Plan

- (1) Unrealizability (redeux) of $(\forall x.Px \supset C) \supset \exists x.(Px \supset C)$
- (2) Review systematic Tableau (Smullyan p.59)
- (3) Gödel completeness theorem (Smullyan Thm 3. p.60) classical
- (4) Completeness for iFOL by Judith Underwood almost constructive *
- (5) Completeness relative to uniform validity fully constructive (we only discuss this new result, no careful proof)

The argument sketched in Lecture 17 to show that $(\forall x.Px \supset C) \supset \exists x.(Px \supset C)$ is unrealizable works. It can be made sharp by taking $C = \forall x.Px$. Then $(\forall x.Px \supset \forall x.Px)$ is realizable by $\lambda x.x$. To realize $\exists x.(Px \supset \forall x.Px)$ we consider a domain D and predicate P(x) where $\forall x.P(x)$ is not realizable because for some $d_0 \in D$, $\sim P(d_0)$. In this case the potential realizer f must pick $\langle d_0, np \rangle$. But by choosing a domain $D = \{d_0, d_1\}$ where p realizes $P(d_1)$, we can pick another P' on the domain so that $P'(d_0)$ and $\sim P'(d_1)$. The realizer f cannot work for both models f must know f and f. Thus the formula is not uniformly valid.

It might seem bizarre that we can have $P(d) \supset \forall x.Px$, but classically we use $\sim \forall x.P(x) \lor \forall x.P(x)$, then $\sim \forall x.P(x) \Leftrightarrow \exists x. \sim P(x)$, so $\exists x. \sim P(x) \lor \forall x.P(x)$, thus $\sim P(d) \lor \forall x.P(x)$, then $P(d) \Rightarrow \forall x.P(x)$. Hence $\exists x. (P(x) \Rightarrow \forall x.P(x))$. So we can realize this with applications of $P \lor \sim P$ for various instances of P. Can we define *dimension* in this example?

Review of systematic tableau

In Lecture 17 we wrote a high level sketch of the procedure Smullyan defines on p.59. We defined it as a procedure that extends a *partial proof tree* (ppt) whose root node has FX as a value. Given a ppt of depth d, we define extension of it.

Let extend(ppt) produce a new finite partial proof tree ppt' by following the Systematic Tableau procedure. Smullyan's completeness proof works by repeatedly applying extend, e.g. start with ppt_0 consisting of the root node FX.

^{*} Item 4. is an advanced topic that we mention as a possible advanced project topic (see www.nuprl.org under Publications look for Judith Underwood, *Aspects of the Computational Content of Proofs*, Chpt 3, Oct. 1994).

Let $ppt_0 = ppt(FX)$, for a formula X.

```
Define extend^{(0)}(ppt_0) = ppt_0

extend^{(n+1)}(ppt_0) = extend(extend^{(n)}(ppt_0))

Thus extend^{(1)} = extend(ppt_0)

extend^{(2)} = extend(extend(ppt_0))

etc.
```

For Smullyan's classical tableau, we can state a version of Judith Underwood's theorem for *Intuitionistic Tableau* of Fitting. Although we have not studied Fitting's system, we can get an idea of how to transfer her method to Smullyan's system. Let α denote a path in the unbound proof tree $extend^{(n)}(ppt_0)$. Let $\alpha(m)$ be the path up to length m.

Theorem: $\forall x : Form. \ \forall n : \mathbb{N}. \ \text{If} \ Valid(x) \ \text{then}$

- (i) if $extend^{(n)}(ppt(FX))$ is closed, then it is a tableau proof of X, and
- (ii) otherwise $extend^{(n)}(ppt(FX))$ can be extended further and $\sim \forall m > n$. $open(extend^{(m)}(ppt(FX)))$, and
- (iii) for any path α in the generated tree (unbounded) $\sim \forall m : \mathbb{N}. \ open(\alpha(m))$.

Note, Underwood's proof, like Smullyan's, is not constructive. But hers is much closer to a plausible constructive argument. If she could deduce from the statement

For all paths α in the unbounded proof tree given by $extend^{(n)}(ppt(FX))$, we can find an m such that $closed(\alpha(m))$,

then by the Fan Theorem, we know that the partial proof tree is finite. Since X is valid, this proof tree is a tableau proof. Thus we would know constructively that:

$$\forall X : Form.(Valid(X) \Rightarrow \exists n : \mathbb{N}. Proof(extend^{(n)}(ppt(FX)))).$$

Classically it is easy to show that given any path α

$$\sim \forall m : \mathbb{N}. \ (m > n \Rightarrow open(\alpha(m))) \text{ implies } \exists m : \mathbb{N}. \ closed(\alpha(m)).$$

We know that $open(\alpha(m))$ is decidable, and $closed(\alpha(m))$ means $\sim open(\alpha(m))$. The general principle used in this reasoning is called Markov's Principle and it can be expressed in iFOL as follows:

$$\textit{Markov's Principle} : \ \forall x. \big(P(x) \lor \sim P(x) \big) \Rightarrow \big(\sim \forall x. \sim P(x) \Rightarrow \exists x. P(x) \big)$$

It seems like the realizer for this when there is a computable function $f: \mathbb{N} \to D$ that enumerates the elements of D (as we have in the Tableau procedure) is a "program" such as while $\sim P(x)$ do x:=f(x) od starting at d_0 .

We can show that Markov's Principle is not uniformly realizable, hence is not provable in iFOL. The idea is that given the evidence for $(\forall x. \sim P(x)) \Rightarrow False$, say a function g, the realizer F must on input g compute an element of D, e.g. $F(g)_1 \epsilon D$, and find a proof $F(g)_2$ of $P(F(g)_1)$. Suppose $F(g)_1 = d$ and $F(g)_2 = p$, p proves P(d). Then we can change the model D so that P is not true on d. Thus MP is not uniformly true.