key or a name and Name Certificates that bind a name to a public key
or aname. The following sections describe and explain the BNF which specify these
types.

Developer Release 3.01 June 2000 89

Certificate Structure Access Control

Some general features of the specification are:

Nearly every field begins with its name as a literal string.

*is used to mean "0 or more cases of the preceding field"

* is also used to mean "anything valid" in the tag-star field described above
+ means "one or more instances of the preceding field"

? means the preceding field is optional

"uris" means a field with one or more URI’s.

The full SPKI BNF is given at the end of this Chapter (see "SPKI BNF Formats" on
page 106).

Authorization Certificates

90

The format for an authorization certificate is:

<cert> = " (" "cert" <version>? <cert-display>?
<issuer> <issuer-info>?

<subject> <subject-info>?

<deleg>?

<tag>

<valids>?

<comment>? ")"

The optional <version> field defines the <version> of the certificate. The optional
<cert-display> field is designed to provide hints for display. Neither of these fields
is used in the current version of e-speak; the parser will ignore them.

Issuer field

The <issuer> field is the public key of the Issuer issuing the certificate; it is defined
as follows.

<issuer> = " (" "issuer" <principals ")" ;
<principal> = <public-key> | <hash-of-key> ;
<hash-of-key> = <hash> ;

Developer Release 3.01 June 2000

Access Control

Certificate Structure

<hash> = " (" "hash" <hash-alg-name> <hash-value><uris>? ")"
<hash-alg-name> = "mds" | "shal" | <uri> ;

<hash-value> = <byte-string> ;

<public-key> = " (" "public-key" <pub-sig-alg-id> <s-expr>*
<uris>? ")"

<pub-sig-alg-ids>= "rsa-pkcsl-md5" | "rsa-pkcsl-shal" | "rsa-
pkcsl" | "dsa-shal" | <uris> ;

The <issuer-info> field is intended in SPKI to provide a list of one or more URIs for
certificates from which the Issuer derives its authority to issue the certificate. This
is to support delegation: one Issuer can issue a certificate to another Issuer with the
delegation field present. (It is the literal "propagate".) Suppose a service trusts the
first Issuer directly, and not the second Issuer. If a client presents a certificate
issued from the second Issuer, the service will need to see the delegate certificate
conferring the privilege on the second Issuer before it authorizes access. The URIs
would specify the location of delegate certificates. This is not used in the current
version of e-speak. Instead, the required supporting certificates are obtained during
the Session Layer handshake (see Chapter 7, “Communication”). The parser will
ignore this field.

The "hash-alg-name" and "pub-sig-alg-id" fields identify algorithms used for hashing
and for signature verification - usually the literal abbreviated algorithm names
given. The "uri" alternative in each case could be used to give a URI of some other
algorithm.

Subject field
The <subject> field denotes the entity to which the certificate is issued.

<subject> = " (" "subject" <subj-obj> ")"
<subj-obj> = <principal> | <name> | <object-hashs> ;2

<principals> = <public-key> | <hash-of-key> ;

<name> = <relative-name> | <full-names> ;
<relative-name> = " (" "name" <byte-strings>* ")"
<full-name> = " (" "name" <principal> <byte-strings* ")" ;

Developer Release 3.01 June 2000 91

Certificate Structure Access Control

92

The <subject> is either a public key, a name or the hash of an object. If the subject
is a public key, then the entity presenting the certificate must prove possession of

the corresponding private key before authorization is granted. This uses the crypto-
graphic protocols described in Chapter 7, “Communication”.

If the <subject> is a name, then authorization is granted to the entity that has a
certificate binding that name to its public key (see "Name Certificates" on page 94).
Several certificates can be required to prove this. For example, the authorization
certificate may be issued to a name such as "users". The name "users" can be
conferred on another name "John Doe", areal world person. So to get authorization
three certificates are needed:

e A certificate binding John Doe’s public key to his name
¢ A certificate binding John Doe to the name "users"
e A certificate granting the authorization to "users"

John Doe needs to prove possession of the private key corresponding to the public
key in the first certificate using the protocols described in Chapter 7, “Communica-
tion”.The algorithm for name reduction to arrive at the certificate binding the name
to a key and handling compound names such as <public key: "John Doe" "Favorite
People"> is described below (see "Name Reduction" on page 96).

<relative-name> and <full-name>

A <relative-name> is assumed to have been issued by the Issuer whose public key
is in the issuer field. In contrast, a <full-name> is a fully qualified name, explicitly
scoped by the public key of the Issuer which conferred it. This principle is extended
for names "issued by" names [see Compound Names below]. The use of qualified
names allows any Issuer to issue certificates to names that have been issued by any
other Issuer.

2 The definition here departs from SPKI slightly. SPKI defines <subj-obj> = <principal> |
<name> | <object-hash> | <keyholder>; E-speak does not support <keyholder>. If the
parser encounters a keyholder field, it will throw an exception. Which exception depends
on the point from which it is invoked. One of the e-speak exceptions specified in Chapter
8, “Exceptions” will be thrown.

Developer Release 3.01 June 2000

Access Control

Certificate Structure

<object-hash> (Informational)

An <object-hash> is intended for the issue of authorization certificates to entities
such as files and executables. The tag in such a certificate might describe a property
of the file or the executable. This is not used in the current version of e-speak. The
parser will ignore the field.

<subject-info> (Informational)
The optional <subject-info?> field is defined as follows.

<subject-info> = " (" "subject-info" <uriss> ")"

The intent of this field is to provide a list of URIs that provide information about the
subject. For example if the subject is a hash of a key, it might provide the location
of the key being hashed. If the subject is a name, it might provide the location of the
name certificates. This field is not used in the current version of e-speak. The parser
will ignore it.

Delegation field
The optional <deleg> field is defined as follows.

<deleg> = " (" "propagate" ")"

If this field is included in a certificate, then the subject is authorized to delegate the
authorization specified in the certificates tag. The subject does this by issuing certif-
icates containing the tag, or a subset of the tag’s privileges. This is discussed further
under Delegation.

Validity field
The optional <valid> field is defined as follows.

<valid> = <valid-basic> <online-test>* <restrictions> ;
<valid-basic> = <not-before>? <not-after>? ;
<not-after> = " (" "not-after" <date> ")"

<not-before> = " (" "not-before" <dates> ")"

<date> = <byte-strings> ;

Developer Release 3.01 June 2000 93

Certificate Structure Access Control

If the valid field is missing, the certificate is assumed to be valid without constraints.
The fields <online-test> and <restrictions> defined in [Working Draft] are not
supported in the current version of e-speak; the parser will ignore them. The <valid-
basic> field is used to support time-based revocation, as described under Certifi-
cate Revocation.

A <date> field is an ASCII byte string of the form:

YYYY-MM-DD_HH:mm:SS

This is always UTC. For example, "1997-07-26_23:15:10" is a valid date. So is "2001-
01-01_00:00:00". "MM" is a two digit integer in the range 1 to 12; "mm" and "SS" are
two-digit integers in the range 0 to 59.

The optional comment field is defined as follows:

<comment> = " (" "comment" <byte-string> ")"

7

Anything is this field is intended to provide information to humans. It is ignored by
e-speak.

Name Certificates

The format for name certificates is:

<name-cert> = " (" "cert" <version>? <cert-display>?
<issuer-name> <issuer-info>?
<subject> <subject-info>?
<valid> <comment>? ")"
<issuer-name> = " (" "issuer" " (" "name" <principals> <byte-strings>
n)n ll)ll
<principal> = <public-key> | <hash-of-key> ;

The characteristic feature of a name certificate is the the <issuer-name> field. This
defines the issuer of the certificate plus the name of the certificate holder. "Issuer-
name" does not mean "name of issuer". The byte-string in this field is the certificate

94 Developer Release 3.01 June 2000

Access Control

Certificate Structure

holder’s name, and the <principal> is the issuer’s public key, or a hash of it. In the
latter case, there can be a following field containing a URI of the full key, but this is
not currently used or supported in e-speak.

Public Keys
An example of a public key is:

(public-key
(rsa-pkcsl-md5
(e #03#)
(n
|ANHCG85jXFGmiCI3MGPj53FYYSYlaWAue6PKonEthKMJa4HrK4WSKTO
YTTlapRznnELD2D71Wd3Q8PD01yilNJpNzMkxQVHrrAnIQoczeOZuiz/yY
VDzJ1DdiImixyb/Jyme3D0UiUXhd6VGAZ0x0cgrKefKnmjy410Kro3uWl |
)))

The long string between "|" ’s is a number encoded in base64 notation for relative
brevity. This is a feature of BNF advanced syntax [see BNF Notation below].

Such items can be written in certificates, but in the following text, we use "PK XXX"
as an abbreviation for "XXX's public key".

Example

Taking the example (see "Names: Userids, Groups...." on page 88), the following
certificate could be issued by CO_1’s Issuer.

(cert Certificate A
(issuer (name (PK CO 1) "John Doe"))
(subject (PK John Doe))
(not-after "2001-01-01 00:00:00")

)

The underlining is referred to in the next paragraph.

Developer Release 3.01 June 2000 95

Certificate Structure Access Control

Name Reduction

The objective of name reduction is to reduce the name that appears in a subject field
to a single public key, a <principal>. Name reduction replaces the name in a subject
field, by rewriting it with the subject field from the corresponding name certificate.
It uses the fact that a fully qualified name in a subject field has the same format as
<principal> <byte-string> in an issuer-name field. For example, given Certificate
A above, suppose there is an authorization certificate:

(cert
Certificate B
(issuer PK X)
(subject (name (PK CO 1) "John Doe"))
(tag (net.espeak.method CoreManagementInterface))

)

The two underlined fields being the same, we can replace <subject> in B by
<subject> in A, giving certificate C:

(cert
Certificate C
(issuer PK X)
(subject (PK John Doe))
(tag (net.espeak.method CoreManagementInterface))

Compound Names
Suppose an Issuer called "Editor" issues a name certificate to "Foreign Desk"; and

this entity in turn issues one to "Paris Correspondent". Each will have PK holder as
its Subject. An authorization certificate could be made out as follows:

(cert
(issuer PK Accounts)
(subject (PK Editor) "Foreign Desk" "Paris Correpondent"

(tag (Dinner Expenses (*range le 200) (currency FF))3

3 Not an e-speak tag.

96 Developer Release 3.01 June 2000

Access Control

Delegation

)

The subject field is a Compound Name. Accessing the name certificates implied in the
subject field from left to right, we replace this field successively by:

(subject (PK Foreign Desk) "Paris Correspondent)

(subject (PK Paris Correspondent))

- yielding a certificate which can be authenticated.

Name reduction is defined formally as part of the tuple reduction rules in [SPKI
theory, RFC 2693]. This also includes an algorithm for combining validity fields. If
the validity fields are dates (as in the current e-speak implementation), then infor-
mally we take the latest <not-before> date and the earliest <not-after> date. If the
<not-after> date obtained in this way is before the <not-before> date, then the
reduction has failed.

Wire format for certificates

The "on-the-wire" format for certificates is the BNF Canonical Syntax (see "SPKI
BNF Formats" on page 106).

Delegation

E-speak supports SPKI delegation. If an Issuer is not trusted directly by the entity
checking the authorization, its certificates cannot effectively authorize more than
the delegate certificate authorizes. The SPKI certificate reduction rules [see
RFC2693 - AIntersect] describe formally how this is enforced. Informally, it is done
by intersecting the authorizations specified by all tags in the delegation chain, and
taking the smallest validity period as decribed in the Name Reduction section.

Consider the following certificate.

(cert
(issuer PK X)
(subject PK Y)
(propagate)

Developer Release 3.01 June 2000 97

Delegation Access Control

(tag (net.espeak.method CoreManagementInterface))
(not-after "2000-10-01 00:00:00")
)

Suppose Y now issues a certifcate to Z as follows.

(cert
(issuer PK Y)
(subject PK Z)
(tag (net.espeak.method))
(not-after "2001-01-01_00:00:00")
)

Here Y is attempting to authorize more, for longer than was contained in the certif-
icate issued to it by X.

Suppose an entity, checking that Z is authorized, trusts X directly, but not Y. The
two certificates above form the delegate chain by which Z is obtaining its power.
The entity intersects the two tags (as described below), combines the validity times
(as described above) and rewrites the issuer field according to the reduction rules
described in [RFC2693] to get the following certificate.

(cert
(issuer PK X)
(subject PK Z)
(tag (net.espeak.method CoreManagementInterface))
(not-after "2000-10-01_00:00:00")
)

Hence it is not possible for Y’s certificate to authorize more for longer than the orig-
inal certificate granted to Y by X, from entities which don’t trust Y directly.

Verifying tags and tag intersection

Tag verification is the process of determining whether the set of certificates
presented contain the required authorization. SPKI tags define sets of authoriza-
tions. For example the following tag authorizes all methods on all instances of the
CoreManagementInterface.

98 Developer Release 3.01 June 2000

Access Control

Delegation

(tag (net.espeak.method CoreManagementInterface))

So the above tag "contains" the following tag (xxxxyyyyzzzz is the servicelD).

(tag (net.espeak.method CoreManagementInterface ping

XXXXYYYYZZZZ))

Appending elements to the end of a tag reduces the set of authorizations specified.
So:

(tag (net.espeak.method CoreManagementInterface ping))
specifies less than
(tag (net.espeak.method CoreManagementInterface))
In the case of a delegation chain, where the successive certificates authorize:
1) services A, B, C
2) services B, C, D
3) services B, D, E -

the only service authorized will be B - the only member of the "intersection" of the
three certificates.

Implementing Verification

In e-speak, each time an object receives a request to invoke a method, the security
infrastructure will check that there is a certificate that contains the tag needed to
invoke the operation. For Core-managed Resources the security infrastructure is
contained in the core. For other Resources, it is part of the Resource. The security
infrastructure is part of the current implementation of J-ESI, and clients can use the
security infrastructure API’s for their own resource handlers.

For example, if an attempt is made by a client to invoke the "ping" operation on a
CoreManagementlnterface, the infrastructure will check that there is a certificate
that contains the tag (tag (net.espeak.method CoreManagementInterface ping xxxx-
yyyyzzzz)), where xxxyyyzzz is the servicelD of the service being invoked.

Developer Release 3.01 June 2000 99

Delegation

Access Control

100

For this to work the infrastructure must know the servicelD of the Resource. The
servicelD is part of the Resource’s metadata, and the core presents the servicelD
with each request. It is trusted to present the correct servicelD.

For a certificate to authorize an operation we also have to check that the certificate
is issued by somebody trusted to authorize the particular operation on the particu-
lar Resource [see Trust Assumptions section]. This means checking the public key
of the issuer and the signature of the certificate. It is done automatically by the secu-
rity infrastructure.

Authorization certificates can be issued to names as well as public keys. If a certif-
icate issued to a name is presented that authorizes the operation, the name must be
reduced to the public key of the invoker, as described in the Name Reduction
section. The invoker’s public key will be authenticated by the protocols described
in Chapter 7, “Communication”.

Authentication of Services (Informational)

In addition to the e-speak tags specified in the E-speak Authorization Tags section,
a client or service can ask for application-specific tags to be checked, by invoking
the security infrastructure APIs. Since no e-speak tags are specified for servers to
present to clients, any authentication of the service by the client will be application-
specific. For example a client might check for a tag identifying the Id. of a service,
such as:

(tag (net.espeak.servicelD xxxXXyyyyzzzz))

This means that the server will have to get a certificate issued to it containing this
tag. See the Certificate Issuers and Registration section below.

The security APIs for checking application-specific tags are outside the architec-
ture. They are application-specific, and no application-specific tags are supported
for core-managed Resources.

Developer Release 3.01 June 2000

Access Control Certificate Issuers and Registration (Informational)

Certificate Issuers and Registration (Informational)

There is no restriction in e-speak on who can issue a certificate. Anything that has
apublic key can do it. A certificate gets its power either from trust in the Issuer, or
from a delegation chain down from a trusted Issuer. If the issuer is not trusted
directly by a service and has no delegate certificate, its certificates will not autho-
rize access to that service.

The processes of issuing a certificate and of deciding to issue one are application-
specific: not part of the architecture. In some applications an entity can undergo a
registration process whereby some real-world characteristics are verified (credit
card numbers, social security numbers and the like). Registration can be fully auto-
mated, or it can involve human inspection.

Service Ids.

Problems can arise if services have the same service identity, either accidently or
deliberately. For example, a service might use a fake serviceld and ask someone to
issue privileges for that serviceld. The issuer would then think it was issuing privi-
lege on the fake service, when in fact it was issuing privileges on the real service. To
avoid these problems, anyone claiming ownership of a serviceld must be required
to produce a certificate granting it to them. This prevents serviceld spoofing.

Unique service identies can be enforced by all Issuers knowing all previously issued
service identites, or having the Issuer itself generate and issue a cryptographically

secure and unique service identity in a certificate, or by relying on the service iden-
tities generated by e-speak, using a cryptographically secure random-number gener-
ator.

Note that sometimes we want to have the same identity for multiple services. For
example, the services might be replicated. So, whether service identities are
required to be unique and how this is enforced is not part of the architecture.

Trust Assumptions (Informational)

The basis for establishing trust assumptions is:

e Who you trust and for what.

Developer Release 3.01 June 2000 101

Trust Assumptions (Informational) Access Control

e The importance of protecting this information from tampering.
¢ The need to conceal or to reveal who you trust.

All this is application specific, and trust assumptions are not part of the e-speak
core’s architecture.

Trust assumptions define whose certificates will be honored, and the acceptable set
of tags in each case. Both clients and services can have trust assumptions. Trust
assumptions do not appear in any of the e-speak protocols (core to core, or client
to core APIs).

It can be important for a client or server not to reveal certain trust assumptions,
containing information of potential use to an attacker. Conversely, a trust assump-
tion might need to be broadcast, for example to let potential (paying) clients know
the Issuer they need to get a certificate from, to access a service.

It is essential to prevent unauthorized tampering with trust assumptions, so that
attackers cannot add themselves to the list of trusted entities.

The current implementation uses self-issued certificates to store trust assumptions.
A certificate is only accepted as a trust assumption if it is self-issued. The format of
trust assumption certificates in the current implementation of e-speak is exactly
like that of an authorization certificate. The client or service must distinguish
between authorization certificates and trust-assumption certificates. This should be
easy: authorization certificates will be exchanged between two entities as part of
the message protocols (see Chapter 7, “Communication”). Trust assumption certif-
icates will probably be stored locally on disk. They should in any case be separate
from authorization certificates.

The following certificate authorizes the entity Certificatelssuer to issue certificates
authorizing any method in the CoreManagementInterface.

(cert
(issuer PK self)
(subject PK CertificateIssuer)

(tag (net.espeak.method CoreManagementInterface))

102 Developer Release 3.01 June 2000

Access Control

Certificate Revocation

The following certificate means the entity trust itself to issue any certificate.

(cert
(issuer PK self)
(subject PK self)
(tag (*))

)

Note that trust assumptions can use names or public keys as subjects.

Certificate Revocation

In the current implementation the only supported means of expressing validity is
time (the <valid-basic> element). Once a certificate is issued it is valid until it
expires.

SPKI supports online tests for validity. Future releases of e-speak will probably do
the same, and support the principle of a certificate revocation list (CRL).

Managing certificates (informational)

The current implementation of e-speak has a Certificate Issuing Service (CI) that
can be used to issue certificates authorizing access to services that trust it. This CI
might be used to manage access to a set of services on a set of e-speak cores. Here
we outline the way in which the CI manages its certificates as a guideline to those
who want to implement their own CI.

The CI implements a notion of users and groups. When a user registers with the CI,
this service issues a name certificate binding the user’s name (userid) to a public
key. Thereafter all certificates are issued to the userid rather than the user’s public
key. This means that to revoke all access to a user we need only revoke the certifi-
cate binding the userid to the public key.

Developer Release 3.01 June 2000 103

Managing certificates (informational) Access Control

The CI also maintains a list of groups analagous to the groups you might find used
in operating system security architectures (e.g. "users" and "administrator"). An
operator of the CI can create new groups.

To add a user or users to a group, the operator selects the userid or userids and
group. The CI then issues a name certificate to each user, binding the userid name
to the group name.

To issue authorization certificates for a service, the CI needs to know what inter-
faces and methods are available on the service (the client stub is used for this). The
CI presents a simple GUI listing the methods for each interface as well as listing
groups and userids. The operator can select the group or individual user and what
interfaces or methods they will be allowed to access. The Cl issues an authorization
certificate to the userid or the group.

