9/11/2002
Open vs. Closed Source Development
4 of 4

Alan Durston
Cornell ID 468589

CS513 System Security

The spectrum of arguments over open vs. closed-source software development methodologies has ranged from moral to economic, and has sparked strong feelings and created strident advocates on both sides of the issue. The purpose of this paper is not to argue in favor of one side over the other: rather it is to compare and contrast the qualities of open-source and closed-software design and implementation processes and how these qualities affect system assurance and trustworthiness. The analysis of open vs. closed-source development will look at four general aspects of the issue: software requirements, software developers, the software development process, and software support.
Before beginning the discussion of open vs. closed source, it is necessary to define what these terms mean. “Source” simply means the design and implementation artifacts that result from the development of a piece of software (basically the design documents and source code created during software development). “Open” means that these source artifacts are publicly available for review, copying, and modification. And “closed” means the opposite: the developing organization does not hold the source artifacts out for public review or modification, and instead keeps them proprietary. In addition, for purposes of argument, the author of this paper assumes that those organizations which practice “closed source” development follow the standard business model for managing projects: i.e. that they are hierarchical in structure and are driven by market forces. 
The central questions to be answered in the development of software requirements are: Who has a problem to be solved? And what problem are they trying to solve? The open-source community and the closed-source development organizations have two different answers. In the open-source world, the requirements for software originate directly from the public or from the open-source developers themselves. In other words, someone has a problem to solve, they post their problem in a newsgroup, and either an open-source developer solves the problem and posts the solution to the public or the originator of the requirement solves the problem himself and posts it to the public. The tendency in open-source development is to see a lot of requirements for solutions to ad hoc problems in addition to requirements for general problem solutions. On the other hand, close-source development organizations typically develop software requirements to suit a particular market need, as determined by marketing analysis. Since the cost to develop software is high in the closed-source method, this approach generally causes closed-source development organizations to favor creating requirements for general-purpose solutions to problems (large office productivity applications, database management systems, operating systems, etc.) where the market size is large, and to avoid creating a lot of requirements for customized solutions to problems where the market is small. In addition, closed-source companies—especially those whose customers are governments or government contractors where assurance is paramount—must consider the issue of security in their requirements analysis. This emphasis on assurance applies even in the case of products sold in the open market because of product liability. 
The quantity and quality of software developers is also a factor in the debate between open and closed-source development. The pool of open source developers, by definition, includes every software developer on Earth (potentially everyone on Earth). This is certainly a much greater quantity of talent than any closed source development organization can hire; however, the quality of this pool of developers and the amount of time they can devote to open source development is in question. Linus Torvalds, the originator of Linux (one of the largest open-source projects in the world), in his book, Just For Fun, asserts that the open source development community contains the world’s best software developers, because they develop software for fun and for personal interest, not just for money (i.e. they take personal pride in their work and strive to ensure their work’s quality). But is this necessarily the case? By its nature, anyone—talented or untalented—can work on an open source project, regardless of how well trained they are or not. Closed-source companies in general do not employ any software developer they find off of the street: developers are vetted by the companies who hire them, and are evaluated based upon their education, experience, references, and performance in personal interviews. Those companies that are financially well off (i.e. Microsoft, IBM, etc.) can afford to pay top dollar to attract top talent, and are able to filter out those applicants whose training and experience are not first rate. Although it is difficult to prove, in general, it is likely that software quality—and software assurance—is directly proportional to the quality of the people who develop the software.
Requirements and developers aside, the software design and construction processes are where the differences between the two philosophies really appear distinct. The biggest difference between the two methodologies is the number of people (“many eyes”) that are involved in the development of open-source software vs. closed. Open-source advocates argue that there is safety in numbers—in other words, the more people who are involved in the design and code review process, the greater the likelihood that a fault in the software’s design or implementation will be found. And since the software’s design and implementation documents and code are publicly available, open-source advocates would say that these artifacts are open to greater scrutiny than they would be otherwise in a closed-source environment. Although closed-source advocates would agree that the “many eyes” approach to design and code review is a strong quality of the open-source methodology, they would also argue that it is possible that a fault in a piece of software may be found by someone in the open-source community, but not reported by that person (or even worse, it may be exploited by that person). Closed-source advocates would further argue that the “many eyes” approach also makes coming to a consensus on the final design and implementation difficult—basically the “too many cooks spoil the broth” argument. In the end, in order to finish the development of a piece of software, closed-source advocates argue, someone has to make a final decision on what the design and what the implementation will be (Linus Torvalds would agree, since he is that person for the Linux kernel), and this is a quality that closed-source development organizations possess by their hierarchical nature (i.e. the project manager has the final say). In other words, closed-source organizations have accountability for software assurance, whereas the quality of a piece of software is backed up by personal reputation in the open-software community.
Another aspect involved in the design and construction process that affects software assurance is the range and availability of software tools to the developers. The open-source community provides a rich set of software development tools and environments (e.g. gcc, gdb, emacs, linux, perl, awk, sed, cvs, etc.) for its developers, most of which are used in the closed-source development community as well. These tools are excellent for use during the implementation phase of development, but what about the design and testing phases? Design tools, such as RationalRose, and testing tools, such as RationalRobot, Insure++, JTest, etc, contribute greatly to software quality assurance because they aid the software developer in preventing problems from being incorporated into a piece of software before the implementation phase (i.e. during requirements analysis and design) and after (i.e. during testing). Here the closed-source community has an advantage, mainly because these higher-level tools are expensive, and only large software development organizations can afford to purchase them.
Finally, the area of software support and maintenance shows the distinction between open and closed-source ideas. One advantage of the open source model is that the user of the software is responsible for the software’s support and maintenance: if the user wants a new feature added, he does not have to go through the supplier of the software, but rather the user can implement the feature himself, thus decreasing the turnaround time for a bug fix or a feature enhancement, for example. The downside of this approach is that the user has to become the domain expert for the software (i.e. he has to know how to build, install, configure, and maintain the software). For N- number of users, there are potentially N-number of maintainers, most of whom are doing the same job, and none of whom may be an expert with the system they are supporting. Contrast this scenario with the closed-source model, where the company that provides the software also provides the expertise, support, and maintenance of their systems for their customers (including the training for their software developers on the systems that they maintain). What the customer may lose in turnaround time (for a bug fix or for a new required feature, for example), he gains from having trained experts install and manage their software, since the customer does not have to spend the time to become an expert in the software system’s use or maintenance.
In conclusion, both open-source and closed-source methodologies have strengths and weaknesses in all aspects of the software development process. Both methodologies may have their strident advocates and detractors, but both provide enough useful qualities that contribute to software assurance and trustworthiness that the debate between which is better and which one will dominate future software development philosophies will continue for a long time.
Developer quantity & quality.

