
12 The foundations of set theory [Ch. I, #S 

$6. Relations, functions, and well-ordering 

The following intuitive picture should emerge from $5. For a given 4(x), 
there need not necessarily exist a set {x: 4 (x ) } ;  this collection (or class) 
may be too big to form a set. In some cases, for example with {x: x = x } ,  
the collection is provably too big. Comprehension says that if the collection 
is a sub-collection of a given set, then it does exist. In certain other cases, 
e.g. where the collection is finite or is not too much bigger in cardinality 
than a given set, it should exist but the axioms of $5 are not strong enough 
to prove that it does. We begin this section with a few more axioms saying 
that certain sets which should exist do, and then sketch the development of 
some basic set-theoric notions using these axioms. 

Axioms 4-8 of ZFC all say that certain collections do form sets. We actual- 
ly state these axioms in the (apparently) weaker form that the desired 
collection is a subcollection ofa set, since we may then apply Comprehension 
to prove that the desired set exists. Stating Axioms 4-8 in this way will 
make it fairly easy to verify them in the various interpretations considered 
in Chapters VI and VII. 

AXIOM 4. Pairing. 

vXvygZ(X€Z A y€Z) .  [7 

AXIOM 6.  Replacement Scheme. 
universal closure of the following is an axiom: 

For each formula without Y free, the 

V x E A 3 ! y 4 ( x , y ) +  3 Y V X E A 3 Y E  Y rp(x,y). 0 

By Pairing, for a given x and y we may let z be any set such that XEZ A y ~ z ;  
then { u  E z: u = x v u = y} is the (unique by Extensionality) set whose 
elements are precisely x and y; we call this set {x, y} . {x} = {x, x} is the set 
whose unique element is x. (x, y)  = { {x} ,  {x, y}} is the ordered pair of x 
and y. One must check that 

vXt/yvX’vy’((X,y) = (X’,y’)+ x = X‘ A Y = Y‘). 

In the Union Axiom, we are thinking of B as a family of sets and postulate 
the existence of a set A such that each member Y of 9 is a subset of A. 
This justifies our defining the union of the family 9, or U 9, by 

U F  = { x : 3 Y E 9 ( X E Y ) } ;  
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this set exists since it is also 

{x E A :  3 Y E 9 ( X E  Y)}. 

n9 = { x : ~ ~ E ~ ( x E  Y)}; 

{x E B :  V Y  E 9 ( X  E Y)} 

When F f 0, we let 

this set exists since, for any B E  9, it is equal to 

(so we do not appeal to the Union Axiom here). If F = 0, then u 9 = 0 
and n 9 “should be” the set of all sets, which does not exist. Finally, we 
set A n  B =  n { A , B ) ,  A u B =  U { A , B } ,  and A\B= { x ~ A : x g B ) .  

The Replacement Scheme, like Comprehension, yields an infinite collec- 
tion of axioms-one for each 4. The justification of Replacement is: 
assuming Vx~A3!y$(x,y),  we can try to let Y= {y :3x~A4(x ,y )} ;  Y 
should be small enough to exist as a set, since its cardinality is I that of 
the set A. Of course, by Replacement (and Comprehension), 

{Y: 3x E A 4(x, Y ) >  
does exist, since it is also {YE Y: I X E A  4(x,y)} for any Y such that 
vx E -4 3y E Y (p(x, y). 

For any A and B, we define the Cartesian product 

A X B = {(X,y): X E A  A YEB}. 

To justify this definition, we must apply Replacement twice. First, for any 
y E B, we have 

VXEA3!Z(Z = (x,y)), 

so by Replacement (and Comprehension) we may define 

prod(A,y) = {z: 3 x ~ A ( z  = (x,~))}. 

Now, 
V y ~ B 3 ! z ( z  = prod(A,y)), 

so by Replacement we may define 

prod(A, B) = {prod@, y): y E B } .  

