
§ 3. The Completeness Theorem 

Show (H /\ K) => L, where 
H = ('it x)('it y) [Rxy => Ry x] (R is symmetric) 
K = ('it x) ('it y) ('it z) [(Rx y /\ Ry z) => Rxz] (R is transitive) 
L = ('itx)('ity) [Rxy => Rxx] (R is reflexive on its domain of 

definition). 

57 

For a hard one, try the following exercise (taken from Quine [1]): 
Show (A /\ B) => C, where 

A = ('itxH(Fx /\ Gx) => Hx] => (3xHFx /\ -Gx] 
B = ('it x) [Fx => Gx] v ('itxHFx => H x] 
C = ('it x) [(Fx /\ Hx):::> Gx] => (3x) [Fx /\ Gx /\ -Hx] 

§ 3. The Completeness Theorem 

Now we turn to the proof of one of the major results in quantifica­
tion theory: Every valid sentence is provable by the tableau method. 

This is a form of Godel's famous completeness theorem. Actually 
GOdel proved the completeness of a different formalization of Quanti­
fication Theorey, but we shall later show how the completeness of the 
tableau method implies the completeness of the more conventional for­
malizations. The completeness proof we now give is along the lines of 
Beth [1] or Hintikka [l]-and also Anderson and Belnap [1]. 

Let us first briefly review our completeness proof for tableaux in 
propositional logic, and then see what modifications will suggest them­
selves. In the case of propositional logic, we reach a completed tableau 
after finitely many stages. Upon completion, every open branch is a 
Hintikka set. And by Hintikka's lemma, every Hintikka set is truth­
functionally satisfiable. 

Our first task is to give an appropriate definition of "Hintikka set" 
for first order logic in which we specify conditions not only on the lx'S 

and /3's but also on the y's and b's as well. We shall define Hintikka sets 
for arbitrary universes U of constants. 

Definition. By a Hintikka set (for a universe U) we mean a set S 
(of U-formulas) such that the following conditions hold for every IX, 13, 
y, b in EU : 

H 0: No atomic element of EU and its negation (or conjugate, if we 
are working with signed formulas) are both in S. 

H 1: If IXES, then IXl' IX2 are both in S. 
H 2 : If /3ES, then /31 ES or /32ES. 
H3: If YES, then for everykEU,y(k)ES. 
H4 : If bES, then for at least one element kEU, b(k)ES. 
Now we show 



58 v. First-Order Analytic Tableaux 

Lemma (Hintikka's lemma for first order logic). Every Hintikka set S 
for a domain U is (first order) satisfiable-indeed in the domain U. 

Proof. We must find an atomic valuation of EU in which all elements 
of S are true. We do this exactly as we did propositional logic-viz for 
every atomic sentence P~l' ... , ~n of EU, give it the value t if TP~b ... , ~n 
is an element of S, f if F P ~l' ... ' ~n is an element of S, and either t or f 
at will if neither is an element of S. We must show that each element X 
of S is true under this atomic valuation. Again we do this by induction 
on the degree of X. If X is of degree 0, it is immediate that X is true 
(under this valuation). Now suppose that X is of positive degree and 
that every element of S oflower degree is true. We must show X is true. 
Since X is not of degree 0, then it is either some (x, P, I' or b. If it is an 
(X or a P, then it is true for exactly the same reasons as in the proof of 
Hintikka's lemma for propositional logic (viz. ifit is an (x, then (Xl' (X2 are 
both in S, hence both true (by induction hypothesis), hence (X is true; 
if it is a P, then at least one of Pl' P2 is in S, and hence true, so P is 
true). Thus the new cases to consider are 1', b. 

Suppose it is a y. Then, for every kE U, y(k)ES (by H 3), but every y(k) 
is of lower degree than 1', hence true by inductive hypothesis. Hence I' 
must be true. 

Suppose it is a b. Then for at least one kE U, b(k)ES (by H4). Then b(k) 
is true by inductive hypothesis, hence b is true. 