Whenever the Cl issues a certificate, it records this in its policy database. The policy
database is used to drive access revocation and certificate renewal.

The CI provides a certificate directory interface from which stored certificates can
be retrieved. This allows services to see what certificates have been issued to users
and permits users to retrieve certificates that have been issued to them.

Revoking and Renewing certificates

104

A certificate is valid until it expires. To save having to renew all certificates
frequently, an Issuer might choose a relatively short period of validity when issuing
name certificates binding a user’s name to a public key. Other certificates, particu-
larly authorization certficates would have longer periods of validity.

The policy for certificate renewal, enforced by the CI, is to renew automatically all
certificates in its policy database as they approach expiry. Renewed certificates can
be retrieved from the CI’s certificate directory.

If a CI operator revokes access or removes a user, the certificate(s) are removed
from the policy database immediately. This means the certificates will not be
renewed and can no longer be retrieved from the directory. Entities that have
retrieved certificates from the certificate directory can continue to use them until
they have expired.

Developer Release 3.01 June 2000

Access Control

Private Security Environments (Informational)

Note that all a user’s power is revoked as soon as the certificate binding their name
to a public key expires.

Renewing keys

The CI supports key renewal by issuing a certificate binding the user’s new key to
the user’s name. All other certificates issued to the user will remain valid as they are
issued to the user’s userid (name). The user may undergo a process similar to regis-
tration to convince the CI that the new key is valid.

Private Security Environments (Informational)

Private keys must never be shared and so need to be stored securely. How private
keys are stored is a matter for the owner of the key and has no impact on the e-speak
protocols or APIs used to interact with the core. It is therefore not part of the archi-
tecture. In the current implementation a PSE or Private Security Environment is
used. This stores the keys in an encrypted file on a disk.

The private keys are never revealed to the the application. Instead data is sent to the
PSE object when it requires signing. The PSE framework has been designed so that
the underlying mechanisms can be changed to accomodate devices like smart
cards.

Interoperability with X.509 (Informational)

X.509 certificate infrastructures [see RFC 2459] are becoming more and more
common. An X.509 certificate binds an entity’s distinguished name to its public key.
This is very similar to the way in which a SPKI name certificate binds a name to a
public key. One difficulty is that in SPKI the Issuer is denoted by a public key. In
X.509 the Certificate Authority is denoted by a "distinguished name". Its public key
is not required to be in the certificate. When it isn’t there, the Certificate Authority
is assumed to have a well-known public key.

Developer Release 3.01 June 2000 105

SPKI BNF Formats Access Control

An e-speak CI can take an X.509 certificate, verify it (check it is signed by a trusted
Certificate Authority) and issue an e-speak Name Certificate binding an encoding of
the subject’s X.509 distinguished name to the subject’s public key. (This is not
supported in the current release.)

In addition the e-speak certificate verifier could be extended to handle X.509 name
certificates natively, automatically converting them to SPKI name certificates as
outlined above. (This is not supported in the current release.)

X.509 version 3 also supports attribute certificates and work is on going within the
IETF on defining a profile for attributes to use within the Internet’s PKIX infrastruc-
ture. It is not possible to define a useable mapping from X.509 attribute certificates
into SPKI authorization certificates, as X.509 attributes can be arbitrary. In principle
it should be possible to define a mapping from SPKI certificates into X.509 attribute
certificates.

SPKI BNF Formats

106

E-speak uses two BNF syntaxes. The "advanced" syntax is used for manually-input
data and human reading. It has been used throughout this document. Its advantages
for this purpose are allowing white spaces (including line-feed), and base64 and hex
codings of numbers. The base64 coding allows public keys to be written with rela-
tive brevity.

The parser accepts certificates in advanced syntax or canonical syntax, and outputs
them in canonical syntax. This is used for all internal operations, such as protocol
exchanges, and for serialized transmission. All hashes are computed on data in
canonical syntax. This is necessary, because varying numbers of white spaces
would produce invalid hashes.

Advanced Syntax

The advanced syntax follows. Its initial non-terminal is <s-part>.

<alpha> = [a-zA-Z];
<base64> = "##" (<base64-char> | <spaces>)* "#" ;
<base64-char> = <alpha> | <digits> | [+/=];

Developer Release 3.01 June 2000

Access Control SPKI BNF Formats

<bytes> = <token> | <string> | <raw-bytes> | <quoted-string> |
<base64> | <hex> ;

<byte-string> = <display-type>? <bytes> <decimal> = [0-9]+ ;
<digit> = [0-9];

<display-type> = "[" <bytes> "]"

<hex> = "#|" (<hex-digit> | <spaces)* "|";

<hex-digit> = [0-9A-Fa-f];

<punctuation> = [\-./ :*+=] | ['',@] | [$%"&\[\1# <>?:]] ;
<quoted-string> = "#<" {delimiter char c} {delimiter string s not

containing c} {c}

{any character strng not containing s} {s} ;

<raw-bytes> = "#" <decimal> "*" {binary byte string of that
length} ;
<s-expr> = "(" (<s-part> | <space>)* ")" ;

<space> = [\t\r\n]*;

<s-part> = <byte-string> | <s-expr> ;
<string> = "\"" {string chars} "\"";
<token> = (<alpha> | <punctuations)
(<alpha> | <punctuations> | <digits)* ;

We also allow end-of-line comments indicated by !. Comments are treated as white
space.

Within a string C conventions can be used, including octal escape sequences.
Specifically:

\b backspace (010)
\f formfeed (014)
\n newline (016)
\r return (015)

\t tab (011)

\nnn octal escape
Where nnn is a 3-digit octal numeric in the range Og - 177g , which is 0 - 127,

Canonical Syntax

The canonical syntax defines the following.

Developer Release 3.01 June 2000 107

SPKI BNF Formats Access Control

<bytes> = <raw-bytes> ;
<decimal> = [1-9] [0-9]* | "o"
<s-expr> = " (" <s-part>* ")" ;

This disallows space in lists, all byte forms except counted string, and insists that
decimal numbers have no redundant leading zeros. Hashes are always computed
over canonical forms.

Within certificates, lists must start with a byte string and be non-empty:

<s-expr> = " (" <bytes> <s-part>* ")" ;

The following is the BNF' currently recognized. The top-level non-terminals are:

_ <cert>: a certificate.
_ <name-cert>: a name certificate
_ <proof> : a certificate justification.

<proofs> is used in the messaging protocol. (See]

In the messaging protocol (See Chapter 7, “Communication”) we use tag lists for
queries and requirements.

<cert> = " (" "cert" <version>? <cert-display>?
<issuer> <issuer-info>?
<subject> <subject-info>?

<deleg>? <tag> <valid>? <comment>? ")"

<cert-display> = " (" "display" <byte-string> ")"
<comment> = " (" "comment" <byte-strings> ")"
<date> = <byte-string> ;

<date-expr> = <byte-string> ;

<deleg> = " (" "propagate" ")" ;

<full-name> = " (" "name" <principal> <byte-strings+ ")" ;
<gte> = "g" | "ge"

<hash> = " (" "hash" <hash-alg-name> <hash-value><uris>? ")" ;
<hash-alg-name> = "md5" | "shal" | <uris> ;

<hash-of-key> = <hash> ;
<hash-value> = <byte-string> ;

<issuer> = " (" "issuer" <principals> ")" ;

108 Developer Release 3.01 June 2000

Access Control

SPKI BNF Formats

<issuer-info> = " (" "issuer-info" <uris> ")"

<issuer-name> = " (" "issuer" " (" "name" <principals> <byte-strings>
n)n ll)ll

<low-lim> = <gte> <byte-string> ;

<ltes> = "1" | n"le" ;

<name> = <relative-name> | <full-names> ;

<name-cert> = " (" "cert" <version>? <cert-display>?

<issuer-name> <issuer-info>?
<subject> <subject-info>?

<valid> <comments>? ")"

<not-after> = " (" "not-after" <date> ")"

<not-before> = " (" "not-before" <date> ")"

<n-vals> = <byte-strings> ;

<object-hash> = " (" "object-hash" <hash> ")"

<one-valid> = " (" "one-time" <byte-strings> ")" ;

<online-test> = " (" "online" <online-type> <uris>? <principals>

<s-part>x ")" ;
<online-type> = "crl" | "reval" | "one-time"

<principal> = <public-key> | <hash-of-key> ;

<proof> = (<cert> | <name-certs)*

<public-key> = " (" "public-key" <pub-sig-alg-id> <s-expr>*
<uris>? ")"

<pub-sig-alg-id>= "rsa-pkcsl-md5" | "rsa-pkcsl-shal" | "rsa-
pkcsl" | "dsa-shal" | <uris ;

<range-ordering>= "alpha" | "numeric" | "time" | "binary" | "date"
<relative-name> = " (" "name" <byte-strings>+ ")" ;

<requires> = " (" "requires" <tags>* ")"

<restrict-date> = " (" "date" <date-expr> ")"

<restriction> = <restrict-date> | <target> | <requiress> ;
<restrictions> = <restriction>* ;

<reval> = " (" "reval" <version>? <subj-hash> <reval-body> ")" ;
<reval-body> = <one-valid> | <valid-basics> ;

<signatures> = " (" "signature" <hash> <principal> <sig-vals ")" ;

Developer Release 3.01 June 2000 109

SPKI BNF Formats

Access Control

<sig-val> = <s-part> ;

<subject> = " (" "subject" <subj-obj> ")"
<subject-info> = " (" "subject-info" <uriss> ")" ;
<subj-hash> = " (" "cert" <hash> ")"

<subj-obj> = <principals> | <name> | <object-hashs;
<tag> = " (" "tag" <tag-expr>* ")"
<tag-and> = " (" "*" "gnd" <tag-expr>+ ")" ;
<tag-expr> = <byte-string> | <tag-simple>

| <tag-prefix> | <tag-ranges>

| <tag-set> | <tag-and>

| <tag-stars> ;

<tag-simple> = " (" <byte-string> <tag-expr>* ")"
<tag-prefix> = " (" "*" "prefix" <byte-string> ")"
<tag-ranges> = " (" "*" "range" <range-orderings

<low-1lim>? <up-lim>? ")" ;

7

<tag-set> = " (" "*" "get" <tag-expr>* ")" ;

<tag-star> = " (" "knm o m)uw

<target> = " (" "target" <tag-expr>* ")" ;

<up-lim> = <lte> <byte-strings> ;

<uri> = <byte-strings> ;

<uris> = " (" "uri" <uris* ")"

<valid> = <valid-basic> <online-test>* <restrictions> ;
<valid-basic> = <not-before>? <not-after>? ;

<version> = " (" "version" <byte-string> ")" ;

The elements <reval>, <online-test> (and related elements such as crl) and
<restrictions> are parsed but silently ignored in the current implementation.
Architectural extensions will be introduced to support these elements.

110

Developer Release 3.01 June 2000

Access Control References

References

Pfleeger - C.P. Pfleeger: "Security in Computing", Englewood Cliffs, N.J., Prentice-
Hall, 1989

RFC 2396 - T. Berners-Lee, R. Fielding, U.C. Irvine, T. Ylonen:
"Uniform Resource Identifiers (URI): Generic Syntax", Aug. 1998

RFC 2459 - R. Housley, W. Ford, W. Polk, D. Solo: "Internet X.509 Public Key Infra-
structure Certificate and CRL Profile", Jan. 1999

RFC 2692 - C. Ellison: "SPKI Requirements", Sept. 1999

RFC 2693 - C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ilonen:
"SPKI Certificate Theory", Sept. 1999

Note: For all RFC’s, access www.ietf.org

Schneier - Bruce Schneier: "Applied Cryptography", 2nd. Edition, John Wiley &
Sons, 1996

Stallings - William Stallings: "Cyptography and Network Security: Principles and
Practice", 2nd. Ed., Prentice Hall, Upper Saddle River, N.J, 1999

Working Draft - C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ilonen:
"Simple Public Key Certificate", Internet Draft <draft-ietf-spki-cert-structure-
0.5.txt, (Expired 18 Sept. 1998)

Developer Release 3.01 June 2000 111

References Access Control

112 Developer Release 3.01 June 2000

Communication

The only way for a Client to request access to a Resource from a Resource Handler
is to send a message through the e-speak core. The only way for a Resource Handler
to return a reply to a Client is to send a message through the e-speak core. Thus, the
e-speak core mediates all access between Clients and Resource Handlers. It is the
only entity to accept connections: Clients and Resource Handlers establish connec-
tions to an e-speak Core so that they can communicate with each other.

What is mediation in this context? Mediation includes some or all of the following
functions.

¢ The e-speak core determines to which resource handler or handlers to route the
message.

e The e-speak core determines how to route the message (routing path).

e The e-speak core can process and transform the message headers and contents.
Only limited processing of the message is possible if security is enabled.

Mediation is transparent to the Client and Resource Handler. Figure 4 illustrates the
flow of information through the Core.

All messages exchanged between Clients and e-speak cores are formated as
ESPDU’s (E-speak Protcol Data Units) (“E-speak Protocol Data Units (ESPDUs)”
on page 147). The destination or “TO” field of the ESPDU is an ESName
(“ESNames” on page 117). ESNames conform to the format and grammar defined
for Universal Resource Identifiers in RFC 2396.

The e-speak core does not keep any information about replies to messages. As far
as the e-speak core is concerned, a reply is another message. If the Client needs a
reply, it can wait or send another message; all messaging is asynchronous. Each

asynchronous message has an identifier set by the sender. A reply can refer to this

Developer Release 3.01 June 2000 113

Communication

identifier so the Client knows which message the reply is for. Figure 4 shows the
flow of messages through an e-speak core when a Client sends and receives
messages froma Resource Handler.

Resource >
Client Handler |4 Resource
A
\ 4 A 4
OB|| IB OB| | IB
e-speak .
core /
) - OB
Router IB
I
OB = Outbox
IB = Inbox

Figure 4 Message flow with an e-speak core

The the e-speak core never keeps any state about a message beyond the time
needed to complete processing. Once the it retrieves a message from a Client’s
Outbox, the e-speak core guarantees to do one of three things:

1 Normally, the it forwards the message to a Resource Handler. However, it
cannot deliver the message if:

e The “To” field of the message is not valid Resource

¢ The Inbox specified in the destination Resource metadata is not connected
to a Resource Handler

¢ The Resource Handler’s Inbox is full

2 When it cannot deliver the message, the e-speak core returns an error message
to the Client.

114 Developer Release 3.01 June 2000

Communication

3 Ifthe Client’s Inbox can’t take the error message for any reason, the e-speak
core discards the message.

Figure 5 shows the message flow when a Client sends and receives messages from
a Resource Handler on a remote e-speak core. The same protocol is used to
exchange messages between e-speak cores as is used to exchange messages
between Clients and e-speak Cores. All messages are formated as ESPDU

Client l:_:::::;:: P > Resource

2
Y e-speak A e-speak
OB|| 1B o OB| (IB o

\‘ L OB
Router E I Router

OB = Outbox
IB = Inbox

Figure 5 core to core message flow

The Session Layer Security (SLS) Protocol is run between a client and a resource
handler to establish a secure session between the client and the resource handler.
All SLS messages are carried as ESPDU messages.

A secure session has the following properties.

¢ All messages exchanged between the two end points are authenticated. This
prevents messages being changed or messages being inserted into the TCP
connection by a third party (e.g. an attacker).

Developer Release 3.01 June 2000 115

Communication

¢ Allmessage exchanged between the two end points are protected against replay.
This prevents a third party capturing the messaging and replaying it at a later
date to trigger a repeat of the action taken by the recepient.

Messages exchanged in a secure session can be encrypted for confidentiality. This
prevents a third party from reading the contents of a message.

In addition to two modes of secure session, SLS supports non-secure sessions, in
which messages are exchanged without encryption, authentication or protection
against replay.

The Session Layer Security protocol is described in “Session Layer Security Protcol
(SLS)” on page 122.

Two e-speak cores can exchange core manged resource and resource metadata.
This is known as import and export of resources. This is needed for several reasons,
including the following.

¢ A resource cannot be discovered in a vocabulary on an e-speak core unless the
vocabulary has been registered on that core. If the vocabulary was created on
another e-speak core, it is registered by importing it.

¢ A resource cannot be registered in a contract on an e-speak core, unless the
contract has been registered on that core. If the contract was created on another
e-speak core, it is registered by importing it.

¢ Resource metadata can be imported into an e-speak core, to cache it. This makes
lookup of those resources faster.

Resource import and export is described in “Core to core communication” on
page 152.

The format for data exchanged with e-speak resources is defined by the e-speak
serialization format in “E-speak Serialization Format” on page 166. This data is
carried within the payload of SLS messages.

116 Developer Release 3.01 June 2000

Communication ESNames

ESNames

ESnames denote an access path to a resource. ESnames conform to the format and
grammar defined for Universal Resource Identifiers (URIs) in RFC 2396. ESNames
are therefore URIs and mores specifically, since they denote the access path for the
resource, ESNames are also Universal Resource Locators (URLs). ESNames have

the following format.

es://<host>/<relative paths>

The host part of an ESName is either the host name or the IP address of the host on
which the e-speak core is located together with an optional port number. If the port
number is not specified, the current implementation throws an exception. Discus-
sions are underway with IANA for a standard port number to be assigned.

The full form of an ESName (es://<host>/<relative path>) is known as an absolute
ESName. Subsets of this syntax also denote ESNames (see “ESName BNF” on
page 121). However, it may not be possible to resolve such ESNames if we do not
have the necessary context.

The relative path component of an ESName must be unique on the given e-speak
core. The path is relative in the sense that it is given a global context by the <host>
element of the ESName. If the <host> element is missing (e.g. es://path or es:/path),
then the resolver must decide the global context in which to begin resolution.
Usually the global context is assumed to be the current host.

The path consists of a set of strings separated by “/”, for example “a/b/c”. The path
is resolved by taking each string element in order and resolving that in the current
name frame. If this returns a name frame the next element is resolved in that name
frame. The process continues until there are no more elements in the path in which
case we have resolved the ESName to the intended resource. The first element is

resolved in the root name frame of the e-speak core denoted by the server part of

the ESName. For example, taking “a/b/c”, “a” is resolved in the e-speak core’s root
name frame to return a name frame which we denote NF(a). Next b is resolved in
NF(a), to return a name frame which we denote NF(ab). Finally c is resolved in the

name frame NF(a b).

Developer Release 3.01 June 2000 117

ESNames

Communication

If a string element of the path component other than the final component fails to
resolve to a name frame, name resolution has failed. If the final element fails to
resolve to a resource, name resolution fails.

When a client registers a resource with an e-speak core, the default name frame for
that resource, is root name frame of the client’s protection domain.

If two clients on the same host bind two different resources in their root frames
under the same relative path (e.g /a/resource) they have different absolute ESnames
even though the host part is the same:

es://host/clientlPDRootFrame/a/resource and

es://host/client2PDRootFrame/a/resource

If a client terminates and its protection domain is not persistent, there is a recursive
deletion of all names within the protection domain’s root name frame. This means
any URLs handed out rooted in this name frame are invalid. To overcome this, a
resource needs to be bound in a name frame which is persistent. (To avoid the dele-
tion of a non-persistent protection deleting persistent persistent resources, the
current implementation do not allow a persistent resource to be bound within a
non-persistent Protection Domain.)

Core Name Frame and core root Name Frame

118

Every e-speak Core has a Core Name Frame with the following ESName.

es://<servers/core

The names of various core managed resources are bound within this name frame,
including vocabularies, contracts and the metaresource. The following names are
currently used.

/Core/MetaResource
/Core/ResourceFactory
/Core/SystemMonitor
/Core/Finder
/Core/CoreManagementService
/Core/DefaultVocabulary
/Core/BaseDistributorVocabulary
/Core/CoreDistributor

Developer Release 3.01 June 2000

Communication ESNames

/Core/ConnectionManager
/Core/RemoteResourceManager
/Core/AccountManager
/Core/BaseAccountVocabulary

Every e-speak Core has a root Name Frame which is denoted:

es://<servers>/

or, alternatively, assuming the <server> part is already known to the resolver:

es:/

The following names are bound in the e-speak Core root Name Frame:

/Core
/ContractContract

/VocabularyContract

Canonical ESName

The canonical is the ESName stored in the URL field in the Resource’s
ResourceSpecification (see Chapter 3, “Resource Descriptions, Resource Specifica-
tions and Resource Types”). This ESName is guaranteed always to be valid as long
as the Resource is registered, it does not depend on any binding maintained by in a
Client’s Name Frame. Cannonical ESNames have the following form:

es://<hostports>/proc/resource/<type strings/<unique id>

The <hostport> field is of the form host name or IP address followed by a port
number separeted by a “:” as specified in RFC 2396.

