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1. Balls and Bins

We begin our study of randomized algorithms by analyzing one of the most elementary
random sampling processes: drawing a sequence of independent, uniformly random
elements of the set [n] = {1,2, . . . ,n}. The colloquial expression “balls and bins” is often
applied to such processes, because of the metaphor of a sequence of balls being thrown at
random into n bins.

Balls and bins are used to model computing phenomena such as hashing in data
structures and load balancing in distributed systems. (We’ll say much more about hashing
later in this course.) A key intuition is that the process tends to lead to a fairly even
distribution of balls among the bins, since all of the bins are treated symmetrically. Some
of the most basic questions about balls and bins concern the extent to which the loads of
the different bins (i.e. the numbers of balls they each contain) deviate from a perfectly
uniform distribution. In all of the following problems, assume m balls are thrown into n
bins.

Birthday Paradox How likely is it that at least one bin contains more than one ball?

Coupon Collector Problem How likely is it that no bin is empty?

Load Balancing How likely is it that the maximum and minimum bin loads differ by a
factor less than 1+ ε?

The third question illustrates a notational convention that we will use throughout this course:
unless otherwise specified, the notation ε represents a number in the range 0 < ε < 1,
whose value does not vary with the other parameters of the problem. (In this case, that
means ε does not depend on the number of balls or bins.)
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1.1 The Birthday Paradox
Let’s make the unrealistic assumption that birthdays are uniformly distributed1 over the
365 days of the calendar. How large must a group of people be, in order for the probability
that at least two of them share the same birthday to exceed 1

2? Counterintuitively, this
happens as long as there are at least 23 people in the group. This is generally known as
the “birthday paradox”, though it would be more accurate to describe the phenomenon as
surprising rather than paradoxical.

The birthday paradox is a thinly disguised question about balls and bins: people’s
birthdays are the balls, and dates on the calendar are the bins. Before delving into the
analysis that formally justifies the birthday paradox, the following intuition is helpful.
The probability that any two given people have the same birthday (under our simplifying
assumption of uniformly-distributed birthdays) is 1

365 . In a group of 23 people the number
of pairs of people is

(23
2

)
= 253. By linearity of expectation, the expected number of pairs

of people who share a birthday is 253
365 = 0.693 . . .. In light of this calculation, it become a

bit less surprising that there is a significant probability that the group contains at least one
pair of people who share a birthday.

Let’s consider, more generally, the collision probability when throwing m balls into
n bins — that is, the probability that at least one bin is occupied by more than one ball.
It turns out that the best way to calculate the collision probability is to calculate the
probability of no collisions and then subtract from 1. An exact formula for the probability
of no collisions can easily be obtained by thinking about throwing the balls sequentially.
When the first ball is thrown, there cannot be a collision. When the second ball is thrown,
the probability that it doesn’t collide with the first is n−1

n . More generally, if k ≤ n balls
have been thrown and all of them occupy distinct bins, then there are n− k remaining
unoccupied bins, so the probability that the (k+1)th ball does not collide with any of its
predecessors is n−k

n . Multiplying all of these probabilities together, we find that

Pr(no collision) =
m−1

∏
k=1

n− k
n

=
m−1

∏
k=1

(
1− k

n

)
. (1.1)

Expressions like the right side of equation (1.1) are painful to deal with because if you
expand out the product using the distributive law, you get a sum of exponentially many
terms. (In this case, 2m−1 terms.) To make progress, it’s time to apply the most useful
inequality in the analysis of randomized algorithms.

Fact 1.1 The inequality

1+ x≤ ex

holds for all x ∈ R, and the inequality is strict except when x = 0.

Proof. The proof of the inequality is an application of the Mean Value Theorem and case
analysis. When x = 0 the two sides of the inequality are both equal to 1. When x > 0

1In fact, the distribution of birthdays in the United States is quite far from uniform. There are almost
twice as many people born on the most common birthday, September 9, than on the least common annually-
occurring one, December 25. Of course, it is even less common for someone to have the birthday February
29 because that date only occurs once every four years.
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the strict inequality asserts that ex−1
x > 1. This can be seen by applying the Mean Value

Theorem to the function f (x) = ex, to conclude that there exists some y in the interval
(0,x) such that

f (x)− f (0)
x

= f ′(y).

The left side equals ex−1
x , while the right side equals ey, which is greater than 1 because

y > 0. Similarly, when x < 0 the strict inequality asserts ex−1
x < 1. (Dividing by x reverses

the direction of the inequality because x is negative.) This holds because, again by the
Mean Value Theorem, ex−1

x is equal to ey for some y in the interval (x,0). As y is strictly
negative, ey < 1 and the inequality follows. ■

Now, applying Fact 1.1 to the birthday paradox calculation, we find that

Pr(no collision)<
m−1

∏
k=1

e−k/n = exp

(
−1

n

m−1

∑
k=1

k

)
= exp

(
−m(m−1)

2n

)
. (1.2)

The right side becomes less than 1
2 when m(m−1)

2n > ln(2), or equivalently when

(
m− 1

2

)2
> 2n ln(2)+ 1

4 .

Lemma 1.2 If m >
√

2n ln(2)+ 1
4 +

1
2 and m balls are thrown randomly into n bins

then the collision probability is greater than 1
2 .

When n = 365, the expression
√

2n ln(2)+ 1
4 +

1
2 evaluates to 22.99994. . . , a shockingly

close approximation to 23. For most applications of the birthday paradox, it is acceptable
to overestimate the required value of m, using the function

√
2n rather than the more

cumbersome formula specified in the lemma.
You probably noticed that our analysis of the collision probability involved overesti-

mating the probability of having no collisions, by approximating each factor 1− k
n with

the overestimate e−k/n. With a little more work, we can quantify the amount of error due
to this approximation and verify that the error is very small.

Fact 1.3 If 0 < x < 1
2 then e−x−x2

< 1− x.

Proof. By the Taylor series for the natural logarithm,

− ln(1− x) =
∞

∑
k=1

xk

k
< x+

∞

∑
k=2

xk

2
= x+

x2

2

∞

∑
j=0

x j = x+
x2

2
· 1

1− x
< x+ x2

where the last inequality follows from our assumption that x < 1
2 . The inequality e−x−x2

<
1− x now follows by negating both sides and exponentiating. ■
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Applying this fact to the birthday paradox, we see that the probability of having no
collisions can be bounded from below as follows.

Pr(no collision)>
m−1

∏
k=1

exp
(
−k

n
− k2

n2

)
= exp

(
−

m−1

∑
k=1

k
n

)
· exp

(
−

m−1

∑
k=1

k2

n2

)

= exp
(
−m(m−1)

2n

)
· exp

(
−m(m−1)(2m−1)

6n2

)
.

If we choose m such that m(m−1)
2n ≈ ln(2) then

m(m−1)(2m−1)
6n2 ≈ ln(2) · (2m−1)

3n
≈

ln(2) ·2 ·
√

2n ln(2)
3n

=
(2ln2)3/2 ·

√
n

3n
<

1√
n

exp
(
−m(m−1)(2m−1)

6n2

)
> 1− m(m−1)(2m−1)

6n2 > 1− 1√
n
.

Hence, the formula exp
(
−m(m−1)

2n

)
overestimates the probability of no collision, but only

by a factor less than (1− 1√
n)
−1. With a little more effort, one can use this estimate to

show that the minimum number of balls necessary to ensure Pr(collision)≥ 1
2 is very close

to the formula given in Lemma 1.2; that formula overestimates the minimum number of
balls by at most 2.

1.1.1 Application: Insecurity of cryptographic hash functions
A cryptographic hash function is a function h that takes a long string and compresses it to
a “message digest” of some fixed length. For example, the SHA-1 hash function that was
in use until around 2017 had a 160-bit output. The SHA-2 family that replaces it consists
of six hash functions with output lengths ranging from 224 to 512 bits.

To be considered secure, a cryptographic hash function should be collision-resistant,
meaning that it is computationally infeasible to find two distinct inputs x,y such that
h(x) = h(y). A simple method for attempting to “break” a collision-resistant hash function
is the Birthday Attack, which consists of evaluating the hash function on uniformly-
random inputs until two of them yield the same output. This is analogous to throwing
balls into n = 2k bins, until there is a bin containing two balls. From Lemma 1.2 we
know that the Birthday Attack is likely to succeed after roughly

√
2n = 2(k+1)/2 attempts.

However, cryptographic hash functions used in practice are not truly random functions,
they are only conjectured to be computationally indistinguishable from random functions.
Sometimes these conjectures are false: if the hash function has some structure that makes
it distinguishable from a truly random function, it may be possible to exploit that structure
to find a hash collision much more rapidly than the Birthday Attack. That is exactly what
happened to SHA-1 in 2005, when Xiaoyun Wang (and two students) succeeded in finding
a collision using about 269 attempts, about 2000 times faster than the 280 attempts predicted
by the birthday paradox. This was later improved to 263, which is more than 100,000 times
faster than the Birthday Attack. The success of these attacks prompted the transition from
SHA-1 to SHA-2.

1.1.2 Application: Sample complexity of uniformity testing
Hypothesis testing is a common task in statistics: given m samples, and given a candidate
distribution p, determine whether or not it is likely that the samples were drawn from
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p. Uniformity testing is the special case when p is the uniform distribution on the set
[n] = {1,2, . . . ,n}.

Here’s one way to formalize the objective of uniformity testing. We would like to design
an algorithm, parameterized by a pair of positive constants ε,δ , that takes a sequence of m
samples drawn from some distribution on the set [n], and it either outputs “uniform” or
“not uniform.” The algorithm will be considered probably approximately correct (PAC) if
it satisfies the following two properties.

• If the samples are drawn from the uniform distribution, then with probability at least
1−δ the algorithm outputs “uniform”.

• If the samples are drawn from a distribution q that is ε-far from uniform, in the sense
that there is a subset S⊆ [n] with q(S)> |S|

n + ε , then with probability at least 1−δ

the algorithm outputs “not uniform”.

The sample complexity of (ε,δ )-PAC uniformity testing refers to the minimum m = m(n)
for which such an algorithm exists.

It is possible to use the birthday paradox to prove a simple lower bound on the sample
complexity of uniformity testing. To see this, consider the problem of distinguishing
between two data generating processes.

1. Samples x1, . . . ,xm are drawn from the uniform distribution on [n].

2. A random subset T ⊂ [n] of size n/2 is drawn. Then, samples x1, . . . ,xm are drawn
from the uniform distribution on T .

If q denotes the distribution from which the samples x1, . . . ,xm are drawn, then q equals
the uniform distribution in Case 1, whereas q is ε-far from the uniform distribution (for
any ε < 1

2 ) in Case 2. This is because in Case 2, q(T ) = 1 whereas |T |/n = 1
2 .

If m≤
√

n then the uniformity tester faces an insurmountable dilemma: in both Case 1
and Case 2, its input sequence is probably just a random sequence of m distinct elements
of [n]. Hence, it has no useful signal for distinguishing Case 1 from Case 2. However,
probable approximate correctness requires distinguishing Case 1 from Case 2, since in one
case q is uniform whereas in the other case it is ε-far from uniform.

Here’s how to make this reasoning precise. Let E denote the event that the input
sequence consists of m distinct elements of [n]. Let Pr1(E) and Pr2(E) denote the probabil-
ities of event E when the process generating the sequence x1, . . . ,xm is as described in Case
1 and Case 2, respectively. In both cases, since the data generating process is invariant
under permutations of the set [n], the output distribution conditional on event E must be
the uniform distribution over the set Σn,m of length-m sequences of distinct elements of [n].
Let σ denote the probability that the uniformity testing algorithm outputs “uniform” when
given an input sequence drawn uniformly at random from Σn,m. Assuming the uniformity
tester is (ε,δ )-PAC:

δ ≥ Pr1(output “not uniform”)≥ Pr1(output “not uniform” |E) ·Pr1(E) = (1−σ) ·Pr1(E)

δ ≥ Pr2(output “uniform”)≥ Pr2(output “uniform” |E) ·Pr2(E) = σ ·Pr2(E)

2δ ≥ (1−σ)Pr1(E)+σPr2(E)≥ Pr2(E),

where the final inequality holds because the data generating process is less likely to generate
m distinct samples in Case 2 than in Case 1.
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Using our analysis of the birthday paradox, we know that

Pr2(E)≥ exp
(
−m(m−1)

2|T |

)
·

(
1− 1√

|T |

)
= exp

(
−m(m−1)

n

)
·
(

1−
√

2
n

)
.