Finally, we define A x B = u prod(A, B ) .  
We now review some other notions which may be developed on the basis 

of the Axioms 0, 1, 3, 4, 5 ,  and 6. A relation is a set R all of whose elements 
are ordered pairs. 

dom(R) = {x: 3y( (x, y)  E R ) }  
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and 

ran(R) = {y: 3x((x,y) E R)}. 
These definitions make sense for any set R, but are usually used only when 
R is a relation, in which case R c dom(R) x ran(R). We define R-’ = 

{ (x, y )  : ( y ,  x) E R}, so (R- ’)- = R if R is a relation. 
f is a function iff f is a relation and 

V x ~ d o m ( f )  3 !y~ran ( f ) ( (x ,y )  ~ f ) .  

f : A + B means f is a function, A = dom(f), and ran(f) c B. Iff : A -, B 
and x E R, f(x) is the unique y such that (x, y )  ~ f ;  if C c A, f r  C = 
f n C  x BistherestrictionofftoC,andf”C = ran(fr C) = (f(x): X E C ) .  
Many people use f(C) for f”C, but the notation would cause confusion 
in this book since often elements of A will be subsets of A as well. 

f : A -, B is 1-1, or an injection, iff f -  ’ is a function, and f is onto, or 
a surjection, iff ran(f) = B.f : A + Bis a bijection ifffis both 1-1 and onto. 

A total ordering (sometimes called a strict total ordering) is a pair ( A ,  R )  
such that R totally orders’A-that is, A is a set, R is a relation, R is transitive 
on A :  

VX, y, z E A (xRy A yRz -+ xRz), 

trichotomy holds : 

VX,YEA(X = y v XRY v ~ R x ) ,  

and R is irreflexive : 

vx E A (1 (xRx)). 

As usual, we write xRy for (x, y )  E R. Note that our definition does nor 
assume R c A x A, so if (A, R )  is a total ordering so is ( B ,  R )  whenever 
B c A. 

Whenever R and S are relations, and A,  Bare sets, we say (A, R) E ( B ,  S )  
iff there is a bijection f: A -+ B such that Vx, y E A(xRy + + f ( x )  Sf(y)). f is 
called an isomorphism from ( A ,  R)  to ( B ,  S )  . 

We say R well-orders A, or (A, R )  is a well-ordering iff (A, R)  is a total 
ordering and every non-0 subset of A has an R-least element. 

If x E A, let pred(A, x, R) = {y E A :  yRx}. This notation is used mainly 
when dealing with ordering. The basic rigidity properties of well-ordering 
are given as follows. 

6.1. LEMMA. I f  (A, R )  is a well-ordering, then for all x E A, ( A ,  R) $ 
<pred(A, x, R), R ) .  
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PROOF. Iff: A + pred(A, x, R) were an isomorphism, derive a contradiction 
by considering the R-least element of { Y E  A :  f (y) + y}. 0 

6.2. LEMMA. If ( A ,  R) and (B, S) are isomorphic well-orderings, then the 
isomorphism between them is unique. 

PROOF. I f f  and g were different isomorphisms, derive a contradiction by 
considering the R-least y E A such that f (y)  # g(y ) .  0 

The proofs of Lemmas 6.1 and 6.2 are examples of proofs by transfinite 

A basic fact about well-orderings is that any two are comparable: 
induction. 

6.3. THEOREM. Let ( A ,  R ) ,  (B, S) be two well-orderings. Then exactly one 
of the following holds: 

(a) ( A ,  R )  2 (B, s>; 
(b) ~ Y E B ( ( A , R )  2 (pred(B,y,S),S)); 
(c) 3xEA((pred(A,x,R),R) E (B,S)) .  

PROOF. Let 

note that f is an isomorphism from some initial segment of A onto some 
initial segment of B, and that these initial segments cannot both be proper. 0 

The notion of well-ordering gives us a convenient way of stating the Axiom 
of Choice (AC). 

Axiom 9. Choice. 

VA 3R ( R  well-orders A ) .  0 

There are many equivalent versions of AC. See, e.g., [Jech 19731, [Rubin- 
Rubin 19631, or Exercises 9-1 1. 

This book is concerned mainly with set theory with AC. However, it is 
of some interest that much of the elementary development of set theory 
does not need AC, so in this chapter we shall explicitly indicate which re- 
sults have used AC in their proofs. AC is not provable in ZF; see [Jech 
19731, or VII Exercise E3. 