The following are the permissible values of <type_string>, they denote the
Resource Type (see Chapter 3, “Resource Descriptions, Resource Specifications
and Resource Types”)

"Inbox"
"MetaResource"
"ProtectionDomain"
"ResourceFactory"
"ConnectionManager"

Developer Release 3.01 June 2000 119

ESNames

Communication

"RemoteResourceManager"
"Contract"
"CoreDistributor"
"ExternalResource"
"ExternalResourceContract"
"ImporterExporter"
"MappingObject™"
"NameFrame"
"RepositoryView"
"SecureBoot"
"SystemMonitor"
"AccountManager"
"Account"

"Vocabulary"
"CoreManagementService"
"Finder"

The filed <unique_id> is the stringified form of a number (in the current implemen-
tation this is the repository handle).

Any Resource bound in the Core Name Frame es://<hostport>/Core/ cannot be
assigned a canonical name of the form described above. Instead the name in the
Core Name is assumed to be the Canonical Name.

Queries and fragments

120

Queries and fragments are also allowed in ESNames. A query is the data that follows
the “?” in an ESName of the form:

es://<host>/<relative path> ? uric*
A fragment is the data that follows the “#” in an ESName of the form:
es://<host>/<relative path> # uric*

The character set uric is defined in RFC 2396 which also specifies constraints on the
data in queries and fragments.

Developer Release 3.01 June 2000

Communication ESNames

Queries and fragments are not used and name resolution and are never interpreted
by the e-speak core. They are delivered to the resource handler as part of the
message.

ESName class definition

class ESName({
string hostPart;
string[] pathPart;

}

The above class defines the hostPart consists of the portion of the ESname from
“es://” to the first “/”. In an ESName the path separator is “/”. This separates elements
of the path. Each element of pathPart consists of an element in the path, without
and “/” character.

ESName BNF

Here is the BNF for ESNames. Please refer to RFC 2396 for any element not defined

directly.
ESName = [absoluteESname | relativeESname] ["#" fragment]
absoluteESname = es ":" hier part
relativeESname = (net path | abs path | rel path) ["?" query]
hier part = (net path | abs path) ["?" query]
net path = "//" server [abs_path]
abs path = "/" path segments

rel path = rel segment [abs path]

rel segment = 1*(unreserved | escaped | ";" "@" e m=n
| nyn | ngn | o

server = host [":" port]

host = hostname | IPv4address

Developer Release 3.01 June 2000 121

Session Layer Security Protcol (SLS) Communication

hostname = *(domainlabel ".") toplabel ["."]

domainlabel = alphanum | alphanum *(alphanum | "-") alphanum
toplabel = alpha | alpha *(alphanum | "-") alphanum
IPv4address = 1*digit "." 1*digit "." 1*digit "." 1*digit

port = *digit

path segments = segment *("/" segment)
segment = *pchar *(";" param)

param = *pchar

pchar = unreserved | escaped | ":" | "@" nen e | ongn
| non
/
query = *uric
fragment = *uric

Session Layer Security Protcol (SLS)

The SLS (Session Layer Security) protocol tries to extend the capabilities of SSL
“The TLS Protocol version 1.0 RFC 2246, IETF by T. Dierks and C. Allen January
1999.” on page 169, a protocol that is supported by most modern web browsers, and
is currently the default way to secure client/server interactions over the web. The
motivation for changing SSL can be summarized as follows:

¢ Transport independence: SSL links a security session with a TCP socket. If the
socket dies the security session dies with it, something undesirable when the life
expectation of a security session is very different from the life expectation of the
transport. Also, we cannot multiplex several security sessions onto the same
socket, or perform dynamic load balancing of the end point without starting the
session from scratch. Moreover, even though properties like reliability and in-
order delivery of messages are critical for a security protocol, some TCP details
are not, and this might put unnecessary restrictions on the applicability of SSL.
Finally, in some cases we might want to use a different transport for sending and

122 Developer Release 3.01 June 2000

Communication

Session Layer Security Protcol (SLS)

receiving messages (i.e., outgoing messages use a different firewall needing two
sockets). SLS tries to make the minimum number of assumptions on the commu-
nication transport solving most of the issues above.

Tunnelling support: During firewall traversal we might want the firewall to
control the client access rights to the internal LAN for every packet. However,
we might not want the firewall to see all the traffic in clear (therefore, losing the
end-to-end security property). This is difficult to achieve with SSL because
either we let the client open a direct socket to the service or the firewall sees all
the traffic in clear. On the other hand, with SLS we can nest a secure session
inside another one, possibly with different end points, allowing to achieve both
goals simultaneously.

Elliptic cryptography: Most implementations of SSL only support Diffie-Hellman
key agreement algorithms based on exponentiation. SLS uses a faster algorithm
based on Elliptic Curve Cryptography (ECC) developed in (ref to HPLabs
report).

Attribute certificates using SPKI. SSL only supports X509 name certificates,
mainly to authenticate that the end-point “owns”, according to a configured
“trusted CA”, the web address that we wanted to reach. Only one certificate by
each party can be used, and in most cases only server authentication is
performed. On the other hand, SLS performs a negotiation of tags that need to
be proven represented by multiple SPKI certificates. This allows a fine grained
control of security by mapping tags to actual permissions, raising the level of
abstraction from “a stream of bytes” in SSL to a particular operation on service
X in SLS, making it easier to integrate with application level security. Details on
the use of SPKI certificates in SLS can be found in Chapter 6, “Access Control.”

Latency minimization: SLS allows the client to send application data after a
round-trip negotiation has succeed. In SSL two round-trips are needed before
the application data is sent. This can have important performance implications
when network delays are large and we need a quick response from the server.

Functional Description of SLS

In this section we describe what is the expected behavior of the protocol.

Developer Release 3.01 June 2000 123

Session Layer Security Protcol (SLS) Communication

124

Protocol message types

Every SLS message is embedded in a PDU (Protocol Data Unit) (“Protocol Data
Unit PDU” on page 139) that contains some header information that allows the
system to dispatch it to the correct security context, route it through the network,
identify replies, ensure the protocol version and so on.Two fields of this header rele-
vant to our discussion classify messages according to the type of encoding and their

purpose:
Supported encoding types

CLEAR_DATA: The message is not encrypted or protected against modifica-
tion.

PROTECTED_DATA: The message is not encrypted but it is protected
against modification with a signed digest (MAC)

SECURE_DATA: The message is encrypted and protected against modifica-
tion using a MAC.

Supported message types

HANDSHAKE: Message exchanged during the key-agreement protocol.
There are four types of handshake messages that are discussed later.

ALERT: Message that identifies an abnormal situation during the handshake
or after the session has been established. ALERT messages can be fatal, forc-
ing session termination, or just warnings, in which case what should be the
response is implementation dependent.

APPLICATION_MESSAGE: Message that communicates application data.

TUNNEL: A message that contains another PDU in its payload. This is used
to nest sessions, something important for firewall traversal.

PING: A heartbeat message that is used by the session scavenger to know if
the session is still active.

REKEY: Forces a key offset of the instantiated cipher suite based on the
previously negotiated shared secret. (REKEY is not supported in the current
implementation.)

Developer Release 3.01 June 2000

Communication

Session Layer Security Protcol (SLS)

High level protocol state machine

sessionOK

timeout,alert,
close

timeoutjalert,

Figure 6 High level state transitions in SLS.

Figure 6 shows what are the possible states of a session, and what triggers transi-
tions between them. There are four possible states:

START: the session object has been created but it is not fully configured. Also,
the key agreement protocol has not started.

SET_UP: the key agreement protocol has started. We do not have a shared secret
yet, so all the messages have CLEAR_DATA encoding. It is implementation
dependent whether to pay attention to unauthenticated ALERT messages or not.

READY: the key agreement protocol has successfully completed. We have a
working session that we can use to encrypt/decrypt messages and validate
whether the session has certain security tags associated with it. At this point
ALERT messages are authenticated and should not be ignored.

DEAD: the session is no longer operational, and will never be. We can safely
scavenge it.

Also, we can see in Figure 6 the events that trigger state transitions:

init: complete the initialization of the object and send a message to the other
party (if needed) to start the key agreement.

Developer Release 3.01 June 2000 125

Session Layer Security Protcol (SLS) Communication

¢ sessionOK: The key agreement has finished successfully and we have a new
cipher suite to install in the session.

* timeout: a timeout expired. The different timeouts are explained in detail in
“Timeouts description” on page 133.

e alert: an authenticated (or optionally non-authenticated) fatal alert was handled/
sent forcing a shutdown of the session.

e close: a client forced termination of a session by invoking the close() method.

Two important operations on a session are handling and sending a PDU.

SLS Handling a PDU

The handling operation assumes that the PDU has already been received from the
transport and invokes some security processing on the PDU (i.e., decryption/
authentication).

Depending on the state the session, and the encoding/type of the PDU, the session
behaves differently while handling PDUs. Table 7 shows the expected behavior of a

Table 7 PDU handling behavior depending on state

TYPE ENCODE START SET_UP READY DEAD
HAND- CLEAR Exception HandleHsk Ignore Exception
SHAKE

MAC Exception Ignore Warning Exception
ALERT CLEAR Exception HandleAl Ignore Exception

Optional

MAC Exception Ignore HandleAl Exception
APPLICA- CLEAR Exception Ignore Ignore Exception
TION

MAC Exception Ignore HandleApp Exception
TUNNEL CLEAR Exception Ignore Ignore Exception

MAC Exception Ignore HandleTun Exception

126 Developer Release 3.01 June 2000

Communication

Session Layer Security Protcol (SLS)

Table 7 PDU handling behavior depending on state (Continued)

TYPE ENCODE START SET_UP READY DEAD

PING CLEAR Exception Ignore Ignore Exception
MAC Exception Ignore HandlePin Exception

REKEY CLEAR Exception Ignore Ignore Exception
MAC Exception Ignore HandleRe Exception

session when trying to handle a PDU. Let’s explain the terms in that table:

e MAC: either PROTECTED_DATA or SECURE_DATA encoding type. Obviously,
the important property is that the PDU is correctly authenticated, otherwise we
always ignore the message, regardless of its claims.

e Exception: notify the client doing the handling that the session is not opera-
tional.

e Ignore: do not take any significant action based on that PDU (i.e., change session
internal state). Optionally, an implementation could log the event that a PDU is
being ignored.

e Optional: an action is considered optional if a particular implementation can
decide to invoke a Ignore PDU instead.

e Warning: send a warning ALERT response to the other party.

e HandleHsh: handle a HANDSHAKE PDU by making progress in the key agree-
ment protocol. This could involve an Internal Send of a HANDSHAKE or ALERT
PDU to the other party.

e HandleAl: handle an ALERT PDU. This might involve closing the session if it is
a fatal alert or logging the event otherwise

e HandleApp: handle an APPLICATION_MESSAGE PDU. Typically, the PDU is
returned in clear text to the client if authenticates and/or decrypts correctly,
otherwise it is ignored.

Developer Release 3.01 June 2000 127

Session Layer Security Protcol (SLS)

Communication

e HandleTun: handle a TUNNEL PDU. This could involve “peeling off” the outer
PDU, returning the inner one (after decryption/authentication of the outer one)

or calling a custom handler to deal with it.

¢ HandlePin: handle a PING PDU. This handling might require sending a reply
PING PDU or just record that our previous PING has been replied successfully.

¢ HandleRe: handle a REKEY PDU. Forces the re-key of the handler part of the

crypto suite.

SLS Sending a PDU

The sending operation first invokes the required security processing (i.e, encoding,
MAC computation) and then it uses the underlying transport to deliver the message
at the other end. Note that handling a PDU might have as a side effect that another
PDU is sent to the other party, i.e., a response to a handshake message during the
key agreement. We call that case a internal send as opposed to a external send

directly invoked by the client.

Table 8 shows the expected behavior when trying to send a PDU through a session.

Table 8 PDU sending behavior depending on state

TYPE MODE START SET_UP READY DEAD
HAND- Internal NotApply OK OK NotApply
SHAKE External Exception Retry OK Exception
ALERT Internal NotApply OK OK NotApply
External Exception Retry OK Exception
APPLICA- Internal NotApply NotApply NotApply NotApply
TION External Exception Retry OK Exception
TUNNEL Internal NotApply NotApply NotApply NotApply
External Exception Retry OK Exception
128 Developer Release 3.01 June 2000

Communication Session Layer Security Protcol (SLS)
TYPE MODE START SET_UP READY DEAD
PING Internal NotApply NotApply OK NotApply
External Exception Retry OK Exception
REKEY Internal NotApply NotApply OK NotApply
External Exception Retry OK Exception

Some terms in that table deserve further explanation:

¢ NotApply: itis an implementation error if the protocol tries to send this message.
This is only relevant for internal messages because the implementation does not
have control over possible external messages.

¢ OK: this means that the session performs the appropriate processing and try to
deliver it to the lower layer. This does not mean that the message has been
correctly sent, because this depends on the status of the underlying transport/
session.

¢ Retry: The client is informed that the session is currently unavailable to send
messages but this might change in the future.

e Exception: The client is informed that the session is permanently unavailable.

The key-exchange protocol

The key-exchange protocol is an authenticated Diffie-Hellman key exchange. From
the session key agreed in the Diffie-Hellman exchange further keys are derived for
encryption and confidentiality.

Need more details here

¢ Elliptic Diffie-Hellman instead of modulus exponentiation: instead of choosing
a group and checking its validity at the other end, we pick one of a pre-deter-
mined family of elliptic curves, and later check that the random point belongs to
that curve.

Developer Release 3.01 June 2000 129

Session Layer Security Protcol (SLS) Communication

¢ No support for multiple public keys of the same principal: this extension should
be trivial by adding more than one signature in the handshake.

¢ Added tunneling support: we allow the responder to notify in its first handshake
message that it wants to relay the session (tunnelling is described in “Support
for tunneling” on page 137), so it might not have to prove the tags requested.

¢ Randomized secure channel identifiers (SPI): we want SPIs to be hard to guess
to avoid a denial-of-service attack by flooding the client/server with fatal alert
messages while being able to pay attention to non-authenticated alerts during
the handshake (handling alerts is described in Section “Handling alert
messages” on page 132)

Initiator Responder

HskRequest ~ __.---""

OK

Second
o
install

Ready

HskFinish

Figure 7 Key agreement protocol

130 Developer Release 3.01 June 2000

Communication

Session Layer Security Protcol (SLS)

Figure 7 shows the key agreement interactions and corresponding state machines
of the handlers that control these interactions. These state machines are embedded
in the state SET_UP in Figure 7. Sub-states READY and DEAD are not necessarily
related to the ones in Figure 7. For example, killing the handler does not mean that
the session dies, it is perfectly normal that the handler terminates when the key

agreement finish successfully, and the cipher suite gets “instantiated” in the session.

A quick summary of the messages sent during the handshake:

e HskRequest: a request from the server (Responder) to the client (Initiator) to
start a session

e HskStart: a request (or acknowledgement) from the client to the server to start
asession. It contains the elliptic curve and cipher suite list suggested, the SPI at
this end, a hint on the tags that the server should prove, a hint on the operations
that we want to perform, and a public Diffie-Hellman (DH) key.

e HskReply: a reply to the previous HskStart from the server to the client. It
contains the cipher suite chosen, the SPI at the server end, whether the server is
arelay, certificates to prove the requested tags, a hint of tags that the client need
to prove, a public DH key and a signature.

¢ [HskFinish: last message from client to server. It contains certificates to prove
the requested tags and a signature.

¢ Alert: notify the other end of a failure of the key agreement.

We made the Initiator and Responder state machines similar by always introducing
a HskRequest message. If the protocol is started by the Initiator the HskRequest is
generated locally. Otherwise it is generated by the Responder and transmitted
through the network. We pay attention to alerts and “incorrect” messages with valid
random SPI so we can Kkill the handler at any time.

Key generation algorithm

Discription of key generation algorithm : section 4.0 of Ferguson report

The record layer

What is the record layer. Need more details here - devTeam?

Developer Release 3.01 June 2000 131

Session Layer Security Protcol (SLS) Communication

Cipher suite support

The encryption algorithms currently supported are Blowfish with a 128 bit key, and
triple DES with three independent keys for encryption. Blowfish is the recom-
mended cipher because of its speed but 3DES is the conservative choice. Also only
CBC mode and PKCS 5 padding is supported.

Elliptic Curve Cryptography is used for the Diffie-Hellman shared secret negotia-
tion instead of modulus exponentiation.

Our current hash algorithm is SHA-1 and our MAC algorithm is an HMAC construc-
tion based on SHA-1.

SPKI certificates are signed/verified using RSA with a 1024 bit key.

Handling alert messages

132

During the key agreement protocol the default is to pay attention to non-authenti-

cated alert messages that have the correct random SPI. These identifiers are sent in
clear so if the attacker listens to all our traffic and sends fatal alerts with the right

SPI before the other party responds, it still stops the session set-up. However, this
attack is trivial to do if we had a predictable SPI because the attacker can just flood
the system with fatal alerts with typical SPIs. Note that in SLS this problem is more
evident than in SSL because of the transport independence assumption. In this case
we cannot make the assumption that it takes some effort to hi-jack the transport, as
it is the case for a TCP socket in SSL

On the other hand, if we want to avoid this attack completely we could ignore all
non-authenticated alerts and rely on timeouts to close failed sessions. This is not
the default because the convenience of quick and detailed notification of session
set-up failure was believed to be more important than an impractical denial-of-
service attack, that can always be done at transport level anyway.

In any case, after a session is established only authenticated alerts are respected. At
that point many messages with the SPIs in clear have been exchanged, and the
randomization does not help much.

Also, alert messages can be fatal, forcing the other end to close the session, or warn-
ing, that in our first implementation are just logged. We also support internal alerts,
i.e., generated as a side effect of a PDU handling, and external alerts, i.e., explicitly

Developer Release 3.01 June 2000

Communication Session Layer Security Protcol (SLS)

send by the client, but it is recommended to avoid sending external alerts and rely
on internal ones as much as possible. The alert codes used in SLS are described in
(“Alert” on page 141).

Timeouts description

Tsession(ON)
Tsetup(OFF)

READY
Trekey(ON)

SET_UP
Tsetup(ON)

Tsetup(Expire)

Tsession(OFF)
Trekey(OFF)
Tsetup(OFF)

‘. REKEY !

~a -

Figure 8 Session timeouts and state transitions
There are three built-in timeouts associated with a session:

¢ Tsetup: sets the maximum time taken by the key agreement protocol used in the
SET_UP state. After that time the session becomes DEAD.

e Tsession: sets the maximum life expectancy of session. This values is the mini-
mum of a fixed value (common for all sessions), and the life expectancy of the
certificates negotiated during the key agreement. After that time the session
becomes DEAD.

¢ Trekey: sets the maximum time allowed before forcing a rekey operation on the
session (rekeying is current not supported).

Figure 8 describes the behavior of the timeouts in relation to the session states.
Tsetup sets a limit on the time spent on the SET_UP state, but it is reset after we
transition to the READY state. Tsession limits the maximum time spent on the

Developer Release 3.01 June 2000 133

Session Layer Security Protcol (SLS) Communication

READY state. When Trekey expires we initiate the rekey and reset the timer, but
this does not imply a state transition (see Section “Re-keying (not currently
supported)” on page 134. Clearly, Trekey is only useful if it is smaller than Tsession,
otherwise the session is never re-keyed.

Re-keying (not currently supported)

134

A B
Shared Secret X Shared Secret X
Rekey(2322,REQUEST) Change Send Key
to (X,2322)

Change Handle Key

to f(X,2322)

Change Send Key Rekey(8898,REPLY

0 1(X,8898) V(B898,REPLY)
Change Handle Key
to (X,8898)

Figure 9 Rekey protocol.

After the session has been established it is possible to change the key used in the
cipher and MAC operations by sending a REKEY message. However, this new key
has to be based on the original shared secret negotiated using Diffie-Hellman (we
do not re-run the key agreement protocol). Therefore, the re-key operation does not
extend the life of the shared secret, only of the derived keys. In particular, the new
key is obtained by exclusive-or of the first four bytes of the shared secret with a

Developer Release 3.01 June 2000

Communication Session Layer Security Protcol (SLS)

random integer before re-running the key generation algorithm. The one-way func-
tion used in that algorithm ensures that it is difficult to guess the next key, provided
that you know the previous one. The integer added to the shared secret is transmit-
ted inside the REKEY message.