When m <
√

n and n≥ 8, the right side is at least 1
2e . Hence, (ε,δ )-PAC uniformity testing

with m <
√

n samples is not possible for any ε < 1
2 and δ < 1

4e .
Is m = Θ(

√
n) the correct sample complexity bound for uniformity testing? It turns

out that the answer is yes. One might find this result surprising, because O(
√

n) samples
constitute only a tiny fraction of the support set of the distribution, when n is large. It is
amazing that such a small set of samples contains enough information to reliably distinguish
uniform distributions from non-uniform ones. Not surprisingly, the the algorithm for
uniformity testing using O(

√
n) samples relies heavily on the birthday paradox. In fact, it

works by simply counting collisions: it outputs “uniform” if the number of pairs i ̸= j with
xi = x j falls below a carefully-designed threshold, and “not uniform” otherwise.

1.2 The Coupon Collector Problem
Continuing with our analysis of balls and bins, we turn to the question: how many balls
must we throw to ensure that, with probability at least 1

2 , every bin contains at least one
ball?

1.2.1 Reviewing the geometric distribution
To begin solving the coupon collector problem, we must recall the definition and some
basic properties of the geometric distribution.

Definition 1.4 If X is a random variable taking values in the positive integers, with the
probability distribution

Pr(X = n) = p · (1− p)n−1,

then we say X is geometrically distributed with parameter p.

If one takes a biased coin with Pr(heads) = p and tosses it until the first coin-toss that
yields heads, the total number of tosses is geometrically distributed with parameter p.
Expectation and variance of a geometric random variable. It’s not too hard
to compute the expected value of a geometric random variable using the definition of the
expectation:

E[X ] =
∞

∑
n=0

n ·Pr(X = n).

However, it’s even easier to use the following lemma, which frequently furnishes a very
useful method for computing expected values or for bounding them from above or be-
low.

Lemma 1.5 If X is a random variable taking values in N then

E[X ] =
∞

∑
k=0

Pr(X > k).
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Proof. Using the identity n = ∑
n−1
k=0 1, we find that

E[X ] =
∞

∑
n=0

n ·Pr(X = n) =
∞

∑
n=0

n−1

∑
k=0

Pr(X = n) =
∞

∑
k=0

∞

∑
n=k+1

Pr(X = n) =
∞

∑
k=0

Pr(X > k).

■

For the geometric distribution, we have

Pr(X > k)=
∞

∑
n=k+1

Pr(X = n)=
∞

∑
n=k+1

p(1− p)n−1 =
∞

∑
n=k+1

(1− p)n−1−(1− p)n =(1− p)k

since the sum telescopes. Hence,

E[X ] =
∞

∑
k=0

Pr(X > k) =
∞

∑
k=0

(1− p)k =
1
p
.

We can also use Lemma 1.5 to compute the variance of a geometric random variable. The
key is to group the values of k into intervals between consecutive squares. If j is an integer
and j2 ≤ k < ( j+1)2 then Pr(X2 > k) = Pr(X > j) = (1− p) j. Consequently, the second
moment of the geometric distribution satisfies

E[X2] =
∞

∑
k=0

Pr(X2 > k) =
∞

∑
j=0

∑
j2≤k<( j+1)2

Pr(X2 > k)

=
∞

∑
j=0

(2 j+1)(1− p) j

=
∞

∑
i=1

(2i−1)(1− p)i−1

=
∞

∑
i=1

2i−1
p
·Pr(X = i) = E

[
2X−1

p

]
=

2
p2 −

1
p

where the last equation follows by linearity of expectation, substituting the formula E[X ] =
1
p that we already derived.

Recalling now that Var(X) = E[X2]− (E[X ])2, we find that

Var(X) =
1
p2 −

1
p
=

1− p
p2 .

1.2.2 Coupon collector: distribution of stopping time
Consider throwing a sequence of balls into independent, uniformly random bins until the
load in each bin is positive. Let τ denote the time when this stopping condition is met.
The aim of this section is to compute the distribution of the random variable τ . To do
so, it is useful to define random variables τ1 < τ2 < · · · < τn = τ by specifying that τk
is the first time when there are k bins each containing at least one ball. Note that τ1 is
deterministically equal to 1. For the remaining random variables in this sequence, we have
the following extremely useful observation.



16 Chapter 1. Balls and Bins

Lemma 1.6 For 1 ≤ k < n, the random variable Yk = τk+1− τk is geometrically dis-
tributed with parameter n−k

n . These random variables Y1,Y2, . . . ,Yn−1 are mutually
independent.

Proof. By definition, τk+1 is the first time after τk that a ball is thrown into an unoccupied
bin. For any t such that τk ≤ t < τk+1, the number of occupied bins at time t equals
k. Hence, the probability that that ball thrown at time t lands in an unoccupied bin is
n−k

n . It follows that the number of balls thrown after τk until one of them lands in an
unoccupied bin — that is, the random variable Yk = τk+1− τk — follows a geometric
distribution with parameter n−k

n . Since this distribution has no dependence on the history
of the balls-and-bins preceding τk or following τk+1, we may conclude that Y1, . . . ,Yn−1
are mutually independent. ■

If we define Y0 to be a random variable that is deterministic equal to 1, then we have
shown that the random stopping time τ = τn can be represented as a sum of independent
random variables Y0+Y1+ · · ·+Yn−1, where Yk is geometrically distributed with parameter
n−k

n . Consequently,

E[τ] =
n−1

∑
k=0

E[Yk] =
n−1

∑
k=0

n
n− k

= n ·
(

1+
1
2
+ · · ·+ 1

n

)
= n ·Hn

The number of Hn = 1+ 1
2 + · · ·+

1
n is called the nth harmonic number and lies between

lnn and 1+ lnn, by the integral test:

lnn=
∫ n

1

dx
x

< 1+
1
2
+ · · ·+ 1

n−1
<Hn = 1+

1
2
+ · · ·+ 1

n
≤ 1+

∫ n

1

dx
x

= 1+ lnn. (1.3)

Finally, for the variance of τ , we have the following bound.

Var(τ) =
n−1

∑
k=0

Var(Yk) =
n−1

∑
k=0

k/n
(n− k)2/n2 = n

n−1

∑
k=1

k
(n− k)2 = n

n−1

∑
j=1

n− j
j2 < n2

n−1

∑
j=1

1
j2 < 2n2.

The last inequality follows from a telescoping sum argument: ∑
n−1
j=1

1
j2 <∑

n−1
j=1

(
2
j −

2
j+1

)
=

2− 2
n .
In the following section we’ll see how to combine these estimates of the expectation

and variance of τ to derive asymptotically tight bounds for the coupon collector problem.

1.2.3 Coupon collector: Tail bounds on stopping time
Let mcoupon(n) denote the least value of m such that, when m balls are thrown into n
bins, with probability at least 1

2 every bin is occupied by at least one ball. We can relate
mcoupon(n) to the sequential balls-and-bins process analyzed in the preceding section: it is
the least value of m such that Pr(τ ≤ m)≥ 1

2 .
To find an upper bound for mcoupon(n), the easiest approach is to use Markov’s inequal-

ity, which asserts that for any non-negative random variable X and any factor c≥ 1,

Pr(X ≥ c ·EX)≤ 1
c
.
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Applying this inequality with X = τ and c = 2, we find that

Pr(τ ≥ 2nHn)≤
1
2

and consequently mcoupon(n)≤ 2nHn.
Markov’s inequality is quite a weak inequality, so applications of Markov’s inequality

rarely give tight or nearly-tight bounds on the quantity of interest. This case is no exception:
the estimate mcoupon(n)≤ 2nHn ≈ 2n lnn is off by about a factor of 2.

To obtain a tighter bound, we use Chebyshev’s inequality, which is simply Markov’s
inequality applied to the random variable Z = (τ−E[τ])2. By our calculation of Var(τ),
we know that E[Z]< 2n2. Hence,

Pr
(
|τ−E[τ]| ≥ 2n

)
= Pr(Z ≥ 4n2) ≤ Pr(Z ≥ 2E[Z]) ≤ 1

2
. (1.4)

A simple consequence of Inequality (1.4) is that

E[τ]−2n≤ mcoupon(n)≤ E[τ]+2n

which we can rewrite, using E[τ] = nHn and lnn < Hn ≤ lnn+1, as

n(lnn−2)≤ mcoupon(n)≤ n(lnn+3).

This improves, by approximately a factor of 2, our previous bound mcoupon(n)≤ 2E[τ] =
2nHn. Importantly, the improved bound is asymptotically tight, i.e. the upper and lower
bounds differ by a factor that converges to 1 as n→ ∞. To see why, note that n(lnn+3)

n(lnn−2) =

1+ 5
lnn−2 .

1.3 Balls and bins: the heavily loaded case
We now turn to investigating the balls-and-bins problem from the standpoint of load
balancing. Let us say the bins are β -balanced if the maximum bin load is no more than
β times the minimum bin load. In order for the bins to be β -balanced, the minimum bin
load must be strictly positive. In the analysis of the coupon collector problem, we saw
that this happens for the first time at τ ≈ n lnn. At the coupon-collector stopping time, the
minimum bin load is equal to 1 (by definition of τ) and the maximum bin load is at least τ

n ,
(by the pigeonhole principle), so the so bins are not β -balanced for any β < τ

n , which is
(probably) approximately lnn.

As we throw even more balls into the bins, we expect the bins to become β -balanced
for ever-smaller load factors β , with β → 1 as the number of balls approaches ∞. Our
objective in this section is to analyze how rapidly the load factor approaches 1. What is the
smallest m = mε(n) that ensures β ≤ 1+ ε with probability at least 1

2?

1.3.1 The tail-bound-plus-union-bound method
Our strategy will exemplify a very commonly adopted method for analyzing randomized
algorithms: the tail-bound-plus-union-bound method. The union bound is the following
extremely simple yet useful probabilistic inequality.
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Lemma 1.7 If E1,E2, . . . ,En is a finite collection of events in a probability space, then

Pr(E1∪E2∪·· ·∪En)≤ Pr(E1)+Pr(E2)+ · · ·+Pr(En). (1.5)

Armed with the union bound, we will execute the following strategy for analyzing the load
balancing factor of the balls-and-bins process.

1. Let Bi denote the (random) number of balls in bin i, after m balls have been thrown.

2. Observe that E[Bi] = m/n.

3. For any δ such that 0< δ < 1, let Ei,δ denote the event that Bi ̸∈
[
(1−δ )m

n , (1+δ )m
n

]
.

4. (Tail bound step.) Choose m large enough, as a function of n and δ , to ensure that

∀i Pr(Ei,δ )≤ 1
2n .

5. (Union bound step.) By the union bound, Pr
(⋃n

i=1Ei,δ
)
≤
( 1

2n

)
·n = 1

2 .

6. The complementary event
⋂n

i=1Ei,δ has probablity at least 1
2 . In other words, with

probability at least 1
2 the load in each bin satisfies (1−δ )m

n ≤ Bi ≤ (1+δ )m
n .

7. Now, choose δ small enough that when Bi is between (1−δ )m
n and (1+δ )m

n for
each i, it implies the bins are (1+ ε)-balanced.

The last step is easy to accomplish: as long as ε ≤ 1, we can set δ = ε/3 and observe that

(1−δ )(1+ ε) = 1+
2ε

3
− ε2

3
≥ 1+

ε

3
= 1+δ ,

which implies
1+δ

1−δ
≤ 1+ ε.

To complete the strategy specified above we need to fill in the details of the tail bound
step. First we’ll see how to do this using Chebyshev’s Inequality. Then we’ll see a different
tail bound, the Chernoff Bound, that is quantitatively much stronger, leading to a much
tighter upper bound on mε(n).