We next consider how we can use Hintikka's lemma for our com­
pleteness proof. In propositional logic, tableaux terminate after finitely 
many steps. But a tableau for first order logic may run on infinitely 
without ever closing. Suppose this should happen. Then we generate 
an infinite tree 5, and by Konig's Lemma, 3 contains an infinite branch 8. 
Clearly 8 is open, but do the elements of 8 necessarily constitute a 
Hintikka set? The answer is "no" as the following considerations will 
show. 

For any X on a branch 8 of degree> 0, define X to be fulfilled on 8 
if either: (i) X is an (x, and (Xl' (X2 are both on 8; (ii) X is a P and at least 
one of Pl' P2 is on 8; (iii) X is a I' and for every parameter a, y(a) is on 8; 
(iv) X is a b and for at least one parameter a, b(a) is on 8. Now suppose 3 
is a finite tableau and that a branch contains two y-sentences---call 
them 1'1 and 1'2· Now suppose we use 1'1 and successively adjoin 1'1 (al), 
Yl(a2 ), ••• ,Yl(an), ••• , for all the parameters al ,a2 , ••• ,an , •••• We thus 
generate an infinite branch and we have clearly taken care offulfilling 1'1' 
but we have totally neglected 1'2. Or it is possible to fulfill a ')I-formula 
on a branch but neglect one or several (x, P, or b formulas on the branch. 
Thus there are many ways in which an infinite tableau can be generated 
without all-or even any-open branches being Hintikka sets. The key 



§ 3. The Completeness Theorem 59 

problem is to find a systematic procedure which will guarantee that 
any tableau constructed according to the procedure is such that if it 
runs on infinitely, every open branch will have to be a Hintikka sequence. 

Many such procedures exist in the literature; the reader should at 
this point try to work out such a procedure for himself before reading 
further. 

The following systematic procedure seems to be as simple and direct 
as any. In this procedure of generating the tree, at each stage certain 
points of the tree are declared to have been "used" (as a practical book­
keeping device, we can put a check mark to the right of a point of the 
tableau as soon as we have used it). 

Now for a precise description of the procedure. We start the tableau 
by placing the formula (whose satisfiability we are testing) at the origin. 
This concludes the first stage. Now suppose we have concluded the 
nth stage. Then our next act is determined as follows. If the tableau 
already at hand is closed, then we stop. Also, if every non-atomic point 
on every open branch of the tableau at hand has been used, then we 
stop. If neither, then we pick a point X of minimal level (i.e. as high up 
on the tree as possible) which has not yet been used and which appears 
on at least one open branch 1), and we extend the tableau at hand as 
follows: we take every open branch e passing through the point X, and 

1) If X is an IX, we extend e to the branch (e, lXI' 1(2). 
2) If X is a /3 then we simultaneously extend e to the 2 branches 

(e, /31) and (e, /32)· 
3) If X is a lJ then we take the first parameter a which does not 

appear on the tree and we extend e to (e, lJ(a)). 
4) If X is a y (and this is the delicate case !), then we take the first 

parameter a such that y(a) does not occur on 8, and we extend e to 
(8, y(a), y). (In other words we add y(a) as an endpoint to e and then 
we repeat an occurrence of y!) 

Having performed acts 1--4 (depending on whether X is respectively 
an IX, /3, y, lJ), we then declare the point X to be used, and this concludes 
the stage n + 1 of our procedure. 

Discussion. To describe the above procedure more informally, we 
systematically work our way down the tree, automatically fulfilling all 
IX, /3 and lJ formulas which come our way. As to the y-formulas, when 
we use an occurrence of y on a branch e to subjoin an instance y(a), 
the purpose of repeating an occurrence of y is that we must sooner or 
later come down the branch e and use this repeated occurrence, from 
which we adjoin another instance y(b) and repeat an occurrence of y 

1) If the reader wishes to make the procedure completely deterministic he can, e. g. 
pick the leftmost such unused point of minimal level. 