Figure 9 shows the basic protocol to re-key a session. Node B decides that it wants
to start a rekey, so it generates a random number (2322) and sends a REKEY
message with it. After that it re-keys the “send part” of its cipher suite right away,
so the next message sent is encrypted with the new key. When the REKEY message
arrives to node A this node changes its “handle part” of the cipher suite to the new
derived key. Then it checks that the message is a request and not a reply (the rekey
was not initiated by him) and sends a REKEY reply message with possibly a differ-
ent random integer (8898), changing the “send part” of its cipher suite too. When the
reply message arrives to B, this node updates the “handle part” of their cipher suite
but it does not rekey the “send part” again because the message was tagged as
“reply”.

The important point of the protocol is that all the state is encoded in the messages,
and provided that messages are not re-ordered, the receiver always has the right key
to decrypt the message (it does not have to remember old keys or interrupt the
service during re-keying). This avoids the need of an extra state in the protocol for
re-keying.

Developer Release 3.01 June 2000 135

Session Layer Security Protcol (SLS) Communication

Support for session scavenging

136

reseng) B fesetPing) B
. PING(REQUEST
sendPing(() sondPing) PING(REQUEST)
handlePing()
ING(REPLY)
setPingOK()
isPingOK?= true isPingOK?= false

Figure 10 Ping protocol

SLS needs a external mechanism to detect that the other party in the session is not
longer active. This is required because being transport independent implies that we
cannot assume that the underlying transport detects a lost of the connection, i.e.,
TCP keep-alive message, so we have to provide that service at a higher level.

Figure 10 shows the basic support provided for session scavenging. An external
client can check whether the session is active by forcing its endpoint to send a PING
message and resetting a flag that indicates a reply ping arrived. If the reply ping
arrives the flag is set. After a certain time the client checks whether the flag is set,
hinting whether the other end is still alive or not.

Developer Release 3.01 June 2000

Communication

Session Layer Security Protcol (SLS)

Support for tunneling

Client
[-1 foo]
Session 2 [2 foo] |
[2 foo]
Session 1 [1 [2 fOO]]
[2 foo]
Session 2 [2 foo]
Session 1| | [1 2 foo]] [1[2fo

b

Figure 11 Tunnelling SLS sessions

Gateway

Session 1 [2 foo]

Server

[2 foo]

Session 2

|

a) Send Client->Server

Session 2

) Send Server->Client

In SLS tunneling a PDU contains in its payload another PDU, therefore messages
are sent using another SLS session as “transport”. When the initiator sends the first
protocol message the responder might reply that it is not the final end-point, so it
cannot prove what was requested, and it wants to be a relay instead. At that point
the client can decide whether to continue the key agreement or not. If it continues

Developer Release 3.01 June 2000

137

Session Layer Security Protcol (SLS) Communication

138

it gets a ready session that was negotiated as a “relay” and it can use that session to
negotiate another one to the end-point. If this new end-point also wants to be a relay
the process repeats. Typically the maximum depth of session nesting is limited to a
fixed value to avoid a denial-of-service attack.

Figure 11 shows how to send messages from client to server and back after the
nested session via a SLS gateway has been established. The diagram shows always
sender SPIs. The session performs automatic wrapping of a PDU inside another
PDU while sending when the sender SPI is valid (>0) and the sender SPI does not
match the one the session is going through (we use sender and not receiver SPI
because the receiver one is not guaranteed to be unique). By default a PDU is initial-
ized with an invalid sender SPI so it only gets wrapped when it has already gone
through another session (that sets the sender SPI to itself). During the wrapping the
addresses of the inner PDU are copied into the header of the external PDU. Also, a
TUNNEL PDU gets unwrapped (default behavior that can be overridden by a
custom handler) when it is handled by a session (i.e., in Figure 11 session 1 in the
gateway or client depending on the message direction). (Check with devTeam,
the above seems to be saying important things about the implementation,
but is it relevant for the spec?)

An important feature of the tunneling implementation is that a session can be used
to tunnel messages regardless of whether the session was negotiated as a relay
session or not. The opposite is also true, we can send non-tunnelled messages for a
session that requested to be a relay session. In fact, how sessions are created is
orthogonal to what type of messages can be sent through them. This simplifies the
re-use of sessions but care has to be taken to avoid dangerous pitfalls like assuming
that a received message in a “normal” session cannot be tunnelled or assuming that
a tunnelled message is more “secure” or is coming from outside. (Check with
devTeam: why are these dangerous pitfalls?)

Developer Release 3.01 June 2000

Communication

Protocol Data Unit PDU

Protocol

Data Unit PDU

All messages exchanged between e-speak cores, and between e-speak cores and
clients are PDUs. A single PDU is corresponds to a single Session Layer Security
Message. The elements of PDU are marshalled in the order of member definition
shown in the class declaration below. E-speak clients and resources use a sub-class
of PDU for exchanging messages: ESPDU.

class PDU {
int versionMajor;
int versionMinor;
int spi;
int spiSender;
int serial;
int inReplyTo;
int messageType;
int encodingType;
String toAddress;
String fromAddress;
byte[] route;
byte[] data;

}

The current value for versionMajor is 1, and for versionMinor is 0.

SPI stands for Session Parameter Index. This is used by the two endpoints in the
Session Layer Security protocol to indicate which session the message is being sent
on. Since the sender and the receiver may identify the SPI separately, we have two
fields: spi denotes the recepients SPI; spiSender denotes the senders SPI.

Two fields are used by SLS to protect againts replay attacks: serial is set by the
sender; inReply to is the serial field of the message to which the sender is respond-
ing.

The following values for message type are defined: alert(0), handshake(1), applica-
tion message(2), tunnel(3), ping(4). Alert, handshake, tunnel and ping are used in
SLS to manage sessions.

Developer Release 3.01 June 2000 139

Protocol Data Unit PDU Communication

140

The following encoding types are defined for a PDU: clear data (0); protected
data(1); secure data(2). Protected data is authenticated and protected from tamper-
ing by a Message Authentication Code (MAC). Secure data is protected by a MAC
and also encrypted for confidentiality.

The string toAddress is an absolute ESName and denotes the destination for the
message. The string fromAddress is also an absolute ESName. It denotes the sender
of the message and can be used for replies. The e-speak core attempts to resolve
these names in its root name frame by finding the Mapping Object associated with
each ESName. The Mapping Object is used by the e-speak core to refer to a
Resource, a Search Recipe, or any combination. If the e-speak core cannot unam-
biguously identify the Resource Handler for the toAddress, it sends an exception
message to the Client. The format for an exception message is described in Chapter
8, “Exceptions”. The possible exceptions are described in Table 9.

Table 9 Exceptions for unresolved Resource Handler

Exception Description

NameNotFoundException The lookup procedure failed to find a
Mapping Object.

UnresolvedBindingException The only accessors in the Mapping Object
are Search Recipes.

MultipleResolvedBindingException The explicit bindings in the accessors refer
to Resources with different Resource
Handlers.

UndeliverableRequestException The Resource Handler does not have the
Resources needed to receive this message,
or the Handler Inbox is not currently
connected.

Developer Release 3.01 June 2000

Communication

Protocol Data Unit PDU

The byte array route can be used by applications to pass routing data. This is never
encrypted or protected by a MAC.

The format of the byte array data is determined by the message encoding. If the
encoding is clear data, the byte array is the message body whose contents is
denoted by the message type.

If the encoding type is protected data, then data begins with the MAC in network
byte order. The length of the MAC depends on the MAC algorithm negotiated in the
SLS session setup. The remainder of the contents of data is the body of the message
whose contents are denoted by the message type.

If the encoding is secure data, then it has been encrypted according to the cipher
negotiated in the SLS session set up. Once it has been decrypted, it has the same
format as protected data: a MAC, followed by the message body. The contents of the
message body is denoted by the message type.

Check with devTeam. What else can we say about the format of MAC? What
else can we say about the format of encrypted data. Presumably the
encrypted data is just a byte array conssting of a 32 bit integer + data, but
this is implicit because we have used [] in the definition of data. Is it suffi-
cient to take section 5.0 of Niels Ferguson’s report?

The type of the message contained in the data field is determined by the message-
Type, the following section described the permissible types.

PDU Message types

Each ESPDU message type has a different format as specified below. The elements
of each message are marshalled in the order in which they appear in the class defi-
nition.

Alert

Class Alert(
byte level;
byte code;
string detail;

Developer Release 3.01 June 2000 141

Protocol Data Unit PDU Communication

142

The Alert message is used for SLS session management. Valid levels are:

fatal(0x00)
warning (0x01)
debug (0x02).

All codes are normall sent with a level of fatal, unless indicated. Valid codes are:
CLOSE_NOTIFY (0x00) (warning)

UNEXPECTED_MESSAGE (0x01)
BAD_SPI (0x0A)

BAD_SERIAL (0x0B)

BAD_MAC (0x0C)
HANDSHAKE_FAILURE (0x14)
BAD_CERTIFICATE (0x15)
UNSUPPORTED_CERTIFICATE (0x16)
CERTIFICATE_REVOKED (0x17)
CERTIFICATE_VERIFICATION_FAILED (0x18)
ILLEGAL_PARAMETER (0x1E)= 30;
BAD_PROTOCOL_VERSION (0x1F)
INSUFFICIENT_SECURITY (0x20);
NO_RENEGOTIATION(0x28) (warning)
ERROR (0x32)

The detail string is intended for human consumption and is left unspecified.

Handshake

class Handshake{

int type;
byte datall;

Developer Release 3.01 June 2000

Communication

Protocol Data Unit PDU

}

The type member indicates denotes the contents of the data as follows:
e HANDSHAKE_REQUEST =0

e HANDSHAKE_START =1

e HANDSHAKE_REPLY = 2

e HANDSHAKE_FINISH = 3

The definition of the various handshake messages follows. In all cases the current
value of ID is "SLS:HandshakeStart:v1.0".

In all cases the current value of majorVersion is 0x01 and of minorVersion is 0x00.
This indicates the highest version of SLS supported by the sender.

The ADR type are s-expressions as defined in Chapter 6, “Access Control” “SPKI
BNF Formats” on page 106, ADR stands for ASCII Data Representation.

Handshake request

class HandShakeRequest {
string ID;
boolean flag;
PDU pdu;

}

Handshake request is used to request a renegotation of the session parameters.

The boolean flag is set to true if the request includes a PDU, otherwise no PDU is
included.

Handshake start

class HandShakeStart{
string ID;
byte majorVersion;
byte minorVersion;
int spi;
ADR group;
ADR keyData;
ADR cipherSuitelist;

Developer Release 3.01 June 2000 143

Protocol Data Unit PDU Communication

144

ADR tags;
ADR query;

}
The SPI member is the session parameter index of the sender of this message.

The ADR type are s-expressions as defined in (Chapter 6, “Access Control” “SPKI
BNF Formats” on page 106), ADR stands for ASCII Data Representation.

The group member is the definition of the Diffie-Hellman group. (See devTeam for
valid DH groups).

The keyData member is the senders part of the Diffie-Hellman key-exchange (see
devTeam for format of this s-expression).

The cipherSuiteList member is the list of valid cipher suites in decreasing order of
preference (see devTeam for format of this s-expression, and list of valid
cipher suites).

The tags member is the list of SPKI tags the sender is requiring the receiver to prove
(see devTeam for format of this s-expression).

The query member is the senders query on the recepient. The sender can use this
field to declare the operations it wishes to invoke within the session once it is estab-
lished. This can be used by the receipient to determine what tags it requires the
sender to prove. (see devIleam for the format of this s-expression).

Handshake reply

class HandshakeReply({
string id;
byte majorversion;
byte minorversion;
int spi;
adr keydata;
adr ciphersuite;
adr proof;
adr tags;
boolean relay;
string forwardaddress;

adr signature;

Developer Release 3.01 June 2000

Communication

Protocol Data Unit PDU

}
The spi member is the Session Parameter Index of the sender.
The keydata member is the senders part of the Diffie-Hellman key exchange.

The member ciphersuite is the senders choosen cipher suite selected from the list
of cipher suites in the initial HandshakeRequest message. (check with devTeam
for format of s-expression in this field.)

The proof member is the list of certificates that proves the tags the sender of the
HandshakeRequest message required. (check with devTeam for format of s-
expressions in this field).

The tags member is the list of tags the sender is requiring the receiver to prove. This
may have been generated by having examined the query field in the intial Handshak-
eRequest message.(check with devTeam for format of s-expressions in this
field)

The boolean relay is set to true if this message is to be forwarded (because we are
setting up a tunnel). This allows the responder to notify in its first handshake
message that it wants to relay the session , so it might not have to prove the tags
requested in the HandshakeStart message.

Ifrelay is set to true, the forwardAddress member contains the absolute ESName of
the receipient to which this message is to be forwards (check this with devTeam)

The signature field is the signature of the hash of this message and the initial Hand-
ShakeRequest message. (Check with devTeam for details of how the hash is
calculated and what the format of the s-expression is - Also code suggest
handshake is optional?).

Handshake finish

class HandshakeReply({
string id;
adr proof;

adr signature;

Developer Release 3.01 June 2000 145

Protocol Data Unit PDU Communication

The proof field is the list of certificates that proves the tags that the HandshakeRe-
ply message require (in that message’s tags field). (check with devTeam for
format of s-expressions in this field). The signature field is the signature of the
hash of this message and the previous HandshakeReply and HandshakeRequest
message.(Check with devTeam for details of how the hash is calculated and
what the format of the s-expression is - Also code suggest handshake is
optional?)

Application message

The e-speak PDU ESPDU is an application message currently specified “Protocol
Data Unit PDU” on page 139

Tunnel

If the message type of PDU is tunnel, the data field of the PDU contains another
PDU. The outer PDU is removed, the PDU unmarshalled from the data field and
forwarded to the correct address denoted by the toAddress field of the inner PDU.

Ping

class ping{
string ID;
byte type;

}

Ping messages are used by SLS for session management.
The current value of ID is "SLS:Ping:v1.0".
Two values of type are defined:

¢ Request (0x00)
¢ Reply (0x01)

146 Developer Release 3.01 June 2000

Communication E-speak Protocol Data Units (ESPDUs)

PDU Marshalling format

An PDU is transmitted as a 32 bit length (in network byte order) followed by the
buffer containing the PDU itself.

All data inside a PDU is marshalled in network byte order.

e intis a 32 bit integer

¢ long is a 64 bit integer.

e short is a 16 bit integer

¢ charis a 16 bit character

¢ boolean ismarshalled as a single byte (0x01) for true (0x00) for false.
e float (ask devTeam)

e double (ask devTeam)

e string is marshalled as a 16 bit length followed by each character in the string as
16 bits per character

¢ ByteString - what is this (ask devTeam)
e Dbyte[] - ask devTeam can’t figure what marshalBytes does

e ADR are marshalled by converting them to ASCII canonical s-expressions
defined in (x-ref SPKI BNF) and then marshalled as a byte array using
marshalledBytes (discuss with devTeam).

E-speak Protocol Data Units (ESPDUs)

An E-speak Protocol Data Unit is a PDU with a message type of application
message. The contents of the data field of the PDU is of type MessageForResource.

class MessageForResource(
byte versionMajor;
byte versionMinor;
ADRList tags;

Developer Release 3.01 June 2000 147

E-speak Protocol Data Units (ESPDUs) Communication

short secondaryABIVersion;
byte payloadType;

boolean isVoid;

byte payloadl[];

}

The current value of versionMajor is 2 and of versionMinor is 0. The current value
of secondaryABIVersion is 0. This specifies the format of the data field when
communicating with core-managed resources.

ADRList is a list of SPKI tags using the *-set form as defined in (Chapter 6, “Access
Control” “SPKI BNF Formats” on page 106) (Check with devTeam - what are
these used for. - presenting more certificates?, the tags required for autho-
rizing the operation?)

The following are permissible values for payload type.

METHOD_ CALL=0 (a method call)
METHOD_RESULT=1 (a method result)
EXCEPTION=2 (an exception)
EVENT=3 (an event)

OBJECT=4 (an arbitrary object)

The value of isVoid indicates whether or not there is a payload. If isVoid is true,
there is no payload and it is not marshalled or unmarshalled.

MessageForResource is marshalled using the PDU marshalling defined in “PDU
Marshalling format” on page 147.

The payload field contains the message for the resource which is serialized accord-
ing to the e-speak serialization format “E-speak Serialization Format” on page 166.

The format of messages for core-managed resources is specified in “Format of
Payload for Core-Managed Resource Messages” on page 150.

No payload format is specified if the payload type is set to OBJECT. This is for use
by applications to communicate with external resources.

148 Developer Release 3.01 June 2000

Communication Client to Core Communication

Client to Core Communication

Whenever a client sends a message to a resource, it sends an ESPDU message as
defined above in “E-speak Protocol Data Units (ESPDUs)” on page 147) to the e-
speak core. The e-speak core routes this message to the resource handler. When the
e-speak core forwards the message to an external resource handler it places the
following data in the route field of the PDU.

class routeData{
string slot;
boolean specificationNonNull;
ESmap privateRSD;
ADR mask;

ADR servicelD;

}

The fields slot, specificationNonNull, mask and servicelD are marshalled using the
format defined in “PDU Marshalling format” on page 147. The privateRSD field is
marshalled using the e-speak serialization format defined in “E-speak Serialization
Format” on page 166.

The Slot field is used to enable many Inboxes to share a single channel (TCP
connection in the current implementation). The slot identifies which Inbox the
message is for.

If specifcationNonNull is set to false, privateRSD, mask and servicelD are not
marshall.

The privateRSD field is the resource’s private RSD extracted from the resource’s
metadate held by the e-speak core. The mask field and servicelD field are also fields
from the resource’s metadata maintained by the e-speak core. The mask field tells
the resource handler which methods have security disabled. The servicelD field is
the service identity for the resource. Both these fields are <tag-expr> as defined in
Chapter 6, “Access Control” “SPKI BNF Formats” on page 106.

Developer Release 3.01 June 2000 149

Format of Payload for Core-Managed Resource Messages Communication

Format of Payload for Core-Managed Resource
Messages

150

E-speak specifies the payload format for messages sent to and received from Core-
managed Resources (the payload field in ESPDU). It does not specify the
payload format for non-Core-managed Resources. The class MethodCall defines
the payload format of messages sent to Core-managed Resources. Note that that the
messageForResource payload type is set to METHOD_CALL.

public class PayloadForCore

{

string interfaceName;
string methodName

Ob []arguments;

}

The first two fields define the interface and method to be invoked. These are
marshalled in the e-speak ABI serialzation format. The type Ob is any type defined
in the e-speak ABI serialization format.

The methodResult class specifies the payload format of messages received from
Core-managed Resources in response to method invocation when no exception is
thrown.

public class methodResult

{

Ob result;

}

Where Ob is any object defined in the e-speak ABI serialization format. When this is
returned the messageForResource payload type field is set to METHOD_RESULT.

The exceptionResponse class is used when an excpetion is thrown; ob is any object
defined in the e-speak ABI serialization format. The MessageForResource payload
type field is set to EXCEPTION.

public class exceptionResponse

{

Ob result;

Developer Release 3.01 June 2000

Communication Core event messages

Core event messages

When the core generates an event, it sends an ESPDU with the date field contain a
messageForResource. This contains a payload type field set to EVENT. The payload
is an eventMessage; ob is any object defined in the e-speak ABI serialization format.

public class eventMessage

{

Ob result;

}

Messages from the Resource Handler to the Client

E-speak implements a peer-to-peer communications model for messaging.

The Core does not distinguish between a message sent from a Client to a Resource
Handler and a reply from the Resource Handler back to the Client. The Resource
Handler sending a reply to a Callback Resource is treated as the Client, and the
Client receiving the reply is treated as the Resource Handler for the Callback
Resource.

Clients can have more than one Inbox. The only way for a Client to receive a
message from any other Client is to register a Resource listing one of its Inboxes in
the Resource Handler field of the metadata. Clients can manage different classes of
messages by registering different Resources designating different Inboxes. Clients
can also deal with different message classes by associating certain classes with
Events.