1.3.2 Tail bound using Chebyshev’s inequality
Our strategy for bounding the probability that Bi lies outside the interval

[
(1−δ )m

n , (1+δ )m
n

]
will be to express Bi as a sum of independent random variables. Specifically, let Xit = 1
if ball t is thrown into bin i, and Xit = 0 otherwise. The variables Xit are independent
Bernoulli random variables, each with expected value 1

n and variance 1
n(1−

1
n). Their sum,

Bi, has expected value m
n and variance m

n (1−
1
n), since the variance of a sum of independent

random variables is the sum of their variances.
Now, using Chebyshev’s inequality,

Pr(Ei,δ ) = Pr
(
|Bi−E[Bi]|>

δm
n

)
≤ Var(Bi)

(δm/n)2 <
m/n

(δm/n)2 =
n

δ 2m
.

To make the right side less than or equal to 1
2n we may choose m≥ 2(n/δ )2. By our choice

of δ = ε/3, this yields the bound

mε(n)≤
18n2

ε2 .
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In the next two sections, we’ll see how to improve the dependence on n from quadratic to
quasi-linear using a stronger tail bound.

1.3.3 Introducing the Chernoff Bound
Let X1,X2, . . . ,Xm be independent (not necessarily identically distributed) random variables
taking values in [0,1]. In this section we derive the Chernoff bound, which bounds the
probability that X1 + · · ·+Xm differs from its expectation by a factor lying outside the
interval [1− ε,1+ ε]. We will assume throughout this section that 0 < ε < 1.

The Chernoff bound is proven using the same strategy as Chebyshev’s inequality.

1. Find a useful non-linear function of the random variable X = X1 + · · ·+Xm.

• In Chebyshev’s inequality this function was f (X) = (X−E[X ])2.

• In the Chernoff bound it will be f (x) = etX for a carefully-chosen value of t.

2. Calculate an upper bound on E[ f (X)].

3. Show that when X is far from E[X ], the value of f (X) exceeds this upper bound by
a large factor.

4. Finish up by using Markov’s inequality to assert that f (X) is unlikely to exceed
E[ f (X)] by a large factor.

Definition 1.8 If X is a random variable, its moment generating function MX(t) and its
cumulant generating function KX(t) are the functions defined by

MX(t) = E[etX ]

KX(t) = lnMX(t).

The following two lemmas present some useful properties of MX(t) and KX(t).

Lemma 1.9 If X1, . . . ,Xm are independent random variables then

MX(t) =
m

∏
i=1

MXi(t), KX(t) =
m

∑
i=1

KXi(t).

Proof. The formula for MX(t) follows from the fact that etX = ∏
m
i=1 etXi and that the

expectation of the product of independent random variables equals the product of their
expectations. (This is why it’s crucial, in the Chernoff bound, that the variables must be
independent.) The formula for KX(t) follows from the one for MX(t), using the product
rule for logarithms. ■

■ Remark 1.10 When MX(t) and KX(t) are expanded as power series in t,

MX(t) =
∞

∑
n=0

mn(X)

n!
· tn, KX(t) =

∞

∑
n=0

κn(X)

n!
· tn,

the power series coefficients mn(X) and κn(X) are the expected values of degree-n polyno-
mials in X . Both of these sequences of coefficients represent important statistics about the
distribution of X .

• mn(X) = E[Xn] is the nth moment of X .
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• κn(X) is called the nth cumulant of X . The first two cumulants are well known
statistics: κ1(X) is the expectation and κ2(X) is the variance. All of the cumulants
satisfy the cumulative property for independent sums:

κn(X) = κn(X1)+κn(X2)+ · · ·+κn(Xm)

when X = X1 + · · ·+Xm is a sum of independent random variables. This follows
from the fact that KX(t) = ∑

m
i=1 KXi(t).

■

Lemma 1.11 For any random variable X taking values in [0,1], the moment generating
function MX satisfies

MX(t)≤ exp
(
(et−1)E[X ]

)
for all t ∈ R.

Proof. For all x ∈ [0,1] and all t ∈ R the inequality

etx ≤ 1+(et−1)x

holds because the left side is a convex function of x, the right side is a linear function of
x, and the left and right sides are equal at the endpoints x = 0 and x = 1. Applying this
inequality along with linearity of expectation, we find that

MX(t) = E
[
etX]≤ 1+(et−1)E[X ].

The lemma follows by combining this inequality with Fact 1.1. ■

Theorem 1.12 — Chernoff bound. If X1,X2, . . . ,Xm are independent random variables
taking values in [0,1] and X = X1 + · · ·+Xm, then for 0 < ε ≤ 1 we have

Pr(X ≥ (1+ ε)E[X ]) < e−
1
3 ε2E[X ]

Pr(X ≤ (1− ε)E[X ]) < e−
1
2 ε2E[X ]

Proof. Using Lemmas 1.9 and 1.11, together with E[X ] =∑
m
i=1E[Xi], we find that MX(t)≤

exp((et−1)E[X ]) for all t ∈ R. Now, from Markov’s inequality we have

Pr(X ≥ (1+ ε)E[X ]) = Pr
(

etX ≥ e(1+ε)tE[X ]
)

< e(e
t−1−(1+ε)t)E[X ]

for all t ≥ 0. To minimize the right side, set t = ln(1+ ε). Then et − 1− (1+ ε)t =
ε− (1+ ε) ln(1+ ε). Using the Taylor series

(1+ ε) ln(1+ ε) = (1+ ε)
(
ε− 1

2ε
2 + 1

3ε
3−·· ·

)
= ε + 1

2ε
2− 1

6ε
3 + · · ·> ε + 1

3ε
2

we find that ε − (1+ ε) ln(1+ ε) < −1
3ε2 and the upper bound on Pr(X ≥ (1+ ε)E[X ])

follows.
For t ≥ 0 another application of Markov’s inequality yields

Pr(X ≤ (1− ε)E[X ]) = Pr
(

e−tX ≥ e−(1−ε)tE[X ]
)

< e(e
−t−1+(1−ε)t)E[X ].
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To minimize the right side we set t =− ln(1− ε) and then e−t−1+(1− ε)t =−ε− (1−
ε) ln(1− ε). Using the Taylor series

−(1− ε) ln(1− ε) = (1− ε)(ε + 1
2ε

2 + 1
3ε

3 + · · ·) = ε− 1
2ε

2− 1
6ε

3−·· ·< ε− 1
2ε

2

we find that −ε− (1− ε) ln(1− ε)<−1
2ε2 and the upper bound on Pr(X ≤ (1+ ε)E[X ])

follows. ■

A few features of the Chernoff bound are worth noting.

1. Theorem 1.12 bounds the probability of X deviating from E[X ] by a large amount.
Inequalities of this type are called large deviation inequalities or tail bounds, since
they quantify the amount of probability in the “tail” of the distribution of X .

2. The probability of a large deviation tends to zero exponentially fast as E[X ] grows
large. Inequalities of this type are called exponential tail bounds.

3. The probability of large deviation is exponentially small as a function of E[X ], not
as a function of the number of random variables being summed, m. Even if m is
very large, it’s possible that the distribution of X is not very concentrated around
its expected value. For example, if X1, . . . ,Xm−1 are deterministically equal to 0,
and Xm is equal to 0 or 1, each with probability 1

2 , then X is equal to 0 or 1, each
with probability 1

2 , so the event that X is between (1− ε)E[X ] and (1+ ε)E[X ] has
probability zero! This is consistent with the Chernoff bound, which only says that
Pr(X ≥ (1+ ε)E[X ]) is small when E[X ] is large.

4. In the exponential function on the right side of the Chernoff bound, the dependence
on ε is quadratic. This is typical of exponential tail bounds. In order for a deviation
such as X ≥ (1+ε)E[X ] to be unlikely, the expected value of X must be greater than
1/ε2 times the maximum value of any individual Xi. A useful way of summarizing
this observation is, “To estimate the frequency of an event within a factor of 1± ε ,
you must wait until you have observed the event at least 1/ε2 times.”

1.3.4 Using the Chernoff Bound to analyze balls and bins
Let us now return to analyzing the load factor in the balls-and-bins process: the ratio of
the maximum and minimum bin loads after m balls have been thrown into n bins. We
previously saw that, with probability at least 1

2 , the load factor is less than 1+ ε once
m≥ 18n2

ε2 balls have been thrown. We will now show that this bound can be significantly
improved using the Chernoff bound.

Recall the tail-bound-plus-union-bound strategy from Sections 1.3.1 and 1.3.2. The
load in bin i after m balls have been thrown is a random variable Bi = Xi1+ · · ·+Xim where
Xi1, . . . ,Xim are independent Bernoulli random variables. If m is large enough that the event
has probability less than 1

2n , then the union bound implies that with probability at least 1
2 ,

the ratio of the maximum and minimum bin loads is less than 1+ ε .
The Chernoff bound constrains the probability that Bi >

(
1+ ε

3

) m
n or Bi <

(
1− ε

3

) m
n .

The first of these probabilities is bounded above by exp
(
− ε2

27 ·
m
n

)
while the second is

bounded above by exp
(
− ε2

18 ·
m
n

)
. Hence, the sum of the two probabilities is less than
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2exp
(
− ε2

27 ·
m
n

)
. We seek a value of m that satisfies the inequality

2exp
(
−ε2

27
· m

n

)
≤ 1

2n
.

After taking the logarithm of both sides and doing some algebra, we discover that this is
equivalent to

m >
27n ln(4n)

ε2 .

Compared to the bound of 18n2

ε2 that we derived using Chebyshev’s inequality, the improve-
ment here is that the dependence on n is quasi-linear, i.e. O(n logn), rather than quadratic.
In fact, the quasi-linear dependence on n is the best possible, because we know from our
analysis of the coupon collector problem that when m = o(n logn), it is unlikely that every
bin is occupied.

1.3.5 The Hoeffding Bound
In this section we derive a different exponential tail bound in which we once again have
independent random variables X1, . . . ,Xn, each taking values in a bounded interval, and
their sum is denoted by X . This time, rather than proving that the ratio X/E[X ] is unlikely
to be far from 1, we wish to prove that the absolute difference |X −E[X ]| is unlikely to
be far from 0. In other words, whereas the Chernoff bound provides conditions under
which E[X ] is likely to be a good multiplicative approximation to X , we wish to understand
conditions under which E[X ] is likely to be a good additive approximation to X . The
Hoeffding bound answers this question.

As before, the exponential tail bound will be proven by using generating functions
to transform the stated inequality into an application of Markov’s inequality. This time,
it will be more convenient to work with the cumulant generating function rather than
the moment generating function. The following lemma summarizes the implications of
Markov’s inequality when working with cumulant generating functions.

Lemma 1.13 Let X be a random variable with cumulant generating function KX(t), and
suppose λ > 0. For any t > 0,

Pr(X ≥ E[X ]+λ )≤ eKX (t)−t(E[X ]+λ )

Pr(X ≤ E[X ]−λ )≤ eKX (−t)+t(E[X ]−λ ).

Proof. To derive the bound on Pr(X ≥E[X ]+λ ), observe that the inequality X ≥E[X ]+λ

holds if and only if etX ≥ et(E[X ]+λ ) and apply Markov’s inequality. To derive the bound
on Pr(X ≤ E[X ]− λ ), observe that the inequality X ≤ E[X ]− λ holds if and only if
e−tX ≥ e−t(E[X ]−λ ) and again apply Markov’s inequality. ■

The key new ingredient in the proof of Hoeffding’s Inequality is the following lemma
that furnishes an upper bound on the cumulant generating function of a random vari-
able.
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Lemma 1.14 — Hoeffding’s Lemma. If X is a random variable supported on an interval
[a,b], with expected value µ , then the cumulant generating function KX(t) satisfies

KX(t)−µt ≤ (b−a)2t2

8
.

Proof. The left side is the cumulant generating function of the random variable X − µ,
which has expected value zero, so we may replace X with X−µ if necessary and assume
henceforth, without loss of generality, that E[X ] = 0. The lemma then asserts the inequality
KX(t) ≤ 1

8(b−a)2t2. To prove this inequality, we will use Taylor’s Theorem. We know
KX(0) = 0 from the definition of the cumulant generating function, and we know K′X(0) = 0
since the derivative of KX at 0 is the expectation of X . Hence, by Taylor’s Theorem with
Lagrange’s remainder term, KX(t) = 1

2K′′X(u)t
2 for some u.