Tool availability

Code & design review
Centralized v. de-centralized source code control
Feature creep v. trustworthiness
Support of software products (including bug fixes)
Requirements development (who & why)

Testing

Customization

Replication & vulnerabilities

Integration of products

Conclusion

References

[1] Mundi, Craig, “Security: Source Access and the Software Ecosystem, Open Source Software: Economics, Law and Policy”, June 2002, http://www.microsoft.com/presspass/exec/craig/06-20softwareecosystem.asp
[2] Open Source Initiative, “The Open Source Case for Business”, 2002, http://www.opensource.org/advocacy/case_for_business.php
[3] Open Source Initiative, “The Open Source Case for Customers”, 2002, http://www.opensource.org/advocacy/case_for_business.php
[4] Stallman, Richard, “Why ‘Free Software’ is better than ‘Open Source’”, August 2002, http://www.gnu.org/philosophy/free-software-for-freedom.html
[5] Stallman, Richard, “Why software should be free”, April 1992, http://www.gnu.org/philosophy/shouldbefree.html
[6] Torvalds, Linus and Diamond, David, Just for Fun: The Story of an Accidental Revolutionary, HarperCollins, 2001 
[7] Viega, John, “Open Source Software: Will it make me secure?”, September 1999, http://www-106.ibm.com/developerworks/library/oss-security.html