Developer Release 3.01 June 2000 151

Initial Connection to the Core Communication

Initial Connection to the Core

The e-speak Core listens on a TCP port for Client connections (the default port is
12345). When it receives a connection request a TCP channel is created between the
Client and the Core. The Core creates a default protection domain for the Client and
sends message back to the Client (see PayloadFromCore) containing a bootstra-
PReply object.

class bootstrapReply{
ESname Inbox;
string InboxSlot;
ESname CallbackResource;
ESname ExceptionHandlerResource;

String anchor;

}

Inbox InboxSlot is the ESname of the inbox and the slot allocated by the e-speak
core to the client. The CallbackResource filed is the ESname to be used to send
messages to the client. This should be used in the fromAddress field of PDU sent by
the client.

The ExceptionHandlerResource is deprecated and should not be used.

The anchor field is the URL of the root name frame of the Protection Domain which
has been created by the e-speak core for the client. (Bug: this should probably be
an ESname?)

Core to core communication

Two core-managed resources handle communication between e-speak cores.

e The Connection Manager CM, sets up the initial connection, manages it and
closes it down. The ESName for the CM on any given e-speak core is:
es://<server>/CORE/ConnectionManager

152 Developer Release 3.01 June 2000

Communication Core to core communication

¢ The Remote Resource Manager (RRM) is responsible for managing metadata:
importing and exporting resources from the remote e-speak core. The ESName
for the RRM on any given e-speak core is:
es://<server>/CORE/RemoteResourceManager

RRM: Remote Resource Manager
CM: Connection Manager

Figure 12 Core-core communication components

Connection Manager

The Connection Manager provides the core to core connection handling APIs. Each
connection is associated with a Protection Domain, Outbox and an Inbox. The
inbox and outbox along with the Router form the message forwarding subsystem to
the remote core (see Figure 5).

The core to core connection can be a secured channel: SLS messages can be
exchanged to set up a secure chanel.

class connectionManager {
public synchronized String openConnection (String coreUrl) 1
throws UnknownHostException
public synchronized void closeConnection (String conlID)
throws UnknownHostException
public synchronized CMArg closeConnectionFromRemote (CMArg cmArg)
throws UnknownHostException

public synchronized ESArray getConnections ()

}

1 The coreUrl should be type ESname, in the current implementation it is type String.

Developer Release 3.01 June 2000 153

Core to core communication Communication

154

The openConnection() invocation is synchronous. The caller has to wait until the
openConnection() returns or times out (the current default time out period is 10
seconds). The parameter is the URL of the remote core’s root frame: URL of the
form es://host

When the Connection Manager executes this function it sends an ESPDU message
to the remote core. This messageForResource has a payload type of
METHOD_CALL and the payload field is an instance of payloadForCore. The inter-
face field in payloadForCore is “Core” and the method field is “bootstrap”. The
toAddress of PDU is set to es://host/CORE (note only es://host is passed as a param-
eter by the caller of openConnection. The fromAddress is set to es://<localCore>/
CORE. Where <localCore> is the host and port for the Connection Manager’s e-
speak core.2

The messageType field of PDU is set to HANDSHAKE for this request.3

Once the message has been sent, the Connection Manager waits for a reply ESPDU
message. The remote core receiving the message replies with a bootstrapReply
message “Initial Connection to the Core” on page 152. In the current implementa-
tion this reply is ignored.

Next the Connection factory sends a “negotiate”message to the remote core. This
consists of an empty messageForResource instance (payloadType is set to OBJECT
and the payload contains the null object). The toAddress of the PDU is set to es://
host/CORE/ConnectionManager. The fromAddress of the PDU is set to es://<local-
Core>/CORE/ConnectionManager.

After this message is sent the Connection Manager waits for a reply from the remote
Connection Manager. In the current implementaiton this reply is ignored.

The negotiation message is a place holder for future extensions. The intended
future behavior is as follows.

1.Initiator build the negotiation proposal, and sends the proposal to the remote
core. The offer includes the parameters like Core Version, ABI version, PDU size

(for hinffaring fraomaentatinn and roaccamhlyw)

2 In the current implementation all URLs created by the connectionManager begin with “tcp://”
instead of “es://”

3 This is current implementation behavior, for consistency the messageType should be
APPLICATION_MESSAGE

Developer Release 3.01 June 2000

Communication

Core to core communication

2.The remote core then builds the offer based on the proposal and send the offer to
the initiator.

3.The initiator then builds the agreed upon offer and sends the final offer to the
remote core.

The returned value of openConnection is a string denoting the server and port of the
remote core to which a connection has been made. Thus a connection to es://
foo.bar.com:8000/ returns a string: “foo.bar.com:8000”. This string can be used to
identify the connection for later connection management operations.

Only one connection exist between 2 cores. Once the connection is estabished
subsquent openConnection() requests with the same parameter have no effect

The closeConnection() function performs graceful close of connection between the
cores. The closeConnection API sends a close message to the remote core and
requests to cleanup the resources allocated to this connection. Upon receving the
close request message from a remote core the Connection Manager initiated the
clean-up process therby deallocating the resources assigned for the connection.

The parameter conID to closeConnection() is the string previously returned from
openConnection(). When closeConnection() is invoked the Connection Manager
sends a ESPDU containing messageForResource instance to the remote Connec-
tion Manager. The MessageForResource has a payloadType of METHOD_CALL.
The interfaceName is “ConnectionManagerInterface” and the methodName is
“closeConnectionFromRemote”. The parameter CMArg is marshalled in the e-speak
ABI serialization format. It is defined as follows:

class CMArg{
string localURL;
string remoteURL;
int type; // CLOSECONNECTIONREQUEST=1 CLOSECONNECTIONREPLY=2

}

The localURL field is set to the host+server port for the sending core for example:
“initiator.bar.com:8080”. The remoteURL field is set to host+server port for the
remote core. The type is set to CLOSECONNECTIONREQUEST. When the remote
core receives this message, it can use the localURL, remoteURL pair to identify the
connection. The remote core sends a MessageForREsoruce with a payloadType of
METHOD_RESULT. The Ob field of the MethodResult class is an instance of

Developer Release 3.01 June 2000 155

Core to core communication Communication

CMArg. The localURL and remoteURL are unchanged, but the type field is set to
CLOSECONNECTIONREPLY. Having sent this, the remote core closes the connec-
tion. When the initiating core receives this reply, it closes the connection.

The function getConnections() returns the state of current connections. Each
element of the returned ESArray is a string of the formed by the IP address of the
remote host and the port number on which the remote e-speak core is located sepa-
rated by a colon, e.g.: “host.foo.com:8000”

Remote Resource Manager

156

The Remote Resource Manager (RRM) handles metadata related functions. It
provide the capability to export and import resources to and from the remote e-
speak cores.

class payloadForRRM{
int payloadType;
boolean topLevel;
int importExportMode;
byte[] contextPDU;
ESArray resourceTable;

ESArray tablesArray;
}
The following are permissible values for payloadType in call payloadForRRM.

EXPORT REQUEST=0; //Export Request

EXPORT_ REPLY=1; //Export Reply

IMPORT REQUEST=2; //Import Request

IMPORT REPLY=3; //Import Reply
UPDATE_EXPORTED_RESOURCE_REQUEST=4; //Update Export Resource
Request

UPDATE EXPORTED RESOURCE_REPLY=5; //Update Export Resource Reply
UPDATE_IMPORTED_RESOURCE_REQUEST=6; //Update Import Resource
Request

UPDATE IMPORTED RESOURCE _REPLY=7; //Update Import Resource Reply
UNEXPORT REQUEST=8; //Unexport Resource Request

UNEXPORT REPLY=9; //Unexport Resource Reply

Developer Release 3.01 June 2000

Communication Core to core communication

IMPORT ERROR=10; //Import Error

EXPORT ERROR=11; //Export Error

class RemoteResourceManager
void exportResource (ESName esname, boolean topLevel, int mode,
String server)

throws NameNotFoundException, StaleEntryAccessException

PayloadForRRM importResourceFromMsg (PayloadForRRM rrmPayload)
throws RemoteException

void importResource (ESName esname, boolean topLevel, int type,
String server)

throws ImportFailedException

PayloadForRRM exportResourceAsMsg (PayloadForRRM rrmPayload)
throws StaleEntryAccessException,NameNotFoundException,

RemoteException

void unExportResource (ESName esname, String server)

throws RequestNotDeliveredException

PayloadForRRM unExportResourceFromMsg (PayloadForRRM rrmPayload)
throws NameNotFoundException,
StaleEntryAccessException,
QuotaExhaustedException,
InvalidNameException,
PermissionDeniedException,

RemoteException

void updateExportedResource (ESName esname, boolean topLevel, int
mode, String server)
throws StaleEntryAccessException,
NameNotFoundException,

RequestNotDeliveredException,

Developer Release 3.01 June 2000 157

Core to core communication Communication

158

ExportFailedException

PayloadForRRM updateExportedResourceFromMsg (PayloadForRRM
rrmPayload ,
String fromServer)
throws NameNotFoundException,

StaleEntryAccessException,
PermissionDeniedException,
InvalidvValueException,
UpdateFailedException,
RemoteException

void updateImportedResource (ESName esname, boolean topLevel, int
type, String server)
throws NameNotFoundException,
StaleEntryAccessException,

RequestNotDeliveredException

PayloadForRRM updateImportedResourceFromMsg (PayloadForRRM
rrmPayload)
throws RemoteException

"EXPORTONCONNECTING"

}

void exportResource (ESName esname, boolean topLevel, int mode,
String server)
throws NameNotFoundException, StaleEntryAccessException

The function exportResource exports the resource identified by esname to the
server identified by server. The server parameter is a string of the form host-
name:port, for example “foo.bar.com:8080”. The boolean topLevel indicates
whether this is to be a recursive export or not. A recursive export exports all
resources that are references in the metadata of the resource identified by esname
(vocabularies, contracts and the like). If topLevel is false, then the export is recur-

Developer Release 3.01 June 2000

Communication

Core to core communication

sive. The mode parameter indicates whether this is to be export by reference or
export by value. Export by reference, copies the metadata , but not the resource
state, so any invocation of the exported resource invokes the same copy. Export by
value exports the resource state as well as its metadata, so an invocation of the
resource on the remote core results in an invocation on a remote copy of the
resource. Recognized values for mode are BY_VALUE (0) and BY_REFERENCE
(1). Export by value is only supported for Core-managed Resources. The RRM
invokes importResourceFromMsg on a remote RRM to export the resource to that
RRM. The payloadForRRM has a payloadType field set to EXPORT_REQUEST.

PayloadForRRM importResourceFromMsg (PayloadForRRM rrmPayload)

throws RemoteException

The function importResourceFromMsg is invoked by a remote RRM to tell the RRM
to import the resource(s) contained in the argument rrmPayload which is an
instance of payloadForRRM. The payloadType field sets to EXPORT_REQUEST.
The topLevel field sets to false if the import is recursive. The ImportExportmode
field is set to BY_VALUE (0) and BY_REFERENCE (1). The contextPDU is the not
used by the RRM, it is returned to the remote RRM. The intent of this field is to
enable to remote RRM to identify the context (typically an attempt to send a
message) that caused it to invoke importResourceFromMsg.

The ESName of each resource being exported is in resourceTable. If the export is
not recursive, this has only one element: the ESName of the original resource
passed to the remote RRM as the parameter to exportResource(). If the export is
recursive, this ESArray contains all the ESNames of resources included in the meta-
data of the original resource and all the resources included in the metadata of these
resources and soon on. If the export is BY_VALUE then resources include in
resource state is also included in the resourceTable.

Each element of tablesArray is itself an ESArray. There is a corresponding ESArray
in tablesArray for each element in resourceTable. Each ESArray in tablesArray
consists of four elements, taken together they define the resource metadata and
state for the resource identified by the ESName in resourceTable.

e short typeCode
e ResourceSpecification spec

¢ ResourceDescription desc

Developer Release 3.01 June 2000 159

Core to core communication Communication

¢ Object resource

The following are permissible values for typeCode:

INBOX CODE = 0

META RESOURCE_CODE = 1

PROTECTION DOMAIN CODE = 2
RESOURCE_FACTORY CODE = 3
CONTRACT_CODE = 100
CORE_DISTRIBUTOR_CODE = 110
IMPORTER EXPORTER CODE = 120
MAPPING OBJECT CODE = 140

NAME FRAME CODE = 150
REPOSITORY VIEW CODE = 160
SECURE_BOOT CODE = 170

SYSTEM_ MONITOR CODE = 180
VOCABULARY CODE = 190
CORE_MANAGEMENT SERVICE CODE = 200
DEFAULT VOCABULARY CODE = 210
DEFAULT_ CONTRACT CODE = 220
FINDER_SERVICE CODE = 230
CONNECTION MANAGER_CODE = 240
REMOTE_RESOURCE_MANAGER CODE = 250
EXTERNAL CODE = 1000

EXTERNAL RESOURCE_CONTRACT CODE = 1001

ResourceSpecification and ResourceDescription are defined in Chapter 3,
“Resource Descriptions, Resource Specifications and Resource Types”.

The resource field is omitted if the resource identified by the ESName in resource-
Table is an external resource (typeCode = EXTERNAL_CODE). Otherwise the
resource field is the instance of the core-managed resource and contains the data
members defined for each Core-Managed Resource type in Chapter 4, “Core-
Managed Resources”. The resource field is included even if the export mode is
BY_REFERENCE.

void importResource (ESName esname, boolean topLevel, int type,
String server)

throws ImportFailedException

160 Developer Release 3.01 June 2000

Communication

Core to core communication

This method instructs the RRM to import the named resource from the server iden-
tified by the string server (the format of this string is host:port). The boolean
topLevel is set to false if the import is to be recursive. Permissible types for type are
BY_VALUE or BY_ REFERENCE. When this function is invoked on the RRM it sens
a message to the remote RRM on the core denoted by the server parameter. This is
a messageForResource, containing an instance of payloadForCore with interface-
Name “RemoteResourceManagerInterface”, methodName “exportResourceFrom-
Msg” and a single element in the argument array of type payloadForRRM. The
payloadType for payloadForRRM is IMPORT_REQUEST. The importExportMode
is set to BY_VALUE or BY_REFERENCE. The topLevel field is set to false for a
recursive import. The contextPDU field is used by the RRM to identify the context
for the reply to this message. Typically it contains a serialized PDU. The resource-
Table contains a single element: the esname parameter passed in the call of impor-
tResource.

PayloadForRRM exportResourceFromMsg (PayloadForRRM rrmPayload)
throws StaleEntryAccessException,NameNotFoundException,

RemoteException

The function exportResourceFromMsg is called from a remote RRM in response to
a invocation of importResource on the remote RRM. The rrmPayload parameter
contains the data defined in the description of importResource. The returned
PayloadForRRM is sent in a messageForResource which contains an instance of
methodResult. This PayloadForRRM has type IMPORT_REPLY, the importExport-
mode, topLevel and contextPDU fields are those contained in the original rrmPay-
load. The resourceTable and tableArrays contains the list of ESNames of resources,
and there metadata and state as described in the description of importResource-
FromMsg.

void unExportResource (ESName esname, String server)
throws RequestNotDeliveredException

The function unExportResource causes the RRM to try to unexport the resource
from the remote e-speak core identifed by sever (format “host:port”). It does this by
sending and instance of payloadForCore with interfaceName “RemoteResourceM-
anagerInterface”, methodName “unExportResourceFromMsg” and a single element
in the argument array of type payloadForRRM. The payloadType for payloadFor-
RRM is UNEXPORT_REQUEST. The topLevel and importExportMode fields are

Developer Release 3.01 June 2000 161

Core to core communication Communication

not used for this request. The resourceTable field contains a single element: the
esname parameter to the function unExportResource. The tablesArray field is
empy.

PayloadForRRM unExportResourceFromMsg (PayloadForRRM rrmPayload)
throws NameNotFoundException,
StaleEntryAccessException,
QuotaExhaustedException,
InvalidNameException,
PermissionDeniedException,

RemoteException

The unExportResourceFromMsg is invoked from a remote RRM in response to a
call of unExportResourceFromMsg on the remote RRM. The rrmPayload contains
the data defined in the description of unExportResourceFromMsg. The intent is
that the RRM receiving an invocation of unExportResourceFromMsg should
remove te resource contained in rrmPayload from its repository. ThePayloadFor-
RRM instance returned contains a payloadType of UNEXPORT_REPLY and the
contextPDU passed in the rrmPayload parameter. All other fields are unused.

void updateExportedResource (ESName esname, boolean topLevel, int
mode, String server)
throws StaleEntryAccessException,
NameNotFoundException,
RequestNotDeliveredException,

ExportFailedException

The effect of calling the updateExportedResource function is very similar to calling
ExportResource. The difference is that the RRM invokes the updateExporte-
dResourceFromMsg function on the remote RRM (instead of ExportResource-
FromMsg) and the payloadType of the PayloadForRRM instance passed as a
parameter in the remote invocation is set to
UPDATE_EXPORTED_RESOURCE_REQUEST.

PayloadForRRM updateExportedResourceFromMsg (PayloadForRRM
rrmPayload ,
String fromServer)

throws NameNotFoundException,

162 Developer Release 3.01 June 2000

Communication

Core to core communication

StaleEntryAccessException,
PermissionDeniedException,
InvalidvValueException,
UpdateFailedException,
RemoteException

The function updateExportedResourceFromMsg is invoked by a remote RRM when
it wishes to update resources which have been exported previously. The intent is
that the RRM receiving the call of this function replaces the metadata (and state in
the case of an export BY_VALUE) of each resource in the resourceTable in rrmPay-
load with the metadata and state contained in tablesArray. Only resources that have
been already registered have there metadata and state updated. The PayloadFor-
RRM returned as the result have the contextPDU of the rrmPayload parameter and
a payloadType of UPDATE_EXPORTED_RESOURCE_REPLY. All other fields are
ignored by the remote RRM that invoked updateExportedResourceFromMsg when
it receives this result.

void updateImportedResource (ESName esname, boolean topLevel, int
type, String server)
throws NameNotFoundException,
StaleEntryAccessException,

RequestNotDeliveredException

The updateImportedResource function is similar to the importResource function.
The major difference is that the RRM has previously imported the resource identi-
fied by esname. The RRM invokes the updateImportedResourceFromMsg on the
remote RRM identified by the string server (host:port). The PayloadForRRM passed
as a parameter in updateImportedResoruceFromMsg has payloadType of
UPDATE_IMPORTED_RESOURCE_REQUEST and has a single element in
resourceTable: the ESname of the resource that needs updating. Note that this can
not be the same ESName that is received as a parameter to updateImporte-
dResource, it must be the ESName used to identify the Resource when it was orig-
inally imported. So the RRM must remember this information about imported
resources if it is to request updates of metadata.

PayloadForRRM updateImportedResourceFromMsg (PayloadForRRM
rrmPayload)

throws RemoteException

Developer Release 3.01 June 2000 163

Core to core communication Communication

The function updateImportedResourceMsg is invoked by a remote RRM when it has
received an invocation of updatelmportedResource and needs to update a
resource’s metadata (and possibly state). The rrmPayload contains the data
described in the descripion of updateImportedResource above. The PayloadFor-
RRM returned from the updateImportedResoruceFromMsg function has a payload-
Type of UPDATE_IMPORTED_RESOURCE_REPLY. The topLevel,
importExportMode and contextPDU fields are the same as in the rrmPayload
parameter. The resourceTable field and tablesArray respectively contain the
ESnames and metadata (and possibly state) of the resources to be updates. Note
that even though a single resource ESname isall that is contained in the rrmPayload
parameter, the result can contain many ESnames if the topLevel flag as set to false
(indicating recursive import/export).

Restrictions on import and export of core managed resources

The following Core-managed Resources cannot be exported or imported.

¢ Protection Domain

e Meta Resource

¢ Resource Factory

e Inbox

e System Monitor

e External Resource Contract

The Account Manager cannot be exported by value, only by reference.

164 Developer Release 3.01 June 2000

Communication Core to core communication

Othe Core-managed Resources have restrictions when exported by reference. In

particular, such a Resource cannot be used as part of message processing as shown
in Table 10 ..