To conclude the proof, we need to prove that K′′X(u)≤ 1
4(b−a)2 for all u, when X is

a random variable supported on [a,b]. We will prove this bound by constructing a new
random variable Y supported on [a,b] whose cumulant generating function KY (t) satisfies

KY (t) = KX(u+ t)−KX(u)

for all t. Then, taking the second derivative of both sides with respect to t, we will obtain
K′′Y (0) = K′′X(u). Recalling that K′′Y (0) is equal to the variance of Y , we will be left with
showing that the variance of any random variable supported on [a,b] is less than or equal
to 1

4(b−a)2. It will turn out that this inequality is quite easy to prove.

Let Y be a random variable obtained from X by “reweighting the probability of each
support point z by the factor euz.” If X has probability density function fX(z) this means
that Y has probability density function fY (z) = 1

Z euz fX(z), where the normalization factor
Z =

∫
∞

−∞
euz fX(z) is chosen so that the equation

∫
∞

−∞
fY (z)dz = 1 holds, as required for a

probability density function. More generally, i.e. whether or not X has a probability density
function, as long as E[euX ]< ∞ we can define Y by specifying its cumulative distribution
function:

Pr(Y ≤ y) =
E[euX ·111X≤y]

E[euX ]
.

Then, we can compute MY (t) for a given t by making use of the following identity which
is valid for any non-negative random variable Z and whose proof is basically the same as
the proof of Lemma 1.5, substituting integrals in place of sums.

E[Z] =
∫

∞

0
Pr(Z > z)dz. (1.6)
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Setting Z = etY and using the substitution z = etw, we find that

MY (t) = E[etY ] = E[Z] =
∫

∞

0
Pr(Z > z)dz

=
∫

∞

−∞

Pr(etY > etw) · tetw dw

=
∫

∞

−∞

Pr(Y > w) · tetw dw

=
∫

∞

−∞

E[euX ·111X>w]

E[euX ]
· tetw dw

=
1

MX(u)

∫
∞

−∞

E[euX ·111X>w] · tetw dw

=
1

MX(u)
EX

[
euX

∫ X

−∞

tetw dw
]
=

1
MX(u)

EX
[
euX etX] =

MX(u+ t)
MX(u)

The identity KY (y) = KX(u+ t)−KX(u) follows by taking the logarithm of both sides.
As observed earlier, to conclude the proof of the lemma we need only show that

a random variable Y supported on the interval [a,b] has variance at most 1
4(b− a)2.

The validity of the inequality Var(Y ) ≤ 1
4(b− a)2 is unaffected if we apply an affine

transformation to Y and we apply the same affine transformation to the interval [a,b]. In
other words, if we replace Y with cY +d and we replace [a,b] with [ca+d,cb+d], the
validity of the inequality is unaffected because the variance of Y is scaled by c2, and
the squared-length of the interval is also scaled by c2. Hence, without loss of generality
(applying an affine transformation to Y and to [a,b] if necessary) we can assume [a,b] =
[−1,1] and 1

4(b−a)2 = 1. The variance of Y is E[Y 2]−E[Y ]2. The first term on the right
side is clearly no greater than 1 because Y is supported on [−1,1]. Since E[Y ]2 ≥ 0, it
follows that E[Y 2]−E[Y ]2 ≤ 1, as desired. ■

Theorem 1.15 — Hoeffding’s Inequality. Suppose X1,X2, . . . ,Xn are independent ran-
dom variables and that for each i, the support of Xi is contained in a bounded interval
[ai,bi]. Let X = X1 + · · ·+Xn. For any λ > 0,

Pr(X ≥ E[X ]+λ )≤ exp
(
− 2λ 2

∑
n
i=1(bi−ai)2

)
Pr(X ≤ E[X ]−λ )≤ exp

(
− 2λ 2

∑
n
i=1(bi−ai)2

)
.

Proof. Let µi = E[Xi] for each i, and let µ = ∑
n
i=1 µi = E[X ]. By Hoeffding’s Lemma,

KXi(t)−µit ≤ 1
8(bi−ai)

2t2 for all t and all i. Summing over i,

KX(t)−µt ≤ 1
8

n

∑
i=1

(bi−ai)
2t2.

Let c = 1
8 ∑

n
i=1(bi−ai)

2. By Lemma 1.13,

Pr(X ≥ E[X ]+λ )≤ eKX (t)−µt−λ t ≤ ect2−λ t .

The proof concludes by setting t = λ/(2c), so that ct2−λ t =−λ 2

4c =− 2λ 2

∑
n
i=1(bi−ai)2 . ■
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1.4 Further applications of the Chernoff and Hoeffding
bounds
The Chernoff and Hoeffding bounds are some of the most versatile tools in the analysis of
randomized algorithms and the average-case analysis of algorithms. In this section we will
present a number of applications of both.

1.4.1 Estimating the expected value of a distribution
Suppose Y is a random variable taking values in an interval [0,M] whose expected value we
wish to estimate. Let Y1,Y2, . . . be a sequence of independent random variables, each having
the same distribution as Y . One way to estimate E[Y ] is to simply take the unweighted
average of the first N samples,

Ŷ =
1
N
(Y1 + · · ·+YN).

We wish to determine a value of N such that the error of the estimate is very unlikely to
exceed ε:

Pr(|Ŷ −E[Y ]|> ε)< δ .

This type of guarantee is summarized by saying that the estimator Ŷ is “probability
approximately correct,” often abbreviated as PAC.

By Hoeffding’s Inequality,

Pr(|Ŷ−E[Y ]|> ε)=Pr(|Y1+. . .+YN−NE[Y ]|>Nε)≤ 2exp
(
−2N2ε2

NM2

)
= 2exp

(
−2Nε2

M2

)
.

To make this less than δ , we require

exp
(
−2Nε2

M2

)
<

δ

2

exp
(

2Nε2

M2

)
>

2
δ

2Nε2

M2 > ln
(

2
δ

)
N >

M2

2ε2 ln
(

2
δ

)
.

This sample complexity bound has several features that are typical for estimation proce-
dures that use independent, identically distributed samples to estimate a scalar quantity.
The number of samples required depends inverse-quadratically on the tolerable level of
“relative error;” in this example the tolerable relative error is ε/M because we are trying to
estimate a quantity belonging to an interval of length M, and we tolerate additive error up
to ε . On the other hand, the number of samples depends on logarithmically on the inverse
of the “confidence parameter,” δ , which governs the maximum failure probability that is
deemed tolerable.
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1.4.2 Generalization error of empirical risk minimization
We now show how the Hoeffding bound can be applied to the important problem of
generalization error in machine learning. To keep the analysis as simple as possible, we
will focus on the task of hypothesis selection, where there is a finite set of hypotheses and
the learner aims to use a set of training data to choose a hypothesis that generalizes to
unseen data.

We can model the hypothesis selection problem as follows. We have:

• a random variable Z taking values in a setZ;

• a finite set of hypotheses,H = {h1, . . . ,hm};

• independent random variables Z1,Z2, . . . ,ZN , each identically distributed to Z, col-
lectively called the training set.

• a loss function L :H ×Z→ [0,1]. The value L(h,z) indicates how poorly hypothesis
h fits data point z.

We assume that the learner is given the training set {Z1, . . . ,ZN} but does not know the
distribution from which the Zi’s were sampled. There are two important ways of evaluating
a hypothesis h.

1. The population loss is L(h) = E[L(h,Z)]. This measures how well hypothesis h
performs on the actual distribution from which the data is sampled, including data
points that were not present in the training data.

2. The empirical loss is 1
N ∑

N
i=1 L(h,Zi). This has the advantage that it can be computed

from the training data, unlike the population loss which can only be computed if one
knows the data distribution.

Empirical risk minimization is the algorithm that selects the hypothesis hERM that mini-
mizes empirical loss on the training set. The hope is that if the training set is a representative
sample of the data distribution, then hERM will also perform near-optimally when evaluated
according to population loss, even though it was selected to minimize empirical loss rather
than population loss.

Theorem 1.16 Let h∗ denote the element of H that minimizes population loss. For
any 0 < ε,δ < 1, if the number of data samples, N, satisfies N > 2

ε2 ln(2m/δ ) then with
probability at least 1−δ , L(hERM)≤ ε +L(h∗).

Proof. Let φ(Z1, . . . ,ZN) denote the Boolean predicate:

∀h ∈H

∣∣∣∣∣L(h)− 1
N ∑

i=1
L(h,Zi)

∣∣∣∣∣< ε

2
.

When Z1, . . . ,Zn satisfy property φ , it implies that L(hERM)≤ ε +L(h∗) because

L(hERM)≤ ε

2
+

1
N ∑

i=1
L(hERM,Zi)≤

ε

2
+

1
N ∑

i=1
L(h∗,Zi)≤ ε +L(h∗).

The first and third inequalities are applications of property φ , the second inequality follows
from the definition of hERM.
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To complete the proof we just need to show that Pr(φ(Z1, . . . ,Zn)) ≥ 1−δ . For j =
1,2, . . . ,m let ψ j(Z1, . . . ,Zn) denote the predicate

∣∣L(h j)− 1
N ∑

N
i=1 L(h j,Zi)

∣∣ ≥ ε

2 . The
random variables Xi =

1
N L(h j,Zi) take values in [0, 1

N ] and the expectation of their sum is
L(h j), so applying Hoeffding’s inequality with λ = ε/2 yields

Pr(ψ j(Z1, . . . ,Zn))≤ 2exp
(
−ε2N

2

)
≤ δ

m
,

by our assumption that N > 2
ε2 ln(2m/δ ). The Union Bound (Lemma 1.7) implies that

Pr(∨m
j=1ψ j(Z1, . . . ,Zn))≤

m

∑
j=1

Pr(ψ j(Z1, . . . ,Zn))≤ δ .

Since∨m
j=1ψ j(Z1, . . . ,Zn) is the negation of φ(Z1, . . . ,Zn), it follows that Pr(φ(Z1, . . . ,Zn))≥

1−δ as claimed. ■

1.4.3 Reducing error rate of randomized algorithms
Our last application of the Chernoff bound comes from the theory of randomized algorithms
for decision problems. A decision problem is a problem whose output is an element of
{0,1}, with 0 representing “no” and 1 representing “yes.” A decision problem belongs
to the complexity class P if there is a deterministic polynomial-time algorithm — i.e., an
algorithm running in time O(nc) where n is the input size (in bits) and c is a constant —
that answers the decision problem correctly on every possible input. The complexity class
BPP consists of decision problems Π having a randomized polynomial-time algorithm A
that satisfies the following guarantee, where x denotes the problem input and r denotes the
random string used by A.

∀x Pr(A(x,r) ̸= Π(x))≤ 1
3
. (1.7)

The random string r is assumed to be a uniformly random binary string whose length,
L(n), is bounded by a polnomial function of the input size, n. Property (1.7) is often stated
equivalently as follows: if Π(x) = 1 then Pr(A(x,r) = 1) ≥ 2

3 , while if Π(x) = 0 then
Pr(A(x,r) = 1)≤ 1

3 .
The error rate of a BPP algorithm can be reduced by running it repeatedly using

independent random strings, and taking a majority vote of the outcomes. The following
algorithm uses a random string R= r1 : r2 : r3 : · · · : rm of length m ·L(n), for some specified
m ∈ N.

Algorithm 1 Algorithm Bm(x,R)
1: Let n denote the number of bits in x.
2: Break R into strings r1,r2, . . . ,rm, each of length L(n).
3: Let a = 1

m ∑
m
i=1 A(x,ri).

4: If a≥ 1
2 , output 1. Else, output 0.
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Lemma 1.17 If randomized algorithm A(x,r) satisfies Pr(A(x,r) ̸= Π(x))≤ 1
3 for all

x, then for any δ > 0, randomized algorithm Bm(x,R) with m > 18ln(1/δ ) satisfies
Pr(Bm(x,R) ̸= Π(x))≤ δ for all x.

Proof. Since algorithm A satisfies the BPP property (1.7), when Π(x) = 1 we have
E[A(x,ri)] ≥ 2

3 and when Π(x) = 0 we have E[A(x,ri)] ≤ 1
3 . If Bm(x,R) ̸= Π(x) then

either Π(x) = 0 and ∑
m
i=1 A(x,ri) ≥ m

2 , or Π(x) = 1 and ∑
m
i=1 A(x,ri) <

m
2 . In the former

case, ∑
m
i=1 A(x,ri) exceeds its expected value by at least m

6 , while in the latter case it
falls short of its expected value by at least the same amount. In both cases, Hoeffding’s
Inequality ensures that the probability of this occurring is no greater than

e−2(m/6)2/m = e−m/18 < eln(δ ) = δ .

■

Lemma 1.17 has the following consequence for complexity theory. A decision problem
Π is said to belong to the complexity class P/poly if there is a family of deterministic
algorithms {Bn | n ∈ N} such that:

1. for every input x of size n, Bn(x) = Π(x);

2. for some constant c < ∞ and every n ∈ N, the worst-case running time of Bn on
inputs of size n is bounded by O(nc).

This is summarized by saying that the decision problem Π has a non-uniform family of
polynomial-time algorithms: it can be solved deterministically in polynomial time for all
input sizes, but the choice of algorithm depends on the input size.

Theorem 1.18 If Π is a decision problem in BPP then Π belongs to P/poly.

Proof. Let A be a randomized polynomial-time algorithm for Π that satisfies property (1.7).
For any n ∈ N let m = ⌈18ln(2) ·n⌉= ⌈18ln(2n)⌉ and consider the randomized algorithm
Bm. According to Lemma 1.17, for all x ∈ {0,1}n, Pr(Bm(x,R) ̸= Π(x)) < 2−n. By the
union bound, Pr(∃x ∈ {0,1}n Bm(x,R) ̸= Π(x))< 1. Hence, it is not the case that for all
R ∈ {0,1}m·L(n), there exists an x ∈ {0,1}n such that Bm(x,R) ̸= Π(x). In other words,
there exists some Rn ∈ {0,1}m·L(n) such that for all x ∈ {0,1}n, Bm(x,Rn) = Π(x). Let
Bn be the algorithm that on input x, computes Bm(x,Rn). Then the family {Bn | n ∈ N}
constitutes a non-uniform family of polynomial-time algorithms for Π. ■

A very natural and worthy goal is to eliminate the non-uniformity in Theorem 1.18
and prove that BPP= P. This would show that giving algorithms access to random bits
does not affect the set of decision problems that can be solved in polynomial time, or
equivalently, that every polynomial-time randomized algorithm for a decision problem
can be efficiently “derandomized” to yield a deterministic polynomial-time algorithm for
the same problem. Most complexity theorists believe such a derandomization of BPP is
possible. The effort to derandomize BPP and other complexity classes is currently one of
the most active research areas in complexity theory.
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In Section 1.3 we saw that throwing m balls at random into n bins is an excellent way to
balance load. However, in CS the metaphorical “balls” — often pieces of data or tasks —
may have identifiers or keys, and the event of throwing a ball with identifier x into bin b
needs to be reproducible. In other words, the bin number b must be bound to the identifier
x in such a way that the system can later fulfill a request to retrieve the ball with identifier
x, or to remove it from its bin, or to throw another ball with the same identifier into the
same bin.

The word for this type of “random but reproducible” mapping of balls to bins is hashing.
In this section we will introduce an extremely important application of hashing in CS,
namely dictionary data structures. In Section 2.1 we’ll begin by defining the dictionary as
an abstract data type. We’ll describe a simple deterministic implementation of a dictionary
and analyze its space and time efficiency. It turns out that all of the most efficient known
implementations of dictionaries use randomization in the form of hash functions. In
Section 2.2 we’ll introduce the abstraction of hash functions. Then in Section 2.3 we’ll
introduce the hash table, a randomized data structure that uses hash functions to implement
a dictionary. We’ll first analyze the hash table’s efficiency under an unrealistically strong
assumption about the randomness of the hash function. Then in Section 2.4 we’ll see
how to substitute a weaker randomness assumption called pairwise independence without
hurting the expected efficiency of the hash table. Furthermore, we’ll present some efficient
constructions of pairwise independent families of hash functions.

2.1 Introducing the dictionary data structure
The quintessential application of this capability is the dictionary abstract data type, also
known as an associative array or key-value store. A data structure that implements a
dictionary stores a set of key-value pairs, with at most one value per key. We will use X
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to denote the set of potential keys, and x ∈ X to denote one such key. Similarly we will
useV to denote the set of potential values, and v to denote one such value. The dictionary
supports (at least) the following three operations.

1. LOOKUP(x) returns the value v stored with key x, or it returns a special “not found”
symbol, ⊥, if x is not in the dictionary.

2. INSERT(x,v) inserts the pair (x,v) into the dictionary. If another pair (x,v′) was
already stored in the dictionary, it is overwritten. (The value v′ is replaced with v.)

3. DELETE(x) removes the (unique) pair (x,v) with key x from the dictionary, if any
such pair exists.

Data structures implementing this functionality in common programming languages in-
clude the Python dictionary, the Java HashMap, and the C++ unordered_map. These
implementations often provide other functionality (e.g., iterators) but in these notes we will
focus on the three basic operations listed above, which are the three essential operations a
dictionary must support.

A reasonably efficient deterministic implementation of the dictionary data type uses a
balanced binary search tree, such as a red-black tree, to store the keys and pointers to the
values. Then, all three of the dictionary operations can be implemented to run in O(log2 m)
time. As for the space efficiency of this dictionary implementation, if we assume each key
and value occupies O(1) space, then the storage required for this data structure is O(m).
More generally, if S is the total amount of storage occupied by all the keys and values
(which might asymptotically exceed m, for example if the values stored in the dictionary
are large objects that occupy a super-constant amount of space) then the balanced binary
search tree, and the accompanying storage space for storing the values that the tree nodes
point to, will occupy O(S) space.

To sum up, the balanced binary search tree is already quite a space-efficient and time-
efficient implementation of a dictionary: its space usage is within a constant factor of
optimal, and the time complexity of each operation is O(logm). However, dictionaries
are so widely used in computing, and their efficiency is so highly prized, that the running
time of O(logm) per operation is considered slow. We will see that there is a randomized
implementation with O(1) running time per operation.

2.2 Hash functions
Hash tables are a randomized implementation of dictionaries in which the LOOKUP,
INSERT, and DELETEoperations are faster than in the balanced binary search tree. They
speed up the (expected) running time of these operations from O(logm) to O(1) by
“flattening” the data structure: instead of searching for keys stored in a hierarchical structure
of depth log2(m), the keys are stored in a one-dimensional array of n = O(m) hash buckets,
and a hash function applied to any key directs the user to the appropriate bucket.

A hash function needs to support two operations, generally with the aid of a source of
random bits.

• INITHASH(X,B) initializes a hash function with X as the set of potential keys and
B as the set of bins. The operation is called only once, when the hash function is
initialized.

• HASH(x) evaluates the hash function on key x ∈ X, returning bin b ∈ B.
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Implementations of hash functions strive for an unattainable goal of achieving three
properties simultaneously.

Uniform randomness If we call INITHASH(X,B) followed by HASH(x1),HASH(x2), . . . ,HASH(xm)
for any distinct keys x1,x2, . . . ,xm ∈ X, the values returned are independent, uni-
formly random elements of B.

Reproducibility For any given x ∈X, all calls to HASH(x) must return the same value.

Space and time efficiency The hash function should be stored using a small amount of
space, and evaluating HASH(x) should be fast. If N = |X|, n = |B|, and locations
in memory can store log(n) bits, then the space required to store the representation
of the hash function should ideally be O(log2 N) and the time required to evaluate
HASH(x) should ideally be O(logn N).

It’s easy to achieve any two of these properties while sacrificing the third one. For example,
the second and third properties are satisfied by any deterministic function that is easy to
store and evaluate, for example a constant function that always outputs 1. The first and third
properties are satisfied if we implement HASH(x) by calling a random number generator
to draw a uniformly random sample from B every time HASH is called, but of course this
violates the second property (reproducibility). The first and second properties are achieved
by implementing INITHASH(X,B) to sample a uniformly random function h : X→ B
and store its values in a giant array of size N, but this is definitely not space-efficient, and
the time-efficiency of evaluating HASH(x) also suffers if N is large enough that an array of
size N doesn’t fit in RAM.

However, it is impossible to implement a hash function that achieves all three properties
simultaneously. To see why, consider initializing a hash function with key set X and bucket
set B and then calling

HASH(x1),HASH(x2), . . . ,HASH(xm),HASH(x1),HASH(x2), . . . ,HASH(xm)

where the keys x1,x2, . . . ,xm are any m distinct elements of X. The implementation of the
hash function has an internal state, and we will use s to represent the state at the end of
the mth call to HASH. For any b = (b1,b2, . . . ,bm) ∈ [n]m let S(b) denote the set of internal
states that may potentially be reached in an execution of the above sequence of HASH

operations when the first m HASH operations have outputs b1, . . . ,bm respectively. We now
make the following observations.

1. By the uniform randomness property, every b ∈ [n]m has a positive probability
of being realized as the outputs of the first m HASH operations. Hence, S(b) is
non-empty for every b ∈ [n]m.

2. If b ̸= b′ then S(b) and S(b′) must be disjoint. To see why, for any internal
state s and consider the outcome of calling HASH(x1),HASH(x2), . . . ,HASH(xm)
starting from internal state s. By the reproducibility property, if s ∈ S(b) then
HASH(x1), . . . ,HASH(xm) must return b, whereas if s∈ S(b′) then HASH(x1), . . . ,HASH(xm)
must return b′. Since b ̸= b′, s cannot belong to both S(b) and S(b′), so the two sets
are disjoint as claimed.

3. The set
⋃

b∈[n]m S(b) is a union of nm disjoint non-empty sets, so its cardinality is at
least nm.

4. To encode each internal state using a distinct string of bits, we must use at least
log2(n

m) = m log2(n) bits to encode the internal state.
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5. A single memory location holds at most log2(n) bits. Hence, storing the internal
state requires at least m memory locations. When m≫ log(N) this violates space-
efficiency.

2.3 Hash tables
In applications of hashing, reproducibility is usually treated as a hard constraint, and space
and time efficiency are strongly desired. (The more efficient, the better.) On the other
hand, the property of uniform randomness is often stronger than what’s really needed. A
useful paradigm for designing algorithms that make use of hashing is to start by fantasizing
that all three of the properties we desire in a hash function can be fulfilled. Under this
unrealistic assumption, we design and analyze an algorithm. Then, we scrutinize the
analysis of the algorithm to identify a weakening of the uniform randomness property
that suffices for the analysis. Lastly, we try to design a hash function implementation that
satisfies the weaker property while maintaining space and time efficiency.

An important and illustrative case study is the hash table with chain hashing, which
implements a dictionary using a randomized hash function to map keys to buckets. Suppose
that, when initializing the dictionary, we are given the space of potential keys, X, the space
of potential values,V , and an upper bound on the maximum number of key-value pairs1

that will ever be stored in the dictionary at once, m. Given these parameters, the hash table
uses a set B = [n] of n = O(m) hash buckets, each with an associated linked list where
key-value pairs are stored. A hash function is used to map keys to bins. The hash table
operations are implemented as follows.

1. To initialize the hash table, one calls INITHASH(X,B), allocates an array of size n
for the bins, and populates each cell of the array with a pointers to an empty linked
list.

2. LOOKUP(x) calls HASH(x) to obtain a bucket b, then searches the linked list stored
in bucket b to see if a pair (x,v) is found.

3. INSERT(x,v) first calls LOOKUP(x). If a pair (x,v′) is found, the value stored is
modified from v′ to v. If x is not found in the hash table, the pair (x,v) is appended
to the linked list stored in bucket HASH(x).

4. DELETE(x) scans the linked list stored in bucket HASH(x) and, if a pair with key x
is found, deletes that pair from the linked list.

On an architecture where keys and values can be stored in constant space, the space
required for the hash table is O(m+ n). The time required for LOOKUP, INSERT, and
DELETEoperations is linear in the length of the linked list stored in the bucket HASH(x),
where x is the key associated with the operation.