Table 10 Core-managed Resource export restrictions

Resource Pass by reference restrictions

Name Frame Cannot be used as a component of an
ESName sent to the Core for name
resolution

Repository View Cannot be used in a Search Recipe

Resource Contract Cannot register a Resource in this
Contract

Vocabulary Cannot be used in a Search Recipe

Removing imported resources (informational)

The Connection Manager provides the closeConnection() function to perform a
graceful shutdown of a connection. The Connection Manager builds a close connec-
tion message and sends the message to the Connection Manager of the remote core,
requesting for the connection cleanup process. In the current implementation, the
Connection Manager on the remote core removes the Protection Domain, Outbox
and other resources allocated to the connection. Removing the Protection Domain
used for the connection remove all resources imported from the connection, as they
are registered in this Protection Domain.

The initiating core also performs similar clean up process. The Protection Domain,
Outbox assigned to the connection are removed.

Developer Release 3.01 June 2000 165

E-speak Serialization Format Communication

E-speak Serialization Format

166

The basic types recognized are byte, short, int, long, float, double, and
string. The four integral types byte, short, int, and long are 1, 2, 4, and 8
bytes long respectively, and are always sent most significant byte first. The f1oat
and double types are sent just as in Java. The string type is syntactically synony-
mous with byte[], but is intended to contain text rather than arbitrary binary data,
and the text must be a valid UTF-8 encoded string as per RFC 2279.

We also recognize arrays of types. The type foo[] is sent as a length followed by that
many instances of type foo. If the length is -1, then a NULL is returned. If the length
is 0, an empty array is returned. Otherwise an array with that many elements is
returned.

A map is sent in the same syntactic way as an array, but there is an implicit Key/
value association between pairs of elements; all the evenly indexed elements (0, 2,
etc.) are Keys, and all the odd indexed elements are values. Some maps may allow
multiple occurrences of the same Key.

The length field is encoded in a single byte if the value of the length is -1..62 inclu-
sive; the encoding is 129 more than the length. Thus, -1 is sent as the byte value 128,
and a length of 3 is sent as the byte value 132. Lengths from 63..2731-1 are sent as a
4 byte integer. Lengths below -1 or greater than 27 31-1 are illegal at the present time.

All elements are sent a signal byte that indicates the type of the object that follows,
followed by the data for that object.

Signal bytes are entirely single bytes. They are encoded by literal ASCII characters
(e.g., A), literal ASCII characters but with the high byte set (char)('J'+128)).

Here is the Backus-Naur Form (BNF) for “Ob” an object serialized in the e-speak
ABI format.are the signal bytes defined currently.

Ob = 'E', <RSD.class>|

'D', <ResourceDescription.class>|
'S', <ResourceSpecification.class>|
'"[', <ESUID.class>|

'c', <SearchPredicate.class>|

'C', <SearchRecipe.class> |
], <Vocabu1aryDeclaration.class>|

Developer Release 3.01 June 2000

Communication

E-speak Serialization Format

‘B
.
v
0
'
v

st
N,
Vap
Q'

et

e,

'z,

1z,

(char
(char
(char
(char
(char
(char
(char
(char
(char
(char
(char
(char
(char
(char
(char

<Preference.class> |
<FilterSpec.class>|
<AttributeProperty.classs|
<AttributePropertySet.class> |
<Attribute.class>|
<AttributeSet.class>|
<Value.class> |
<ValueType.class>|
<ESName.class> |
<ESString.class>|
<AttributePredicate.class> |
<NamedObject.class> |
<ProfileAttributeSet.classs>|
<UserProfile.class> |
<NameSearchPolicy.class>|
<FinderResults.class> |
<FinderContext.class> |
<CoreEvent.class>|
<Event.class> |
<EventAttributeSet.class> |
<ESRuntimeExceptions |

<ESExceptions |

) ('z'+128), <ESArray.class>|

) ('s'+128), <ESSet.class>|

) ('I'+128), <Integer.classs|

) ('J'+128), <Long.class>|

) ('B'+128), <Boolean.class>|

) ('y'+128), <Byte.class>|

) ('C'+128), <Character.class>|
) ('W'+128), <Short.class>|

) ('F'+128), <Float.class>|

) ('D'+128), <Double.class>|

) ('S'+128), <String.class>|

) ('Z'+128), <boolean[].class>|
) ('b'+128), <bytel[].class>|

) ('c'+128), <char[].class>|

) ('w'+128), <short[].class>]|

Developer Release 3.01 June 2000

167

E-speak Serialization Format

Communication

168

(char) ('1'+128
(char) ('j'+128

(char) ('d'+128

, <int[].class>|
, <longl].class>|

, <double[] .class>|

)
)
(char) ('£'+128), <float[].class>|
)
)

(char) ('v'+128

, <Object[].class>]|

(char) ('H'+128), <ESMap.class>|

T

Tht ,

’

’

Tyt
’

"W
’

Tyt
’

m' ,

'S',

<PayloadForRRM.class> |
<CMArg.classs |
<RepositoryHandle.class> |
<Contract.class> |
<RepositoryView.class> |
<Vocabulary.class>|
<MappingObject.classs |
<NameFrame.class>|
<Binding.class> |
<ProtectionDomain.class> |
<Inbox.classs> |
<ExternalResource.class> |
<SystemMonitor.classs|
<ResourceFactory.class> |
<Finder.class> |
<ConnectionManager.class>|

<RemoteResourceManager.class> |
<CoreManagementService.class> |

<AccountManager.class>

The components for each of the remaining non primative type are defined in the
relevant sections of this specification (to do: need to pull these definitions in
to complete the BNF).

In the following BNF, the meta-symbol => means “is sent as.” The convention is as

follows:

String => string
Integer => int
Long => long
Boolean => byte

Developer Release 3.01 June 2000

Communication

References

Null =>
ByteArray =>
ObjectArray =>
ESMap =>
ESArray =>
ESSet =>
ESList =>

bytell
Ob []
map
Ob[]
Ob []
Ob []

ESMap, ESArray, ESSet and ESList in the current implementation are marshalled
using Java serialization.

References

1 The TLS Protocol version 1.0 RFC 2246, IETF by T. Dierks and C. Allen January

1999.

2 Recommendations for Elliptic Curve Cryptosystems by G. Seroussi and Nigel

Smart HPL Technical Report 1999-148.

3 Simple Public Key Certificate. INTERNET-DRAFT September 98 by Carl M. Elli-
son et al. This needs to be replaced with a reference to the RFC

Developer Release 3.01 June 2000

169

References Communication

170 Developer Release 3.01 June 2000

Exceptions

E-speak defines a set of exceptions to inform Clients when an error occurs in the
system. Two classes of exceptions are defined: run-time exceptions and recover-
able exceptions.

Run-Time Exceptions

Run-time exceptions are thrown when programming errors occur. A program catch-
ing such exceptions may terminate. ESRunt imeException has the following
subclassed exceptions:

CorePanicException is thrown when the Core is unable to process the
request. Although the Core attempts to notify all Clients of its inability to
continue operating, it also replies with this exception for as long as it can. The
Core can continue to accept new messages as the problem may be limited to the
execution of a single message.

ServicePanicException is thrown when a service is unable to process the
request. This can be a terminal error for the service, in which case the service
exits. Or it can simply mean that the request being processed caused an internal
error that was not recoverable, and the service accepts new requests.

RepositoryFullException is thrown when the request attempted to add
additional information to the Core’s Repository, but the Repository was full.
This exception can be recovered from if the Client is able to delete one or more
Resources from the Repository. It is a run-time exception because almost every
message can possibly throw this exception, and the Client has no guaranteed
recourse (because some other application can consume the Repository space
freed up by this Client).

Developer Release 3.01 June 2000 171

Recoverable Exceptions Exceptions

e OutofOrderRequestException is thrown when the state of the system is
inconsistent with the request.

¢ ConnectionFailedException is thrown when the Connection Manager fails to
establish a connection, details are contained in the exception state.

® InvalidParameterException is thrown by any other programming errors.
This exception has three subclasses:

® NullParameterException is thrown where a null parameter was
supplied but is not allowed. This error is often caused by passing an uninitial-
ized object.

e InvalidvalueException is thrown when a parameter is outside the
allowed range.

e InvalidTypeException tells the programmer that the name specified is
bound to the wrong type of Resource.

Recoverable Exceptions

Recoverable exceptions occur due to a problem with the state of the system. For
example, when the Client sends a message to request access to a Resource, the
message may be undeliverable, perhaps because the Handler’s Inbox is full. Recov-
ery for this case can be as simple as resending the message.

The base exception is ESExcept ion. This exception is subclassed into three major
categories: ESLibException, ESInvocationException and ESServiceEx-
ception.

ESLibException is the base clase for client library exceptions. It should not be
thrown itself but rather a subclass exception.Currently one subclass is defined.

e CoreNotFoundException indicates that a core could not be found to
connect to. Either change the specification of the core or insure the core is
running to correct this exception.

172 Developer Release 3.01 June 2000

Exceptions Recoverable Exceptions

ESInvocationException is abase class for all the exceptions that can be
thrown by the Core back to the Client occurring during the processing of the
request. Exceptions thrown by most handlers are included here to reduce the
number of explicit classes of exceptions that must be caught. This exception is
further subclassed into:

NamingException results from a wide variety of problems. Regardless of the
cause, this exception, or any of its subclasses, is thrown only for the primary
Resource of the message header. Five subclasses are defined:

* NameNotFoundExceptionisthrown when the name resolution process failed
to find a given name. The Client can recover by changing ESName.

e EmptyMappingException is thrown when a Mapping Object is associated
with the name, but that Mapping Object has no usable accessors. This condition
arises when the accessor has no elements, the elements refer to unregistered
Resources, or the Resources did not pass the visibility tests. The Client can
recover by changing ESName or trying again with a different set of Keys.

® UnresolvedBindingException is thrown when all the accessors of the
Mapping Object are search requests. The Client can recover by requesting a
lookup using the search request.

e MultipleResolvedBindingException is thrown when the Mapping
Object has more than one explicit binding,.

¢ LoopDetectedException is currently unused.

StaleEntryException is thrown if the Resource no longer exists. The Core
removcs any stale handles from the Mapping Object before returning the exception.
A retry does not result in this exception unless another referenced Resource has
been unregistered.

PermissionDeniedException is thrown by any Resource Handler when the
client is not authorized to access the Resource. The Client can recover by retrying
with a different set of certificates. One subclass is defined

® SessionRequiredException is thrown when a client attempts to send it a
message without first setting up a session. The service has security enabled and
is performing access control checks. A secure session is needed so that the
access control check can be made. This would normally be handled by the client

Developer Release 3.01 June 2000 173

Recoverable Exceptions Exceptions

library and is transparent to the application programmer. The client recovers
from this exception by exchanging SLS messages with the service to establish a
session.

QuotaExhaustedException is thrown when the Client attempts to define more
Resources than it is allowed as defined by the quota assigned. The Client can delete
other Resources (thus freeing up quota) and reattempt the request.

MethodNotImplementedException is thrown when the Client attempts to
invoke a method on a Resource that is not implemented even though the method is
consistent with the type of the Resource. This is typically used to "stub-out" routines
when a service is under development.

RecoverableCoreException is thrown when there is a problem while process-
ing the request. There are two associated subclass exceptions:

¢ RequestNotDeliveredException is thrown when the Core never started
processing the message. This exception can be thrown by the Client library if it
implements time-outs or in by the Core if the corresponding queue is full. It may
be possible to recover from this exception by resending the message.

e PartialStateUpdateException isthrown when the Core cannot finish
processing the message. The Client may need to find out what state was changed
before attempting recovery, for example, by examining the state of the meta-
data.

TimedOutException isthrown when a message being written to or received from
a channel has not successfully completed within the caller defined time period.

UndeliverableRequestException is thrown when the message cannot be
delivered to the Resource Handler. In the current implementation, this is not
thrown with security enabled, the security subsystem silently ignores such
messages (in case they are a denial of service attack) and the Client has to wait for
a TimeOutException There are two subclass exceptions of UndeliverableRe-
questException:

e RecoverableDeliveryException isdue totemporary conditions such as a
full Mailbox. Recovery can be as simple as retrying.

174 Developer Release 3.01 June 2000

Exceptions Exception State

e UnrecoverableDeliveryExceptionisdue toacondition thatis unlikely to
change quickly. The Client can recover by selecting a binding that points to a
different Resource Handler.

ESServiceException is abase class exception for all service-defined excep-
tions.

e ESNameFrameException is the super class of all name frame exceptions.This
allows the client to catch this exception and handle all the name frame related
exceptions in one catch block.

¢ NameCollisionException isthrown when the name specified in an add,
copy, or similar operation is already defined in the Name Frame.

e LookupFailedException is thrown when no Resources are found that
match a Search Recipe.

e TInvalidNameException is thrown when a string designating a name is
not found in the Name Frame.

® ESRemoteException is thrown if the Remote Resource Manager operation
failed for any reason, details are in the exception state.

Exception State

Each exception has the following state.

class ESException
int errno;
Object [] info;
1
The field errno indicates the type of the exception as shown below.
NONE= 0
ESRuntimeExceptions (1-99 reserved)
INVALID PARAMETER= 1

NULL_PARAMETER= 2
INVALID VALUE= 3

Developer Release 3.01 June 2000 175

Exception State

Exceptions

176

INVALID TYPE= 4
OUT_OF_ORDER_REQUEST= 5
CORE_PANIC= 6

SERVICE PANIC= 7
REPOSITORY FULL= 8

ESExceptions (100-999 reserved)

INVOCATION= 100

NAMING= 101

NAME_NOT_ FOUND= 102

EMPTY_ MAPPING= 103
UNRESOLVED BINDING= 104
MULTIPLE_RESOLVED_BINDING= 105
PERMISSION_ DENIED = 106
QUOTA_EXHAUSTED= 107
STALE_ENTRY_ACCESS= 108
RECOVERABLE_CORE= 109
PARTIAL_STATE_UPDATE= 110
REQUEST NOT DELIVERED= 111
UNDELIVERABLE REQUEST= 112
UNRECOVERABLE_DELIVERY= 113
RECOVERABLE_DELIVERY= 114
TIMED OUT= 115

METHOD_NOT_ IMPLEMENTED=116
LOOP_DETECTED= 117
SESSION_REQUIRED= 118
CONNECTIONFAILED= 119

E-speak defined service exceptions

SERVICE= 200

Name frame service exceptions
NAMEFRAME= 201

INVALID_NAME= 202

NAME_COLLISION= 203
LOOKUP_FAILED= 204

Import/Export service exceptions
REMOTE= 210

Client Library defined exceptions

ESLIB = 950
CORE_NOT_FOUND= 951

Exception numbers 1000+ are reserved for application use

Developer Release 3.01 June 2000

Exceptions Exception hierarchy

Exception hierarchy

Here is the exception hierarchy. Indentation indicates position in the hierarchy.

ESRuntimeException
ServicePanicException
OutofOrderRequestException
CorePanicException
ConnectionFailedException
RepositoryFullException
ConnectionFailedException
InvalidParameterException
InvalidTypeException
InvalidvalueException
NullParameterException
ESException
ESLibException
CoreNotFoundException
ESServiceException
ESRemoteException
ESNameFrameException
NameCollisionException
InvalidNameException
LookupFailedException
ESInvocationException
StaleEntryAccessException
PermissionDeniedException
SessionRequiredException
QuotaExhaustedException
MethodNotImplementedException
RecoverableCoreException
PartialStateUpdateException
RequestNotDeliveredException
NamingException
MultipleResolvedBindingException
UnresolvedBindingException
NameNotFoundException
LoopDetectedException
EmptyMappingException
TimedOutException
UndeliverableRequestException
RecoverableDeliveryException
UnrecoverableDeliveryException

Developer Release 3.01 June 2000 177

Exception hierarchy Exceptions

178 Developer Release 3.01 June 2000

Core Generated Events and
Event Distributor
Vocabularies

The e-speak event service is described in the E-speak Programmer’s Guide. The
Core itself is an example of an Event Publisher. It sends Events to an external
Client called the Core Distributor to signal state changes such as a change in a
Resource’s attributes. The Core Distributor can then distribute these Events to
interested Clients that have appropriate authority.

Events

An e-speak Event is a set of named attributes, where each attribute is a name-value
pair. An Event also contains a reference to an e-speak Vocabulary. The Vocabulary
enumerates the names of allowed attributes and their types. Specifying a Vocabu-
lary in an Event makes the Event content self-describing. A recipient of a self-
describing Event does not need to know anything about the Event’s content a
priori; it can query the Vocabulary to determine the Event’s attributes and their
types and then extract the values of the attributes it is interested in. Event genera-
tors can choose to leave the vocabulary field null, in which case Event
attributes must be agreed upon a priori, the default meaning being the e-speak Base
Vocabulary.

An Event is defined as follows:

class Event

{

String eventType;
EventAttributeSet eventAttrs;
EventAttributeSet controlAttrs;
Object payload;

Developer Release 3.01 June 2000 179

Core Generated Events Core Generated Events and Event Distributor Vocabularies

Every event has a string that describes the event type and two AttributeSets (sets
of name-value pairs). The first AttributeSet is the attributes that describe the event.
The second AttributeSet are control attributes that intermediating entities (such as
distributors) can insert into the event. Matching (filtering) can only be performed
on the event attributes, not on the control attributes. An string is valid for event-
Type, the meaning of the string is application dependent.

EventAttributeSet contains an AttributeSet (xref to chapter on resourceDe-
scriptions, section on Resource Description defines AttributeSet):

class EventAttributeSet extends AttributeSet
AttributeSet attrs;

String format;

}

The string format indicates the format of each Attribute in the AttributeSet attrs.
"VOCAB" means that the attributes have to be valid in the vocabulary references in
the AttributeSet attrs. "SIMPLE" means the attributes are simple (name, value) pairs
and no valid vocabulary is specified in attrs.

Core Generated Events

180

The Core is a Publisher of Events. All Events published by the Core go to a single
service called the Core Distributor Service. This service is the Resource Handler
for several Distributor Resources, each dealing with a Core-generated Event of a
different type. These are:

e Changes to the state of the Repository
¢ Changes to the state of Core-managed Resources

These types are used to maintain the coherence of metadata and the Resource state
shared by value. Both are described in the Base Event Vocabulary.

The string in the eventType field for events generated by the e-speak Core consists
of a prefix indicating the component that generated the event, followed by further
information (such as the name of the method being invoked).

Developer Release 3.01 June 2000

Core Generated Events and Event Distributor Vocabularies Core Generated Events

The eventAttrs field consists of a set of name, string-value pairs. Two common
examples are:

¢ name "Name", value is the stringified version of the ESUID of the Resource
responsible for generating the event

e name "FailureDetail", value is a string indicating the nature of the failure
The format string of the EventAttributeSet eventAttrs is "SIMPLE".
The payload field is null for events generated by the e-speak Core.

The following is the list of prefix strings used by the current implementation.

"core.mutate.NameFrameInterface."
"core.mutate.MailBoxInterface."
"core.mutate.ProtectionDomainInterface."
"core.mutate.RepositoryViewInterface."
"core.mutate.VocabularyInterface."
"core.mutate.VocabularyToolBoxInterface."
"core.mutate.ResourceFactoryInterface."
"core.mutate.ResourceManipulationInterface."
"core.mutate.ImporterExporterInterface."
"core.mutate.SecureBoot."

"core.failure."

"core.failure.exception."

"notifySync"

"notify"

"publish"

"subscribe"

"unpublish"

"unsubscribe"
"net.espeak.services.events.intf.ESListenerIntf"
"net .espeak.services.events.intf.DistributorIntf"
"net.espeak.jesi.event.coredist.ESCoreDistributorIntf"
"net.espeak.infra.cci.events.Event"
"service.create"

"service.delete"

"service.mutate"

"service.access"

"service.pause"

"service.resume"

"service.panic"

"service.genericInfo"

"management .service.create"

"management .service.coldreset"

"management .service.warmreset"

"management .service.stop"

"management .service.start"
"management . service.shutdown"

"management .service.remove"

Developer Release 3.01 June 2000 181

Core Generated Events Core Generated Events and Event Distributor Vocabularies

"management .service.erroxr"

"management .service.info"

"management .service.illegalstate"
"management . servicemanager.newservice"
"management . servicemanager.deleteservice"
"management . servicemanager.servicechanged"
"resource.change_state"
"resource.invalid state"
"resource.invalid state_transition"
"resource.statistics"

"resource.proxy created"
"coremanager.info"

"coremanager.warning"
"coremanager.serious"

182 Developer Release 3.01 June 2000

Core Generated Events and Event Distributor Vocabularies Publication of Core-generated Events

Publication of Core-generated Events

The e-speak core sends events to the core distributor as a Protocol Data Unit contain-
ing a MessageForResource (xref to ESPDU section in communications chapter). The
payload field of the MessageForResource is the event. The payloadType of MessageFor-
Resource is set to EVENT.