Suppose for a moment that the hash function is a uniformly random function h : X→
B. Then, we could bound the expected length of the linked list stored in the bucket

1For the sake of convenience, we are assuming that an upper bound on m is known at initialization
time. If this assumption is not satisfied, there are “doubling tricks” that involve making an initial guess that
m = O(1), and then every time the number of key-value pairs stored in the hash table exceeds the current
guess, the guess is doubled and the hash table is resized accordingly. One then needs to analyze the time
complexity of these resizing operations. It is not hard to show that the amortized cost of resizing the hash
table is bounded by the total cost of the insertion operations. We omit the amortized analysis from these
notes, but it can found in textbooks on data structures.
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b = HASH(x) as follows. If x itself is already stored in the hash table, then b definitely
contains one element. There are at most m−1 other elements y ̸= x stored in the hash table,
and each of them has probability 1/n of being stored in bucket b, so the expected length
of the linked list in that bucket is 1+(m−1)/n. If x is not stored in the hash table, then
there are at most m elements stored in it, each of them has 1/n probability of belonging
to bucket b, and hence the expected length of the linked list is m/n. The ratio m/n is
called the load factor of the hash table. Our analysis has shown that if the hash function
is uniformly random, the expected running time of hash table operations is O(1+m/n).
Typically one chooses the parameters of the hash table to make the load factor a constant
less than 1, resulting in O(1) running time for lookup, insertion, and deletion.

It would appear that this entire analysis rests on the assumption that the hash function
is uniformly random, an assumption which unfortunately is incompatible with space and
time efficiency of the hash function operations. Fortunately, upon closer examination,
our analysis only made use of the randomness of h in one step, when bounding the
expected number of elements other than x that occupy bucket b = HASH(x). By linearity
of expectation, this quantity can be calculated as

∑
b∈B

∑
y̸=x

Pr(HASH(x) = HASH(y) = b).

The event HASH(x) = HASH(y) = b is called a hash collision of keys x and y at bucket b.
For any specific x, y, and b, the probability of the event HASH(x) = HASH(y) = b is 1/n2.
The double-sum above has at most mn terms, each equal to 1/n2, so the expected number
of y ̸= x occupying bucket b = HASH(x) is bounded above by (mn)/n2 = m/n, the load
factor of the hash table.

2.4 Pairwise independence
Reviewing the analysis of the hash table with chain hashing, we see that the hash function
need not be uniformly random, it only needs to satsfy the much weaker property that for
all b ∈ B and all x,y ∈ X such that x ̸= y, we have Pr(HASH(x) = HASH(y) = b) = 1/n2.

Definition 2.1 A 2-universal hash family is a set of functionsH , with each h∈H being
a function from X to B, such that when h is sampled uniformly at random fromH , for
every distinct x,y ∈ X the ordered pair of values (h(x),h(y)) is uniformly distributed
over B2.

A 2-universal hash family is sometimes also called a pairwise independent hash family,
though that term is a bit of a misnomer because the definition requires not only that pair
of the hash values h(x) and h(y) are independent, but also that each of them is uniformly
distributed.

Since the analysis of chain hashing in Section 2.3 relied only on the 2-universality of
the hash family, we have established the following.

Proposition 2.2 Consider a hash table with n buckets that uses chain hashing with a
hash function drawn uniformly from a 2-universal hash family. Let shash(n) denote the
space complexity of storing a representation of the hash function, and let thash(n) denote
the time complexity of evaluating HASH(x) on any given key x. For any sequence of
hash table operations with at most m≤ cn key-value pairs stored in the table at any time,
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the expected time per operation is O(c+1+ thash). The space complexity of the hash
table is O(m+n+ shash).

Of course, in order for a 2-universal hash family to be computationally useful, it is
necessary to be able to efficiently store and evaluate the hash functions in the family. The
remainder of this section provides some useful constructions of 2-universal hash families.

2.4.1 Linear congruential hashing
The simplest construction of a 2-universal hash function works when the number of hash
buckets is a prime number, p, and the space of potential keys, X, has p or fewer2 elements.

Let Fp denote the set {0,1, . . . , p−1} under the operations of addition and multiplica-
tion modulo p. In other words, to add or multiply two elements of Fp, one adds them or
multiplies them as ordinary integers, and then if the result is greater than or equal to p, one
divides it by p and outputs the remainder. This structure is called the prime field of order p,
but for present purposes it is not necessary to know what a field is in order to analyze the
hash function family we now present.

The linear congruential hash function family modulo p is the family of functions
h : Fp→ Fp defined by

h(x) = ax+b

where the coefficients a and b are allowed to be any elements of Fp. Denote this family of
functions byHp.

Lemma 2.3 For any prime number p, the linear congruential hash function familyHp
is a 2-universal hash family.

Proof. The hash function family Hp has p2 elements, one for each pair of coefficients
a,b ∈ Fp. We intend to argue that for any x ̸= y, the function φx,y :Hp→ F2

p defined by

φx,y(h) = (h(x),h(y))

is a bijection. If so, then it follows that for h drawn uniformly at random from Hp, the
pair (h(x),h(y)) = φx,y(h) will be drawn uniformly at random from F2

p as required by the
definition of a 2-universal hash family.

SinceHp and F2
p both have exactly p2 elements, the assertion that φx,y is a bijection

is equivalent to the assertion it is one-to-one. In other words, if h,h′ are two (possibly
identical) elements ofHp such that φx,y(h) = φx,y(h′), we are accountable for proving that
h = h′. Let a,b and a′,b′ be the coefficient pairs for h and h′, respectively. In other words,
for all z, h(z) = az+b and h′(z) = a′z+b′. Then, rewriting the equation φx,y(h) = φx,y(h′)
as h(x) = h′(x) and h(y) = h′(y) we find that

(a−a′)x+(b−b′) = h(x)−h′(x) = 0
(a−a′)y+(b−b′) = h(y)−h′(y) = 0

(a−a′)(x− y) = 0

2In typical hash tables, the number of potential keys is much greater than the number of buckets, so
the assumption that |X| ≤ p is quite limiting. The hash function family that we construct and analyze in
this section nevertheless has other very useful applications. One such application will be presented later in
Section 3.2.
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where all addition and multiplication operations are interpreted modulo p, and the equation
on the last line is obtained by subtracting both sides of the equations on the two lines
above. The equation (a−a′)(x−y) = 0 (modulo p) means that p is a divisor of the product
(a−a′)(x− y). Since p is prime, it must divide at least one of the factors, a−a′ or x− y.
However, since a,a′,x,y all belong to the set {0,1, . . . , p−1}, the differences a−a′ and
x−y belong to the interval [−(p−1), p−1], and 0 is the only multiple of p in that interval.
Hence, either a = a′ or x = y. By assumption x ̸= y, so we have shown a = a′. Now,
rewriting the equation h(x) = h′(x) as ax+b = a′x+b′ and using the equation a = a′, we
find that b = b′ as well. Thus, h = h′ as desired. ■

To evaluate the space and time efficiency of linear congruential hashing, recall our
standing assumption that one memory location can store O(logn) = O(log p) bits, which
is sufficient to store the value of one element of Fp. To store a representation of a hash
function h∈Hp one only needs to store the coefficients a and b, hence the representation of
the function h requires only O(1) space. Evaluating h requires only 2 arithmetic operations
(mod p), so it takes O(1) time.

2.4.2 Inner product hashing
Linear congruential hashing can be generalized to allow for applications in which the
number of buckets is still a prime number, p, but the number of potential keys, N, may
be much greater than p. In that case, we will let d = ⌈logp(N)⌉ and we will identify the
space of N keys, X, with a subset of the set Fd

p of d-tuples of elements of Fp. The set Fd
p

constitutes a d-dimensional vector space over the prime field of order p. Analogous to
the dot-product operation on vectors in Rd we have the following inner product operation
which is defined for any two elements w = (w1, . . . ,wd) and x = (x1, . . . ,xd) in Fd

p.

⟨w,x⟩=
d

∑
i=1

wixi.

As usual, the addition and multiplication operations on the right side are interpreted modulo
p. Now, letH d

p denote the set of hash functions h : Fd
p→ Fp of the form

h(x) = ⟨a,x⟩+b

where a ∈ Fd
p and b ∈ Fp. Storing the representation of a function h ∈H d

p requires storing
d +1 elements of Fp, which takes O(d) space. Evaluating h(x) takes O(d) time, since it
involves performing d multiplication and d addition operations in Fp.

Lemma 2.4 For any prime number p, the linear congruential hash function familyHp
is a 2-universal hash family.

Proof. We can prove that the hash familyH d
p is 2-universal by mimicking the proof in the

d = 1 case, Lemma 2.4. Consider any x,y ∈ Fd
p. If x ̸= y it means there is a coordinate j

such that x j ̸= y j. Without loss of generality assume j = 1. Then, we can break down the
process of sampling h ∈H d

p into two steps:

1. sample a2,a3, . . . ,ad ∈ Fp independently and uniformly at random;

2. sample a1, b ∈ Fp independently and uniformly at random.
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For any fixed choice of a2, . . . ,ad in the first sampling step, there are p2 choices of a1 and b
in the second step and corresponding to each of them there is an ordered pair of hash values
(h(x),h(y)) ∈ F2

p. If we can prove that the mapping (a1,b) 7→ (h(x),h(y)) is one-to-one,
then it must be bijective, from which it follows that (h(x),h(y)) is uniformly distributed
over F2

p, conditional on our fixed choice of a2, . . . ,ad . Since this holds for any fixed
choice of a2, . . . ,ad , it then follows (by averaging over a2, . . . ,ad) that the unconditional
distribution of (h(x),h(y)) is uniform over F2

p, as desired.
To prove that the function (a1,b) 7→ (h(x),h(y)) is one-to-one, consider any coefficient

pairs (a1,b) and (a′1,b
′) with associated hash functions h and h′, respectively, and assume

h(x) = h′(x) and h(y) = h′(y). Define a = (a1,a2, . . . ,ad) and a′ = (a′1,a2, . . . ,ad); note
that these two vectors differ only in their first coordinate. We have

0 = h(x)−h′(x) = ⟨a,x⟩+b−
〈
a′,x
〉
−b′ =

〈
a− a′,x

〉
+(b−b′) = (a1−a′1)x1 +(b−b′)

0 = h(y)−h′(y) = ⟨a,y⟩+b−
〈
a′,y
〉
−b′ =

〈
a− a′,y

〉
+(b−b′) = (a1−a′1)y1 +(b−b′)

0 = (a1−a′1)(x1− y1).

By assumption, x1 ̸= y1 so, as in the proof of Lemma 2.4, it follows that a1 = a′1. In that
case a = a′, so rewriting the equation h(x) = h′(x) as ⟨a,x⟩+b = ⟨a,x⟩+b′, we see that it
implies b = b′ and hence h = h′, as desired. ■
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In this section we survey some of the applications of hashing to the analysis of datasets
that are too large to fit in the computer’s memory all at once.

In the streaming model of computation, an algorithm observes a sequence a1,a2, . . . ,an
of data items, each represented by at most b bits. Thus, the set of potential data items
(called “tokens” henceforth) has size m = 2b. The algorithm has a working memory of size
s, where each memory location is assumed to be capable of storing O(logn) bits. Typically
we require s to have sublinear dependence on n (the length of the stream) and at most linear
dependence on b (the number of bits representing each element). Hence it is infeasible
to store each data item, which would require space s≥ n even if b were O(logn), and it’s
also infeasible to store a count of how many times each token was seen in the data stream,
which could require space s≥ 2b if every element of {0,1}b were observed at least once
in the stream.

Some of the typical objectives of streaming algorithms are to find the most frequently
occurring element (or elements) in the data stream, approximate the number of distinct
elements, or approximate the pth frequency moment, ∑ j f p

j , where f j denotes the number
of occurrences of the token j in the stream.

3.1 Finding frequent elements
To illustrate the model, we begin by presenting an example of a non-trivial streaming
algorithm that makes no use of hashing and is, in fact, completely deterministic. This is
an algorithm of Misra and Gries that uses space s = O(k(b+ logn)) to find every token
that occurs more than n/(k+1) times in the stream. The algorithm allocates its storage
space for a k-tuple of tokens b1, . . . ,bk, and a k-tuple of counters, c1, . . . ,ck. Initially each
pair (b j,c j) is initialized to (⊥,0), where ⊥ denotes a null symbol that doesn’t belong to
the set of tokens. While the algorithm is processing the stream, if it sees one of the tokens
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b1, . . . ,bk then it increments the corresponding counter. Otherwise, if one of the counters
c j is equal to zero, it stores the new element as b j and sets c j to 1. Otherwise, if all of
the counters are strictly positive, it decrements each of them. When the algorithm finishes
processing the stream, it outputs the set of all tokens that have positive counters.

1: Initialize (b j,c j) = (⊥,0) for j = 1,2, . . . ,k.
2: for i = 1,2, . . . ,n do
3: if ai = b j for some j ∈ [k] then
4: c j← c j +1
5: else if c j = 0 for some j ∈ [k] then
6: b j← ai
7: c j← 1
8: else
9: Decrement c j to c j−1 for each j ∈ [k].

10: end if
11: end for
12: Output {b j | c j > 0}.

Proposition 3.1 The output of the Misra-Gries algorithm contains every token that
occurs more than n/(k+1) times in the data stream (and potentially some tokens that
occur fewer than n/(k+1) times).

Proof. Picture marking elements of the sequence a1,a2, . . . ,an as follows. Initially all
elements are unmarked. At the start of the loop iteration that processes element ai, it
becomes marked. There are three cases for what could happen during the loop iteration. In
the first two cases, if ai ∈ {b1, . . . ,bk} or if ai ̸∈ {b1, . . . ,bk} but c j = 0 for some j, then ai
remains marked. In the third case, if ai ̸∈ {b1, . . . ,bk} and c j > 0 for all j, then we remove
the mark from ai, and we also remove red marks from the earliest marked copy of each of
the tokens b1, . . . ,bk.

We claim that at all times, there are c j marked copies of b j for each j ∈ [k], and no
token other than b1, . . . ,bk is marked. The proof is by induction on i. In the base case
i = 0, no tokens are marked and c j = 0 for all j. For the induction step, if ai belongs to the
set {b1, . . . ,bk} or is inserted into that set, then it remains marked at the end of the loop
iteration and the corresponding counter c j is incremented. If ai doesn’t belong to the set
{b1, . . . ,bk} and c j > 0 for all j, then the mark is removed from ai and (by the induction
hypothesis) there is at least one marked copy of b j for every j ∈ [k], so a mark is removed
from one copy of each b j as c j is decremented.

Each time a loop iteration removes any marks, it removes k+ 1 of them. Since an
element of the sequence is only marked once and its mark is removed at most once, there
are at most n/(k+ 1) loop iterations in which marks are removed. If a token appears
strictly more than n/(k+ 1) times in the sequence, then some copies of that token are
marked at the end of the final loop iteration, so that token must be one of b1, . . . ,bk. ■

3.2 Estimating the number of distinct elements
The Misra-Gries algorithm is atypical of streaming algorithms because it’s deterministic.
Generally a streaming algorithm’s objective can’t be achieved deterministically within



3.2 Estimating the number of distinct elements 39

the given space bound, so these algorithms use randomness and are usually evaluated
according to the PAC (probably approximately correct) objective: one wants to show that
with probability at least 1−δ , the algorithm’s output approximates the target quantity with
relative error ε or less.

Here’s a famous example due to Flajolet and Martin. The algorithm estimates the
number of distinct tokens in the data stream. Note that this number might be as large as
m = 2b, but we aim to estimate the number of distinct token in space s = poly(b, logn), so
keeping a list of every distinct token encountered in the stream is not an option. Instead,
we will use a hash function h : [m]→ [M], for some large integer M. The function h will
be drawn at random from a 2-universal hash family.

The key observation is that if there are d distinct tokens in the stream, then the random
variable Z = min{h(ai) | 1 ≤ i ≤ n} is on the order of M

d . In fact, if we assume without
loss of generality that the d distinct tokens belonging to the stream are a1, . . . ,ad , then for
any k ∈ [M] we can define the random variables

Xik =

{
1 if h(ai)≤ k
0 otherwise

Yk =
d

∑
i=1

Xik = number of distinct tokens whose hash value is ≤ k.

Then, we make the following observations.

1. E[Xik] =
k
M .

2. E[Yk] =
dk
M .

3. Var[Yk] =
dk(M−k)

M2 < dk
M . This is because

Var[Yk] = E[Y 2
k ]−E[Yk]

2 =
d

∑
i=1

d

∑
j=1

E[XikX jk]−
d2k2

M2

=
d

∑
i=1

E[Xik]+
d

∑
i=1

∑
j ̸=i

E[XikX jk]−
d2k2

M2

= d · k
M

+d(d−1) · k2

M2 −−
d2k2

M2

= d · k
M
−d · k2

M2 =
dk(M− k)

M2 .

In these observations, we made use of the assumption that the hash function h is sampled
from a 2-universal hash family. The first such usage was when we asserted E[Xik] =

k
M ,

which requires h(ai) to be uniformly distributed. The second such usage was in the
calculation of Var[Yk]: the derivation of the third line uses the fact that E[XikX jk] =

k2

M2 ,
which follows from the pair (h(ai),h(a j)) being uniformly distributed in [M]2.

Recall that Z = min{h(ai) | i ∈ [n]}. As a first attempt at estimating d, we can approxi-
mate it with the quantity M/Z. By Markov’s Inequality, if k = ⌊M/6d⌋, then

Pr
(M

Z > 6d
)
= Pr

(M
6d > Z

)
= Pr(Yk ≥ 1)≤ E[Yk] =

dk
M ≤

1
6 . (3.1)



40 Chapter 3. Data Streaming and Sketching

On the other hand, by Chebyshev’s Inequality, if ℓ= ⌊6M/d⌋,

Pr
(M

Z < d
6

)
= Pr

(6M
d ≤ Z

)
= Pr(Yℓ = 0)≤ Pr(|Yℓ−EYℓ| ≥ EYℓ)

≤ Var(Yℓ)
(EYℓ)2

<
EYℓ

(EYℓ)2 =
1
EYℓ

=
M
dℓ
≤ 1

6
+

1
6M−5

. (3.2)

Hence, the probability that the estimate M/Z lies outside the interval [d/6, 6d] is at most
1
3 +

1
6M−5 .

We can obtain a better estimate of d using Zt , the t th smallest of the values {h(ai)}n
i=1,

for a suitable choice of the parameter t > 1. Intuitively, the reason is that Zt “aggregates a
greater amount of randomness”, namely the randomness in the positions of the t smallest
elements rather than just the smallest one. To make this intuition a bit more precise, if
we set k = ⌊tM/d⌋ such that the expected number of elements that hash into the set [k]
is E[Yk] = dk/M ≈ t, then the variance Var[Yk] is less than t, so the probability that Yk
differs from its expected value by more than εt is at most 1

ε2t by Chebyshev’s Inequality.
For t > 1

ε2δ
, this probability will be less than δ . This argument doesn’t directly lead to

the conclusion that tM/Zt approximates d within ε , but a variation on the argument —
using random variables Yq and Yr for values q and r differing from k by 1± ε factors, and
accounting more carefully for hash collisions — does the trick.

Algorithm 2 Algorithm for estimating distinct elements
1: Set t = ⌈ 12

ε2δ
⌉.

2: Choose M ≥ 6m/(εδ ) and randomly sample h : [m]→ [M] from a 2-universal hash
family.

3: Initialize (Z1,Z2, . . . ,Zt) =⊥t .
4: for i = 1, . . . ,n do
5: Observe ai and calculate z = h(ai).
6: if z < Zt then
7: Update Z1, . . . ,Zt to be the t smallest hash values yet seen, in increasing order.
8: end if
9: end for

10: Output tM/Zt .

Note that the space required by the algorithm is equal to O(t logM) plus the amount of
space required to store h. In Section 2.4 we saw that when M is a prime number, we can
sample h from the linear congruential hash family and the space required for storing h will
be O(logM) bits. Since there is always a prime number between 6m/(εδ ) and 12m/(εδ ),
we can ensure log(M)≤ log(m)− log(εδ )+O(1). Also t ≤ 12

ε2δ
+1, so the space required

by the algorithm is s = O
(

logm−log(εδ )
ε2δ

)
bits.

Proposition 3.2 When Algorithm 2 is run on a stream with d distinct elements, the
probability that it outputs an answer in the range [(1− ε)d,(1+ ε)d] is at least 1−δ .

Proof. If the output, tM/Zt , lies outside the range [(1− ε)d,(1+ ε)d], it means that Zt

lies outside the range
[

tM
(1+ε)d ,

tM
(1−ε)d

]
. To reason about the circumstances under which Zt
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could lie outside the range
[

tM
(1+ε)d ,

tM
(1−ε)d

]
, we let

q =

⌈
tM

(1+ ε)d

⌉
−1, r =

⌊
tM

(1− ε)d

⌋
and observe that there are three cases in which Zt lies outside

[
tM

(1+ε)d ,
tM

(1−ε)d

]
.

1. If Zt <
tM

(1+ε)d it means that at least t distinct tokens in the stream are mapped to hash
buckets in the range [q] = {1,2, . . . ,q}. Denote this event by E1.

2. If Zt >
tM

(1−ε)d it means that one of the following two cases must occur.

a. Fewer than
(
1+ ε

2−2ε

)
t distinct tokens in the stream are mapped to hash

buckets in the range [r]. Denote this event by E2a.
b. At least

(
1+ ε

2−2ε

)
t distinct tokens in the stream are mapped to hash buckets

in [r], but these tokens occupy fewer than t distinct buckets because there are
more than εt

2−2ε
hash collisions in buckets whose number belongs to [r]. Denote

this event by E2b.

By the union bound, to prove Pr
(

Zt ∈
[

tM
(1+ε)d ,

tM
(1−ε)d

])
≥ 1− δ , it suffices to prove

Pr(E1) + Pr(E2a) + Pr(E2b) ≤ δ . We will do so by defining some random variables,
reasoning about their expectations and variances using the 2-universality of the random
hash function h, and applying Markov’s and Chebyshev’s Inequalities.

Assume without loss of generality that a1,a2, . . . ,ad are the distinct tokens in the stream
and for i ∈ [d] and ℓ ∈ [M] let

Xiℓ =

{
1 if h(ai) = ℓ

0 otherwise.

The random variable Xiℓ indicates whether ai hashes into bucket ℓ, and for i ̸= j the random
variable XiℓX jℓ indicates whether ai and a j collide in bucket ℓ. By 2-universality,

E[Xiℓ] =
1
M (3.3)

E[XiℓX jℓ] =
1

M2 if i ̸= j. (3.4)

For any k ∈ [M], the random variable

Yk =
d

∑
i=1

k

∑
ℓ=1

Xiℓ

counts the number of distinct tokens that hash to buckets numbered in the range [k]. Its
expectation and variance can be calculated using equations (3.3) and (3.4).

E[Yk] =
dk
M

(3.5)

Var[Yk] = dk
(

1
M
− 1

M2

)
<

dk
M

. (3.6)



42 Chapter 3. Data Streaming and Sketching

We can use these calculations to bound the probabilities of E1 and E2a.

Pr(E1) = Pr(Yq ≥ t)≤ Pr
(
|Yq−E[Yq]| ≥ t−E[Yq]

)
≤

Var[Yq]

(t−E[Yq])2 <
dq/M

(t−dq/M)2

Pr(E2) = Pr
(
Yr <

(
1+ ε

2−2ε

)
t
)
≤ Pr

(
|Yr−E[Yr]|> E[Yr]−

(
1+ ε

2−2ε

)
t
)

≤ Var[Yr](
E[Yr]−

(
1+ ε

2−2ε

)
t
)2 <

dr/M(
dr/M−

(
1+ ε

2−2ε

)
t
)2 .

By our choice of q and t we have

dq
M < t

1+ε

t− dq
M > εt

1+ε

dq/M
(t−dq/M)2 <

t/(1+ ε)

ε2t2/(1+ ε)2 =
1+ ε

ε2t
<

δ

3
.