The e-speak Core does not subscribe to the Core Distributor (as an ordinary Client
would).

Developer Release 3.01 June 2000 183

Distributor Vocabulary

Core Generated Events and Event Distributor Vocabularies

Distributor Vocabulary

A vocabulary is defined in which Distributors can be registered.

184

Table 11 Distributor vocabulary

Attribute Name Value Type Comment Meaning
Name String Default
value
"BaseDistri
butorVocab
ulary"
Type String
ESGroup String
ContractNames String
ServiceName String Name assigned to
Distributor
ServiceType String Type of distributor
EventTypes String Multivalued | Event types handled
Persistent Boolean always True if Distributor state
false survives Core restart
Buffered Boolean always True if Distributor is able to
false accept events faster than it
can forward them
Secured Boolean always True if event state is
false tamper proof

Developer Release 3.01 June 2000

fﬁ{fopﬁlﬂffgﬁ%il) Events and Event Distributor Vocabularies Events in a Distributed Environment

Table 11 Distributor vocabulary (Continued)

QOSLevel Integer always 0 Quality of service level
assigned by Distributor

Multiplexed String Multivalued | Type of aggregation and
summarization

The Service Name, Service Type, and Event Types are strings that are assumed to
have meaning to Publishers and Subscribers who have discovered the Distributor.
For example, the Core Distributor could be described with a Service Name of

"Core", a Service Type of "Core", and Event Types of "Repository" and "Metadata".

The Persistent, Buffered, Secure, and QOSLevel attributes must be set as shown
because the current Distributor implementation does not support these features.
The Multiplexed attribute can be set by Distributors to describe how they combine
events. For example, a Distributor can aggregate billing events from a particular
customer and publish an aggregate event to the subscribers. The values assigned
are assumed to have meaning to the Publishers and Subscribers of the events.

Events in a Distributed Environment (Informational)

Events are messages that trigger special actions by the recipients. In particular,
when a Client receives an Event, the callback registered for this Event is invoked.
It would be inappropriate for the Remote Resource Handler to invoke the callback.
In fact, the Remote Resource Handler has no idea what to do with the Event. As
currently implemented, no special action is needed. The result is delivery of the
Event to the Client with no special action on the part of the Remote Resource
Handler.

The state of Resources exported by value and the metadata of all exported
Resources is not synchronized by default. Clients wishing to synchronize exported
or imported Resources register for the Core-generated metadata and Resource
Events. They also subscribe to the Resource Event if the Core-managed Resource
is being exported by value.

Developer Release 3.01 June 2000 185

£veuls,in fuDistributed Environment (Informational) Core Generated Events and Event Distributor

186

Care is needed to avoid cycles. Consider an exported Resource that has its meta-
data changed on the importing side. Assume that a Client on each Logical Machine
has subscribed to metadata Events for this Resource with Core Distributors from
both Logical Machines. When one Client makes a change, they both get the Event.

Even if the Client making the change doesn’t respond to the change Event, the other
Client must make the change on its Logical Machine. This change can generate an
Event that reaches the first Client. Not having any knowledge of the source of the
Event, the Client makes the change again. These two Clients continue repeating the
same change forever except for the fact that the Core generates a Resource or meta-
data Event only if the state is actually changed. Hence, the second change on each
side does not generate an Event, and the cycle is broken.

Other cycles can occur. Two Clients that make changes to the metadata while the
Events are propagating can generate a cycle that is not broken so simply. The prob-
lem is that they are both changing the same item without synchronizing. Such condi-
tions are almost certainly programming errors. No action taken by any e-
speakcomponent can be guaranteed to break such cycles. Only the Clients have
sufficient information to detect the problem.

Developer Release 3.01 June 2000

Management

Two concepts that underpin the manageability of e-speak Resources and e-speak
Clients.

e Managed State: a defined service state embodying the life cycle of a service.

e Managed Variable Table: sets of values that can be affected by a manager for
the purposes of configuration and control.

Managed Life Cycle

The full state transition diagram is as follows.

Developer Release 3.01 June 2000 187

Managed Life Cycle Management

remove
v
®

[tdonn | ‘IIEEII’

External

Figure 13 Managed Service Lifecycle

State Descriptions

Initializing
The internal dynamic state of the service is being constructed, for example: a policy
manager is being queried for configuration information and resources are being

discovered via search recipes or yellow pages servers. When the service finishes
this work it moves asynchronously into the ready or error states.

Ready

The service is in a ready to run situation, this state is also equivalent to a stopped or
paused state.

188 Developer Release 3.01 June 2000

Management Managed Life Cycle
Running
The service is running and responding to methods invoked on its operational inter-
faces. If an error occurs which implies that the service cannot continue to run it
should move into the error state.
Error
The service has some problem and is awaiting management action on what to do
next.
Closed
The service has removed/deleted much of its internal state and awaits either a cold-
Reset or remove transitions.

Inputs

An input is the trigger that causes a state transition to occur. In any given state there
is a defined set of permissible inputs that are available, i.e. only those that are
depicted in the diagram as leaving the current state and connecting with the next
state. To attempt to perform any other transition is illegal. Note that many inputs
can have the same name (e.g. error) yet there is no ambiguity as long as the origi-
nating state is different.

Clients can provide any input with impunity However a management agent can
request only provide external inputs. For example the manager might reasonably
request that a client perform a warm reset, but not to become ready, the client alone
can provide this input i.e. when it's internal initialization process has completed.

The available inputs are as follows.

e start: move into the running state. Start to handle invocations on operational
interfaces.

e stop: move into the ready state. Stop handling invocations on operational inter-
faces.

e ready: move into the ready state having finished initialization.

Developer Release 3.01 June 2000 189

Managed Variable Tables Management

e error: move into the error state, this transition is valid from any state.

¢ shutdown: clean up any internal state required and move into the closed state.
This transition should not cause the deregistering of resources from the reposi-

tory.

¢ coldReset: cause a from complete reinitialization of the service and move into
the initializing state. The only exemption is that resources that are already regis-
tered should not be reregistered.

e warmReset: cause a partial reinitialization of the service i.e. retaining some of
the existing service state move into the initializing state.

e remove: cause the service to remove itself from existence. Any non-persistent
resources should be deregistered from the repository.

Managed Variable Tables

A managed variable table is at it's simplest a table of name/string value pairs that
exist within the client but to which a manager has some level of access. Thus a
management agent can control those aspects of a services behavior that is affected
by those variables to which it has access.

There is a degree of configurability associated with managed variables and their
variables that permit something more sophisticated than the simple get and set
operations one would expect to find.

Each table itself has a name to distinguish it from other tables. As we shall see later,
the managed service model itself provides for two such tables.

There is a restriction on variable table usage: each name in a variable table must be
unique within that table. It is not possible to implement lists by having many entries
with the same name.

190 Developer Release 3.01 June 2000

Management Managed Service Interface

Configuration Parameter Table

The configuration parameter table is an instance of a managed variable table with a
reserved name that identifies it as such. The table holds generic configuration data
for the client.

Resource Table

The resource table is another instance of a managed variable table, identical in
behavior to the configuration parameter table except that the names in the client's
table refer to other services with which the client has some relationship. For exam-
ple, if a particular client makes use of a mail service then this relationship can be
made visible to a management agent through the resource table. Thus a manage-
ment agent might reconfigure the client to use an alternative but equivalent service.
While there might seem no obvious need to separate out this particular aspect of
configuration, doing so makes it possible for a management agent to discover the
topology and integrity of a network of connected services without the need for
service specific interpretation of the variable table (all entries in the resource table
are resources).

The name used for an entry in a resource table can be any symbolic name the client
chooses, while the value must be the valid e-speak ESName of the actual service.

Managed Service Interface

All e-speak Resources that are manageable implement the ManagedService inter-
face. This applies whether the Resources are external to the e-speak Core, or Core-
managed.

interface ManagedServiceIntf
String getName ()
throws ESInvocationException;

String getDescription ()
throws ESInvocationException;

Developer Release 3.01 June 2000 191

Managed Service Interface Management

String getOwner ()
throws ESInvocationException;

String getUptime ()
throws ESInvocationException;

String getVersion()
throws ESInvocationException;

String getErrorCondition ()
throws ESInvocationException;

String getStaticInfo()
throws ESInvocationException;

void coldReset ()
throws IllegalStateTransition,ESInvocationException;

void warmReset ()
throws IllegalStateTransition, ESInvocationException;

void start ()
throws IllegalStateTransition, ESInvocationException;

void stop ()
throws IllegalStateTransition, ESInvocationException;

void shutdown ()
throws IllegalStateTransition, ESInvocationException;

void remove ()
throws IllegalStateTransition, ESInvocationException;

int getState()
throws ESInvocationException;

VariableEntry[] getVariableEntries ()

192 Developer Release 3.01 June 2000

Management Managed Service Interface

throws ESInvocationException;

String[] getVariableNames ()
throws ESInvocationException;

VariableEntry getVariableEntry (String name)
throws ESInvocationException, NoSuchVariableName;

void setVariable (String name, String value)
throws ESInvocationException;

ResourceEntry[] getResourceEntries ()
throws ESInvocationException;

String[] getResourceNames ()
throws ESInvocationException;

ResourceEntry getResourceEntry (String name)
throws NoSuchVariableName, ESInvocationException;

void setResource (String name, ESName resource)
throws ESInvocationException;

}

The method getName return String containing the service name. This name should
be used when registering the service resource in the service vocabulary.

The method getDescription returns a human readable description of the service for
display on a management console.

The method getOwner returns a string indicating the owner of the service.

The method getUptime gets the time for which the service has been running. The
format of the string is “years.days.hours.minutes.seconds”.

The method getVersion returns a string indicating the version of the service.

The method getErrorCondition returns a string indicating the error condition. This
returns null if the service is not in an error state.

Developer Release 3.01 June 2000 193

Managed Service Interface Management

194

The method getStaticInfo returns an XML document of the following form.

<staticInfo>

<name>the name of the resource </names

<owner> the name nameof the onwning service </owners
<description> the decription here </description>
<version> the version string </version>

<uptime> the uptime string </uptimes>

</staticInfo>

The coldReset transistion function cause the service to move into the initializing
state and completly reinitialize. The exception IllegalStateTransitionException is
thrown if the state is not in the ready, error or closed states.

The warmReset transistion function cause the service to move into the initializing
state and partially reinitialize. The exception IllegalStateTransitionException is
thrown if the state is not in the ready or error states.

The start transistion function cause the service to move into the running state and
service client requests. The IllegalStateTransitionException exception is thrown if
the state is not in the ready state.

The stop transistion function cause the service to move into the ready state and stop
serving client requests. The exception IllegalStateTransitionException is thrown if
the state is not in the running state

The shutdown transistion function clean up any internal state required and move
into the closed state. This transition should not cause the deregistering of resources
from the repository. The exception IllegalStateTransitionException is thrown, if the
state is already in the closed state.

The remove transition function causes the service to remove itself from existence.
Any non-persistent resources should be deregistered. The exception IllegalStateT-
ransitionException is thrown if the state is not in the closed state.

The method getState return the current state: an integer value from 0 to 4.
The value returned is interpreted as follows.

¢ [Initializing(0) - the service is contructing its internal data structures and finding
other services which is needs to function.

Developer Release 3.01 June 2000

Management Managed Service Interface

e Ready(1) - the service is fully constructed and ready to run.

¢ Running(2) - the service is running and handling methods on its operational
interfaces.

¢ C(Closed(3) - the service has deleted much of its internal state and closed any open
connections to files or other services.

e Error(4) - The service has encountered an error preventing the service from
continuing to operate.

The Variable Table

Each manageable Resource maintains a table of name value pairs, which contains
whatever information that Resource wishes to expose to the management agent.
The table entries can be either read only or read write.

class VariableEntry {
String name;
String value;
int updateType;

}

The updateType is interpreted as follows (DevTeam needs to provide this infor-
mation.)

The method getVariableEntries returns the table as an array of VariableEntry's.
Each VariableEntry object contains the name, the value & update information.

The method getVariableNames returns an array of strings - one element in the array
for each variable.

The method getVariableEntry returns the entry in the table for variable identifed in
the parameter name.

The method setVariable sets the variable identified by the parameter name to the
string in the value parameter.

Developer Release 3.01 June 2000 195

Managed Service Interface Management

The Resource Table

196

The managed Resource maintains a table of name-Resource pairs. This table
contains all the Resources that the element depends on i.e. uses. The table entries
can be either read only or read write.

class ResourceEntry {
String name;
ESName resource;
int updateType;

}

The method getResourceEntries returns the table as an array of ResourceEntry.
Each entry contains a string that name for the resource, the ESName of the resource
(URL) and the update information. The updateType is interpreted as (Need infor-
mation from DevTeam.)

The method getResourceNames returns an array of strings, one element for each
entry in the resource table.

The method getResourceEntry(String name) returns the entry in the table for the
named resource.

The method setResource sets the Resource identified by the name parameter to the
ESName supplied in the resource parameter.

Developer Release 3.01 June 2000

Repository (Informational)

The Repository is not part of the e-speak architecture because Clients have no
direct interaction with it. However, understanding the operation of the Repository
helps in understanding other parts of the architecture. Also, the behavior of the
system depends on how the Repository is configured. This chapter describes the
reference implementation, the Core-Repository interfaces for including Reposito-
ries of different internal structures, and various scalability issues.

Repository Overview

The Repository holds the data needed by the Core. This data includes the Resource
metadata as well as the internal state of Core-managed Resources. The Repository
is also read by the Lookup Service when a Client requests a lookup. These two oper-
ations have different design points. Access to metadata and Core-managed
Resources is done frequently and needs to be low latency. Lookup requests are akin
to database queries; they are less latency sensitive but must be completed relatively
quickly.

Repository Structure

To support the conflicting goals of flexible query lookup on a large persistent set
and rapid access to a smaller, transient subset, the reference implementation of the
Repository described here is divided into two components: the Repository Data-
base and the Repository Access Table.

Developer Release 3.01 June 2000 197

Information Flow Repository (Informational)

The Repository Database provides persistent storage and efficient lookup request
processing. This component is left parameterized in the Core-Repository interface.
All that is needed is an appropriate database interface. This design allows different
implementations of the Repository to select the most appropriate database based

on relevant business and technical considerations.

A very broad range of persistent repository implementation is allowed. This Repos-
itory Database interface gives another architectural degree of freedom. For
instance, in the case of a battery-backed RAM device or in situations where persis-
tence is simply not a requirement, a pure RAM-based Repository Database imple-
mentation is feasible. Thus, the Repository Database need not have a large
footprint.

The second component, the Repository Access Table, is fully resident in memory in
the reference implementation. This access table is rebuilt from data in the Reposi-
tory Database as part of a system restart. The access table supports a fast associa-
tive lookup of information based on Repository Handles. It can be a cache of the
Repository data, or it might be large enough to hold all the data needed for Resource
access.

Information Flow

198

Every e-speak installation comes with an in-memory Repository that does not
support persistence. To add the feature of scalability, a glue layer must be provided
to convert Core requests to the Repository into meaningful requests to the selected
implementation. This glue layer must implement the information flow methods
described in this section. In addition, the glue layer can also include interfaces
specific to the selected Repository implementation, such as setting controls.

The Repository Database has two interfaces used by the Core. The Core-Repository
interfaces have methods to:

¢ Register and unregister Resources

e Access the metadata corresponding to a given Repository Handle

Developer Release 3.01 June 2000

Repository (Informational) Information Flow

e Modify the metadata corresponding to a given Repository Handle
¢ Look up Resources that match a Search Recipe

The Client can access these methods only indirectly by invoking methods in the
Contract, Name Frame, and MetaResource. The following illustrate the methods
that need to be supported in these interfaces. The exact signatures and functions
vary from implementation to implementation. In the current implementation these
interfaces can be found in net.espeak.infra.core.repository.Repository

public RepositoryHandle registerDescription (
String name,
ResourceDescription d,
ResourceSpecification s)

throws InvalidSpecificationException;

public void unregisterDescription (
RepositoryHandle handle)
throws StaleHandleException;

public ResourceDescription accessDescription (
RepositoryHandle handle)

throws StaleHandleException;

public ResourceSpecification accessSpec (
RepositoryHandle handle)
throws StaleHandleException;

public RepositoryHandle mutateDescription (
RepositoryHandle handle,
ResourceDescription d,
ResourceSpecification s)

throws StaleHandleException;

Developer Release 3.01 June 2000 199

Increasing Scalability Repository (Informational)

The second interface is presented to the Core by the Repository to invoke the
Lookup Service for a Repository lookup request. This interface is invoked when the
Client does a lookup in a Name Frame:

public RepositoryHandle[] find (SearchRecipe recipe)
throws InvalidSearchRequestException;

The Repository can access permanent storage, but the protocol used for such
access is not part of thee-speak architecture.

Increasing Scalability

200

Because a Resource can be used only if it has been registered in the local Reposi-
tory, it is important to consider the eventuality of a full Repository. Two kinds of e-
speak Repositories are based on deployment needs: a thin Repository and a fat
Repository.

A thin Repository does not have enough disk space to grow with the number of
Repository entries. Its purpose is to support Repository Handle-based access, with
latency on the order of microseconds. This support is provided on a smaller, tran-
sient, subset of Repository entries, which corresponds to “in-use” Resources. A thin
Repository is very sensitive to stale data; it must enforce strong policies to:

e Dispose of stale entries, and
¢ Prevent marginally accessed entries from accumulating.

A thin Repository can have no persistent storage of its own. Thus, because the
number of Repository entries that can be stored in a thin Repository is small, an
in-memory Repository implementation is appropriate.

A fat Repository has a lot of disk space and can act as a server to a thin Repository.
Clearly, such a Repository can be highly available. The primary purpose of such a
Repository is to support Resource lookup requests with “reasonable” latency (on
the order of milliseconds). A fat Repository is not very sensitive to stale data.
Because the number of Repository entries that can be stored in a fat Repository is
very large, Repository implementation based on a database is appropriate.

Developer Release 3.01 June 2000

Repository (Informational) The keyIndexType field: Efficient Repository Lookup

A thin Repository can use a fat Repository to fulfill its scalability needs, and a fat
Repository can simultaneously serve many thin Repositories. However, many
devices cannot need such support because their transient state can hold all the
information necessary.

The communication between a fat Repository that provides services to a thin
Repository is not part of the e-speak architecture. However, because the security of
the system depends on the integrity of this communication, the link must be
protected. It is the security of the communication link that makes the Repository
part of the Core, irrespective of the physical machine that holds the Repository.

The keyIndexType field: Efficient Repository Lookup

In DBMS, indexes are the primary means of reducing the volume of data that must
be fetched and processed in response to a query. If there were no indexes used for
resource description attributes in an e-speak repository, every resource defined
against a particular vocabulary needs to be examined to see if it matches the
constraints specified in the search recipe. This would cause very slow performance
on lookups when large numbers of resources are registered in the e-speak Core. So
there needs to be a way of specifying which attributes properties within a Vocabu-
lary are the 'key' attributes so that some indexing scheme can be added.

It is not reasonable to index each and every attribute in a resource description. The
more indexes that you have, the more overhead in registering descriptions and also
the memory requirement becomes more for in-memory repository. It does not
make sense to index attributes that are not going to be frequently used in
constraints. Therefore, there needs to be a way of specifying which attribute prop-
erties within a vocabulary are the 'key' attributes so that some indexing scheme can
be implemented on these 'key' attribute properties.

This is the purpose of the keyIndexType field in AttributeProperty (xref to core
managed resource Vocabulary section). Valid values of keylndexType are:
NO_INDEX, HASH_INDEX and TREE_INDEX. If the value is HASH_INDEX or
TREE_INDEX the attribute is used as an index by the DBMS.

Developer Release 3.01 June 2000 201

The keyIndexType field: Efficient Repository Lookup Repository (Informational)

202 Developer Release 3.01 June 2000

Localization

A key factor in global acceptance of a software package is its ability to be custom-
ized to the location running the software. It is very frustrating for a user to have to
read messages in a language other than their own native language or interpret
numbers using a foreign format. Imagine if you had to understand an error message
written in German, or recognized that the string “06/01/99” really means January 6th
and not June 1st.

This chapter describes how to support localizing e-speak for native language and
locale-dependent number & date formats. This design is implemented in the current
release of e-speak. However, currently all entities have the same underlying data
catalog to get their localized strings.

Current Implementation

The current code has hard-coded strings for all display messages and exception
details. It also hard-codes the format of number and date/time representations.
For example:

¢ net.espeak.infra.core.startup.StartESCore prints a message when the core is
initialized using System.out.print(“Starting ES Core Server with Rendezvous of
\”” + popURL + “\’. “); and System.out.println(“started.”);.

e Value.getString() simply calls the toString method of the data type object repre-
sented by the Value class.

Developer Release 3.01 June 2000 203

Requirements

Localization

Requirements

String Messages

204

There are three requirements for string messages:

A framework implementation which supports the use of localized string
messages.

A English implementation of all string messages within the core, cci and client
packages, using the framework created above.

Additional language implementations as required by our customers.

Framework

Any time the message text is moved away from the code that produces the
message, confusion and incorrect messaging is likely. It is important, therefore,
that the framework minimized the confusion and makes it difficult to issue the
incorrect message. A hierarchical structure must be supported for the specifica-
tion of the message to be issued.

Messages are rarely static, i.e., they often contain concatenations of variable
values in the middle of the message. The framework must support the substitu-
tion of variable values in the body of the message.

The framework must support the specification of the location and language of
the user. If support for the requested location and language are not imple-
mented, the framework should provide the closest match to the requested loca-
tion and language available.

A likely scenario includes the core running in one locale and the client running
in a different locale. The framework must support a core issuing a message in
the client’s locale language.

During development phases, the framework should throw exceptions if the invo-
cation of the messaging methods are coded incorrectly (e.g., a message id that is
not valid), but in the release the framework should make a best attempt to
format the message for the user.

Developer Release 3.01 June 2000

Localization

Number & Date Formats

The framework must be initialized during the startup of the e-speak processes.

English implementation

1

The current code base must be examined for each string message that is
produced. Unless there is a good reason for keeping the message definiton local
(e.g., adebug message), the text of the message should be placed in the English
string implementation file and the reference changed to retrieve the message
text.

This English implementation becomes the base implementation and is shown
to the user as the default language if their specified language is not imple-
mented.

Additional language implementations

After a good English implementation has been developed additional language
implementations can be created translating the message text from English to the
new language.

After an additional language is created, changes to existing messages must also
be changed in each of the additional languages. This is a development process
issue that is addressed further here.

If a new message is created in the base implementation (English), the new
message does not need to be implemented in all other languages, however, if this
is the case the user sees the English version of the message.

Number & Date Formats

The requirements for non-string formats is broken into two categories:

Vocabulary attributes

Value class string representations

Developer Release 3.01 June 2000 205

Number & Date Formats Localization

Vocabulary Attributes

Three new data types should be supported which provide for locale-defined
formats. They are:

Decimal
This data type provides for a decimal representation of a number in a user-
defined pattern. The pattern can be derived from the locale-defined format or

customized by the user. For example: Decimal number = new Deci-
mal(“H##H L,

Currency
This data type provides a specialized Decimal format that includes the currency
symbol and format defined by the user’s locale.

Percent
This data type provides a specialized Decimal format for percentages using the
symbols and format defined by the user’s locale.

Value class string representations

The Value class getString method should return a string representation that is
customized by the user’s locale formats. Specifically:

206

Timestamp e Date
Time e Decimal
Currency e Percent

Numeric data type (Long, Double,
Float, etc.)

Developer Release 3.01 June 2000

Localization High-level Design

High-level Design

The implementation for the Number and Date formats are left to the Vocabulary
team. This document only addresses the String Message requirements. Shown
below is the class diagram for the classes implementing localization.

E5Siring E5Text
messagelDiGting myResoutces ResourceBundle
info:Dhiject]] myCustomBesources ESList
E3String) throwExceptions boolean
EZ3tringy String) indtializel String)void
ESString String, Object) throwExceptions] 1hoolean
E33tring 3tring, int) setThrowExceptions(boole ary) void
ES3tringy 3tring, Object, Object) getLocaledtring Object):String
ES3tring 3tring, Object[]) gethlessage(String):String
toString 1Btnng gethlessage Strng, ObjectiBtring
receivelbject] IMessagelnput3tream): Object gethlessagel String, Object, Object)Sting
sendObject] MessageOutpatStreant void getblessage] String, Object[J1Sttng
findhessagel String)Stiing
isDigit] 3tring)boolean
ESSivings
table EShap
contents:Obiject[][]
getieys N Emumeration
handleGetObject] String):Object

ESText, ESStrings & ESString classes

Three new classes are defined. ESText is the retrieval class and ESStrings is the
language dependent implementation class. ESString is a logical extension to String
which performs the localization at the last possible moment (client in most cases).

The initalize() method needs to be called by each process that uses the ESText facil-
ity. If this method is not called, the first invocation of getMessage defaults to the e-
speak base class. The initalize method uses the java.util. ResourceBundle class to

discover the language defined strings. ESText supports mutiple base classes. After

Developer Release 3.01 June 2000 207

High-level Design Localization

it is initalized, it can be called multiple times with different base class name param-
eters. When ESText looks up a message, it searches all the supplied base classes to
resolve the message ID.

The throwExceptions and setThrowException methods return and specify if excep-
tions are thrown for detected problems (see below).

Additional getMessage prototypes can be created with multiple params if the need
arises.

The base implementation for ESStrings looks like the following:

public class ESStrings extends ListResourceBundle

{

public Object[] [] getContents()
return contents;

1

static final Object[] [l contents = {
{“net.espeak.startup.Hello”, “template for ID1”},
{“net.espeak.eslib.ESFolder.dup”, “template for ID2"}

}i

}
Each additional language looks like the following:

public class ESStrings de extends ListResourceBundle

{

public Object[] [l getContents()
return contents;
}
static final Object[] [l contents = {
{“net.espeak.startup.Hello”,
“German override for IDl"},
{“net.espeak.eslib.ESFolder.dup”,
“German override for ID2”"}
}i

}

Class names are searched in the following order:

[T @ ” @ ”

+ country + “_” + variant

1 Dbaseclass + + language +

208 Developer Release 3.01 June 2000

Localization

High-level Design

2
3

“ ” @ ”

baseclass + + language + + country

baseclass + “_” + language

4 Dbaseclass

ResourceBundle automatically defers to this search order for any message ID that
is not found in the specific language implementation or if the specific language
implementation is missing.

The optional param values are substituted in the message text by the following
rules:

For each occurance of the string “%n”, the string is replaced by the
object[n].toString() value. Note that this is a zero-based index.

If “n” is out of bounds for the supplied params, the string “n/a” should be substi-
tuted. Note: during development, this situation threw an exception.

If a param is not referenced by the message, the param should be ignored. Note:
during development this stituation is thrown an exception.

Multiple references to the same param should be valid (e.g., “%0 blah %0”).

If the included object is a localizable object (Timestamp, Date, Time or Number)
the locale-defined formatting rules are applied to this object.

To code a percent sign in the message, code two percent signs (%%).

To include all passed parameters, code “%all” in the message template. This is
be replaced by [arg0, arg], ...].

The last class is ESString. This class logically extends the java.lang.String class for
localization. It accepts a message ID and optional data objects in the same way as
ESText does. The toString method localizes the message when it is called rather
than when it is constructed.

Developer Release 3.01 June 2000 209

High-level Design Localization

Usage example

Below is an example of how the StartESCore message can be coded. The
ESStrings.java class contains the following:

public class ESStrings extends ListResourceBundle

{

public Object[] [] getContents()
return contents;

}

static final Object[] [l contents = {

{“es.core.startup.Hellol”,
“Starting ES Core Server with “ +
“Rendezvous of \"%0\"..."},
{ves.core.startup.Hello2”, “ started.”}

}i
}

The StartESCore.java class contains the following:

System.out.print (ESText .getMessage (
“es.core.startup.Hellol”, popURL)) ;

System.out.println (ESText .getMessage (
“es.core.startup.Hello2”)) ;

The ESString class is used as follows:

throw new StaleEntryAccessException (
new ESString(“es.core.startup.Hello2”));

Additional design considerations

ID specifications

To simplify the ID generation and reduce the chances of duplications, the IDs
should follow the following convention:

¢ Use the dot format to specify the hierarchy. For example, message IDs for the
StartESCore class should be “es.core.startup.StartESCore.*”.

210 Developer Release 3.01 June 2000

Localization

ESString Wire Format

ESString

¢ The last node should be a short description string denoting the message. For
example, the startup message issued today by StartESCore would have the ID of
“es.core.starStartESCore.Hello”.

¢ Messages are defined in the ESStrings class in sorted ID order.

Core generated exceptions

Because it is possible that the core is running in a different locale from the client,
any message text produced in the core that is destined for a client should be speci-
fied in the client language. To do this, modify the exception classes to pass the addi-
tional objects instead of the text. The exception.getMessage code on the client side
uses the ESText class to map the exception number to a message ID and performs
the substitutions in the client’s language.

Client usage

Client applications can use these classes as well. They need only call ESText.initial-
ize() with the base class name for their ESStrings equivalent.

Wire Format

class ESString{
String messagelD;
Object [] info;

}

The message ID specifies the text of the message in either the service-defined
message catalog or the e-speak defined catalog. The message ID is used to retrieve
a message template from the catalog (ESStrings). The optional Objects are substi-
tuted into the message based upon the syntax of the message template.

Message templates can contain the "%" (percent sign) symbol followed by a number.
The number the index info object. The percent sign (and the number following it)
are substituted with the toString value of the associated object.

Developer Release 3.01 June 2000 211

ESString Wire Format Localization

212

An example entry from the current e-speak message catalog
(net.espeak.util. ESStrings)

MessageID: "net.espeak.exception.4"
Message template: "Parameter '%0' invalid type, expected '%1'"

Developer Release 3.01 June 2000

Future Developments

The next release of e-speak will integrate the current e-speak Core with the Web
Access architecture (see e-speak Web Access Architecture). It will also implement
the localization architecture described in Chapter 12, “Localization”.

Developer Release 3.01 June 2000 213

Future Developments

214 Developer Release 3.01 June 2000

Glossary

This chapter needs check to make sure we are not using terms no longer needed.
Terms to do with security (keys and locks) need to be removed. New terms need to
be added: certificate, key, PKI, ACI, Principal, URL, ESPDU..... probably others.

Term

Advertising Service

Arbitration policy

Attribute
Vocabulary

Base Vocabulary

Builder

Certificate

Developer Release 3.01 June 2000

Meaning

A service for looking up resources not registered in the local
Repository. It returns zero or more Connection Objects.

A specification within the search request accessor for
naming that provides the logic to resolve multiple matches
found for a name search.

See Vocabulary.

A Vocabulary provided at system start-up.

An entity identified by a Remote Resource Handler that is
used to construct the internal state of a Resource imported
by value.

A data structure assigning a Tag or name to a Subject.
Certificates are signed using cryptographic techniques so
they cannot be tampered with.

215

Glossary

216

Term

Certificate Issuer
(CI))

Client

Client library

Connection
Manager

Contract

Core

Core Event
Distributor

Core-managed
Resource

Distributor Service

Event

Meaning

A service issuing certificates to Subjects.

Any active entity (e.g., a process, thread, service provider)
that uses the e-speak infrastructure to process a request for
a Resource.

The interface specification that defines the interface for
e-speak programmers and system developers that will build
e-speak-enabled applications.

A Logical Machine's component that does the initial
connection with another Logical Machine.

See Resource Contract.

The active entity of a Logical Machine that mediates access
to Resources registered in the local Repository.

A Core-managed Resource whose purpose is to collect
information on e-speak Events and make such information
available to management tools within the infrastructures.

A Resource with an internal state managed by the Core.

A service that forwards published Events to subscribers.

A message that results in the recipient invoking a registered
callback.

Developer Release 3.01 June 2000

Glossary

Term Meaning

Event filter A subscription specification expressed as a set of attributes
in a particular Vocabulary that must match those in the Event
state in order for a Client to receive notification on publication
of an Event.

Event state Areference within an Event to its expressed set of attributes
in a particular Vocabulary. These attributes must match the
Event filter in order for the subscriber to receive notification
of the Event.

Explicit Binding An accessor that contains a Repository Handle.

Import Name A container that holds a name for each imported Resource.
Frame

Inbox A Core-managed Resource used to hold request messages

from the Core to a Client.

Issuer An entity issuing a certificate. The Issuer is denoted in a
certificate by its Public Key

Logical Machine A Core and its Repository.

Lookup request Resources with attributes matching the lookup request will
be bound to a name in the Client's name space.

Lookup Service The component that performs lookup requests used to find
Resources that match attribute-value pairs in the Resource
Description of Resources registered in the Repository.

Mailbox Either an Outbox or an Inbox.

Developer Release 3.01 June 2000 217

Glossary

218

Term

Mapping Object

Message

Metadata

Name Frame

Name Search Policy

Outbox

Pass-by value

Principal

Private Key

Private Security
Environment (PSE)

Meaning

An object binding an ESName to Resources or a Search
Recipe.

Means of Client-Core communication.

Data that is not part of the Resource's implementation, but
is used to describe and protect the Resource.

A Core-managed Resource that associates a string with a
Mapping Object.

A name conflict resolution tool used by the Core to find the
appropriate strings when looking up names in a Name
Frame.

The location where the Client places a message to request
access to a Resource.

A metadata field, which, when set to true, includes the state
of the Resource in the Export Form.

The entity holding the Private Key corresponding to a given
Public Key

This is secret data. An entity demonstrates knowledge of
this secrete data by cryptographic technicques to
authenticate itself. Private Keys must be kept secret

A cryptographically secure store for Private Keys.

Developer Release 3.01 June 2000

Glossary

Term

Protection Domain

Publish

Public Key
Public Key
Infrastructure (PKI)

Repository

Repository entry

Repository Handle

Repository View

Resource Contract

Developer Release 3.01 June 2000

Meaning

The environment associated with a particular Outbox from
which Resources can be accessed.

A request sent to the Distributor Service to publish Events.

Non-secret data that is associated with a given Private Key
by cryptographic techniques

A set of services and protocols that support the use of public
and private key pairs by applications for security.

A passive entity in the Core that stores Resource metadata
and the internal state of Core-managed Resources.

The metadata of a Resource as stored in the Repository and
made available to the Core when a Client’s requests to
access Resources are processed.

An index into the Repository associated with the metadata of
a Resource.

A Resource that can be used to limit the search for particular
Resources in a large Resource Repository, much as a
database view restricts a search within a database.

A Resource denoting an agreement between the Client and
the Resource Handler for use of a particular Resource. The
agreement includes a provision for the Client to use an API
known to the Resource Handler when making the request

for the Resource.

219

Glossary

220

Term

Resource

Resource
Description

Resource Factory

Resource Handler

Resource Specific
Data

Resource
Specification

Session Layer
Security Protocol
(SLS)

Service Identity
(ServicelD)

Simple Public Key
Infrastructure
(SPKI)

State

Meaning

The fundamental abstraction in e-speak. Consists of state
and metadata.

The data specified for the Attribute field of the metadata as
represented by the Client to the Core. See also Resource
Specification.

An entity that can build the internal state of a Resource
requested by a Client.

A Client responsible for responding to requests for access to
one or more Resources.

A metadata field of a Resource. Carries information about the
Resource. Can be public or private to the Resource Handler.

Consists of all metadata fields, except the Attributes field, as
represented by the Client to the Core.

The low level message protocol used by all e-speak Cores
and Clients for remote communication.

A field in the metadata that identifies a service or Resource

A specific variant of PKI developed within the Internet
Engineering Task Force and used by e-speak.

Data a Resource needs to implement its abstraction.

Developer Release 3.01 June 2000

Glossary

Term

Subject

Vocabulary

Tag

Vocabulary Builder

Vocabulary
Translator

Developer Release 3.01 June 2000

Meaning

The entity to which the access right or name has been
issued. In a certificate the Subject is denoted by its Public
Key.

A Resource that contains the set of attributes and value
types for describing Resources.

The field in a certificate expressing an access right

A Core-managed Resource registered by the Lookup Service
that is used to create new value types, attributes, and
Vocabularies.

A reference to a mechanism that is used to provide
interoperation between different Vocabularies by mapping
attributes from one Vocabulary into another through a
Translator Resource.

221

Glossary

222 Developer Release 3.01 June 2000

	Introduction
	Vision
	Goals
	Architectural Philosophy
	Environment
	Intended Audience
	Structure
	Conventions

	Architecture Overview
	Mediation Architecture
	Resource Model
	Metadata System
	Naming Model
	Access Control
	Communication
	Session Layer Security Protocol
	Core to Core Communication

	An End-to-End Example
	The E-speak Service Interface (Informational)
	E-speak Services
	Standards
	Summary

	Resource Descriptions, Resource Specifications and Resource Types
	ResourceSpecification
	boolean byValue;
	ESName contract;
	FilterSpec filter;
	ADR metadataMask;
	ADR resourceMask;
	ADR ownerPublicKey;
	ADR ServiceId;
	ESMap publicRSD;
	ESMap privateRSD;
	ESName owner;
	ESName ResourceHandler;
	int eventControl;
	ESUID
	String URL;

	ResourceDescription
	Resource type

	Core-Managed Resources
	Conventions
	Connection Manager
	Core Management Resource
	Remote Resource Manager
	Mailbox
	Inbox and Client Restart
	Inbox and Delegation of Resource Handling

	Name Frame
	ESNames
	Bindings
	Search Predicates, Search Recipes, and Name Search Policies
	Name Frame Methods

	Finder resource
	Protection Domain
	Repository View
	Resource Contract
	Resource Factory
	Resource Manipulation Resource
	Vocabulary
	The Account Manager Resource
	The user Interface
	Appendix: Method Names

	Vocabularies
	Vocabulary Overview
	Building a Vocabulary
	Building a New Vocabulary

	Base Vocabulary
	Base Account Vocabulary
	Translators (Informational)

	Access Control
	Comparison with X.509 Certificates
	Derivation from SPKI
	Certificate Management
	Example Of Certificate-based Security (Informational)
	Authorization Data
	Tags
	E-speak Authorization Tags
	Masks
	Service Identity
	Names: Userids, Groups....
	Certificate Structure
	Authorization Certificates
	Name Certificates
	Name Reduction
	Wire format for certificates

	Delegation
	Verifying tags and tag intersection
	Implementing Verification

	Certificate Issuers and Registration (Informational)
	Trust Assumptions (Informational)
	Certificate Revocation
	Managing certificates (informational)
	Revoking and Renewing certificates
	Renewing keys

	Private Security Environments (Informational)
	Interoperability with X.509 (Informational)
	SPKI BNF Formats
	References

	Communication
	ESNames
	Core Name Frame and core root Name Frame
	Canonical ESName
	Queries and fragments
	ESName class definition
	ESName BNF

	Session Layer Security Protcol (SLS)
	Functional Description of SLS
	High level protocol state machine
	The key-exchange protocol
	Key generation algorithm
	The record layer
	Handling alert messages
	Timeouts description
	Re-keying (not currently supported)
	Support for session scavenging
	Support for tunneling

	Protocol Data Unit PDU
	PDU Message types
	PDU Marshalling format

	E-speak Protocol Data Units (ESPDUs)
	Client to Core Communication
	Format of Payload for Core-Managed Resource Messages
	Core event messages
	Messages from the Resource Handler to the Client
	Initial Connection to the Core
	Core to core communication
	Connection Manager
	Remote Resource Manager
	Restrictions on import and export of core managed resources
	Removing imported resources (informational)

	E-speak Serialization Format
	References

	Exceptions
	Run-Time Exceptions
	Recoverable Exceptions
	Exception State
	Exception hierarchy

	Core Generated Events and Event Distributor Vocabularies
	Events
	Core Generated Events
	Publication of Core-generated Events
	Distributor Vocabulary
	Events in a Distributed Environment (Informational)

	Management
	Managed Life Cycle
	State Descriptions
	Inputs

	Managed Variable Tables
	Configuration Parameter Table
	Resource Table

	Managed Service Interface
	The Variable Table
	The Resource Table

	Repository (Informational)
	Repository Overview
	Repository Structure
	Information Flow
	Increasing Scalability
	The keyIndexType field: Efficient Repository Lookup

	Localization
	Current Implementation
	Requirements
	String Messages

	Number & Date Formats
	High-level Design
	ESText, ESStrings & ESString classes
	Usage example
	Additional design considerations

	ESString Wire Format

	Future Developments
	Glossary