By our choice of r and t we have

t
1−ε
≤ dr

M < t
1−ε

+1
dr
M −

(
1+ ε

2−2ε

)
t ≥ t

1−ε
− t − εt

2−2ε
= εt

2−2ε

dr/M(
dr/M−

(
1+ ε

2

)
t
)2 <

t/(1− ε)+1
ε2t2/4(1− ε)2 =

4(1− ε)+4(1− ε)2/t
ε2t

<
δ

3

Hence, Pr(E1) and Pr(E2a) are both less than δ/3. To deal with Pr(E2b) we observe that
the number of pairs of distinct stream tokens whose hash values collide in bucket set [r] is
equal to the random variable W = ∑

r
ℓ=1 ∑1≤i< j≤d XiℓX jℓ. By equation (3.4) and our choice

of M ≥ 6m
εδ

we have

E[W ] =
r · ♯{(i, j) | 1≤ i < j ≤ d}

M2 =
rd(d−1)

2M2 <

(
dr
M

)(
d

2M

)
<

(
t +1
1− ε

)( m
2M

)
Pr(E3) = Pr

(
W >

εt
2(1− ε)

)
<

t+1
1−ε
· m

2M

εt/2(1− ε)
=

(
1+

1
t

)
m

εM
<

δ

3
.

We have shown that each of the events E1, E2a, E2b has probability less than δ/3, and that
the union of these three events covers all cases in which tM/Zt lies outside the interval
[(1−ε)d,(1+ε)d]. Hence, with probability at least 1−δ , the algorithm’s estimate tM/Zt
belongs to the interval [(1− ε)d,(1+ ε)d] as claimed. ■

3.3 Sketching token frequencies
Data sketching is an algorithmic paradigm that combines streaming with data structures.
As before, an algorithm processes a stream of tokens, a1, . . . ,an, taking values in [m], and it
is allowed to store s = O(poly(logn, logm)) bits of information about the stream. However,
rather than wanting to estimate a single attribute of the stream, such as the number of
distinct elements, the algorithm designer’s objective is to be able to answer queries about
the stream afterward. In this setting, the s-bit internal representation of the stream is called
a sketch of the data.
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Consider the task of sketching the frequency of each token in the data stream. In other
words, the algorithm will be asked to answer queries of the form, “How many times did x
occur in the stream?” and the goal will be to output an approximately correct answer with
probability 1−δ . In this section we will present two different algorithms for this task. The
algorithms have different benefits and drawbacks. The first algorithm has smaller space
complexity and only suffers from one-sided error, i.e. it can overestimate the number of
occurrences of x but it never underestimates. The second algorithm requires more space and
suffers from two-sided error, but it satisfies a significantly stronger approximate-correctness
property.

Algorithm 3 Count-Min Sketch
1: Given positive integers B, t . . .
2: Sample h1, . . . ,ht : [m]→ [B] independently from a 2-universal hash family.
3: Initialize a two-dimensional array C of dimensions B× t, setting C[k, ℓ] = 0 for each

k, ℓ.
4: for each i ∈ [n] do
5: Observe ai.
6: for each ℓ ∈ [t] do
7: Compute k = hℓ(ai).
8: Increment C[k, ℓ] by 1.
9: end for

10: end for
11: When queried about frequency of token x, return minℓ∈[t]{C[hℓ(x), ℓ]}.

The first algorithm we’ll analyze, called the Count-Min Sketch, is based on a hashing
scheme presented in Algorithm 3. The idea behind the algorithm is simple: we choose t
independent random hash functions h1, . . . ,ht , with range [B] for some moderately large
B, and for each “hash bucket” k ∈ [B] we count how many elements of the stream are
hashed to k by each of the t functions. If h is a hash function and x is a token appearing r
times in the stream, then the counter for bucket h(x) will reach a value which is at least r.
To the extent that the counter exceeds r, the difference is due to hash collisions — other
elements of the stream that hash to the same bucket as x. For large B, this will typically be
only a small fraction of the stream. By repeating this counting procedure in parallel using
t different hash functions, we minimize the probability of getting an anomalously large
number of hash collisions.

Lemma 3.3 The CountMin sketch uses space s = O(Bt log(mn)) and satisfies the
following guarantee for every x ∈ [m]: if the true frequency of x in the stream is denoted
by fx, the sketch’s estimate f̂x satisfies fx ≤ f̂x with probability 1 and f̂x ≤ fx +

2n
B with

probability at least 1−2−t .

Proof. The space complexity bound follows from the observation that the algorithm only
needs to store an array of dimensions B× t, with each element of the array being an integer
in the range 0,1, . . . ,n, plus descriptions of t hash functions each requiring space O(logm).

For each ℓ∈ [t], the counter C[hℓ(x), ℓ] is incremented each time x appears in the stream
— fx times in total — and it is also incremented each time another token y ̸= x appears in the
stream and satisfies hℓ(y) = hℓ(x). There are n− fx tokens other than x in the stream, and
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for each of them the probability that hℓ(y) = hℓ(x) is 1/B, so by linearity of expectation
we have E[C[hℓ(x), ℓ]− fx] = (n− fx)/B. Then, by Markov’s Inequality,

Pr
(
C[hℓ(x), ℓ]− fx >

2n
B

)
≤ 1

2 .

Since the hash function {h1, . . . ,ht} are mutually independent,

Pr
(
∀ℓ ∈ [t]C[hℓ(x), ℓ]− fx >

2n
B

)
≤
(1

2

)t
,

and the lemma follows. ■

Corollary 3.4 For any ε,δ > 0 the Count-Min Sketch with parameters B = ⌈2
ε
⌉ and t =

⌈log2(1/δ )⌉ achieves the following guarantee: for any token x, with probability at least
1−δ the estimated frequency of x differs from the true frequcency by no more than εn.
The space complexity of the sketch with these parameters is O(log(mn) log(1/δ )/ε) .

The second algorithm we’ll analyze uses more space, namely O
(
logn log(1/δ )/ε2),

but achieves a stronger approximate-correctness guarantee: with probability at least 1−δ ,
the estimate of fx differs from the true value by at most ε∥f∥2. Here, f denotes the
“frequency vector” of the stream, an m-dimensional vector whose xth component fx is the
frequency of token x in the stream. Since the sum of frequencies of all tokens is n, we have
f1 = n. Note that f2 ≤ f1 for any vector f, so the error bound of ε∥f∥2 is never worse than
the εn error bound of the Count-Min Sketch. However, ∥f∥2 can be much smaller than n;
for example, when the tokens are uniformly distributed we have ∥f∥2 ≈ n

min{
√

m,
√

n} .

Algorithm 4 Count Sketch
1: Given positive integers B, t . . .
2: Sample h1, . . . ,ht : [m]→ [B] independently from a 2-universal hash family.
3: Sample g1, . . . ,gt : [m]→{±1} independently from a 2-universal hash family.
4: Initialize a two-dimensional array C of dimensions B× t, setting C[k, ℓ] = 0 for each

k, ℓ.
5: for each i ∈ [n] do
6: Observe ai.
7: for each ℓ ∈ [t] do
8: Compute k = hℓ(ai).
9: C[k, ℓ]←C[k, ℓ]+gℓ(ai).

10: end for
11: end for
12: When queried about frequency of token x, return the median of the multiset {gℓ(x) ·

C[hℓ(x), ℓ]}.

The intuition for the Count Sketch is similar to that for the Count-Min Sketch with
one important difference. As before, if x occurs fx times in the stream, then with each
occurrence we add gℓ(x) to C[hℓ(x), ℓ], resulting in a total of gℓ(x) · fx. Since gℓ(x)2 = 1,
this means that the random variable gℓ(x) ·C[hℓ(x), ℓ] equals fx +Z, where the random
variable Z accounts for the “noise” due to other tokens y ̸= x that are hashed by hℓ to
the same bucket as x, similarly to the analysis of the Count-Min Sketch. However, the
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key difference is that the noise variable Z in the Count Sketch is a sum of randomly-
signed contributions from the various tokens that occupy the same hash bucket as x. In
aggregate we can expect some of these noise terms to cancel each other out because they
are oppositely signed. Hence, we might hope that the Count Sketch suffers from less
additive error when estimating the frequency fx. The following analysis substantiates that
hope.

Lemma 3.5 The Count Sketch uses space s = O(Bt log(mn)) and satisfies the following
guarantee for every x ∈ [m]: if the true frequency of x in the stream is denoted by fx, the

sketch’s estimate f̂x satisfies | f̂x− fx| ≤
√

3
B∥f∥2 with probability at least 1− e−t/18.

Proof. Fix x ∈ [m]. For any y ∈ [m] and ℓ ∈ [t] define random variables Xyℓ and Zyℓ by

Xyℓ =

{
1 if hℓ(y) = hℓ(x)
0 if hℓ(y) ̸= hℓ(x)

Zyℓ = gℓ(x)gℓ(y)Xyℓ fy.

In words, Xyℓ equals 1 or 0 depending whether or not hℓ has a hash collision between y
and x, and Zyℓ is a random variable representing the amount (positive or negative) that
occurrences of token y in the stream contribute to the value of gℓ(x) ·C[hℓ(x), ℓ]. To
substantiate the latter interpretation, observe that

C[hℓ(x), ℓ] =
m

∑
y=1

gy(ℓ)Xyℓ fy

because token y occurs fy times in the stream, and each of these occurrences contribute
gy(ℓ) to the counter C[hℓ(x), ℓ] if and only if Xyℓ = 1, otherwise each occurrence of y in
the stream has zero contribution to C[hℓ(x), ℓ].

The random variable Zxℓ is deterministically equal to fx because gℓ(x)2 = 1 and Xxℓ = 1.
As for Zyℓ when y ̸= x, we have

E[Zyℓ] = E[gℓ(x)gℓ(y)Xyℓ fy] = E[gℓ(x)] ·E[gℓ(y)] ·E[Xyℓ] · fy = 0, (3.7)

where we have used the fact that gℓ(x), gℓ(y), and Xyℓ are mutually independent, and that
E[gℓ(x)] = E[gℓ(y)] = 0. To verify the mutual independence, observe that Xyℓ depends
only on the hash function hℓ which is independent of gℓ, and the values gℓ(x),gℓ(y) are
independent of one another by the pairwise-independence property of gℓ.

Using linearity of expectation we have

E[gℓ(x) ·C[hℓ(x), ℓ]] =
m

∑
y=1

E[Zyℓ] = fx + ∑
y̸=x

E[Zyℓ] = fx. (3.8)

To continue with the analysis of the Count Sketch, the next step is to analyze the variance
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of gℓ(x) ·C[hℓ(x), ℓ] and apply Chebyshev’s Inequality. We have

Var[gℓ(x) ·C[hℓ(x), ℓ]] = Var[ fx + ∑
y̸=x

Zyℓ] = Var[∑
y̸=x

Zyℓ]

= E

(∑
y̸=x

Zyℓ

)2


= ∑
y̸=x

∑
w̸=x

E[ZyℓZwℓ] = ∑
y̸=x

E[Z2
yℓ]+ ∑

y̸=x
∑

w̸∈{x,y}
E[ZyℓZwℓ].

Now,

E[Z2
yℓ] = E[X2

yℓ f 2
y ] = E[Xyℓ f 2

y ] =
1
B f 2

y ,

since Xyℓ = 1 with probability 1
B and Xyℓ = 0 otherwise. (Here we have used the fact that hℓ

is drawn from a 2-universal hash family, so for any y ̸= x the probability of hℓ(y) = hℓ(x)
is 1/B.) Furthermore, if w ̸∈ {x,y} then

E[ZyℓZwℓ] = E[gℓ(y)gℓ(w)XyℓXwℓ fy fw] = E[gℓ(y)] ·E[gℓ(w)] ·E[XyℓXwℓ] · fy fw = 0,

where we have again used the mutual independence of the random variables gℓ(y),gℓ(w),
and XyℓXwℓ. (Note that Xyℓ and Xwℓ may be correlated with one another, we only need to
use the fact that their product is independent of gℓ(y) and gℓ(w), which holds because
XyℓXwℓ depends only on the hash function hℓ, which is independent of gℓ.) Substituting the
calculated values of E[Z2

yℓ] and E[ZyℓZwℓ] into the variance calculation, we find that

Var[gℓ(x) ·C[hℓ(x), ℓ]] =
1
B ∑

y̸=x
f 2
y ≤

1
B
∥f∥2

2.

By Chebyshev’s Inequality,

Pr
(
|gℓ(x) ·C[hℓ(x), ℓ] − fx| ≥

√
3
B ∥f∥2

)
≤ Var[gℓ(x) ·C[hℓ(x), ℓ]]

3
B ∥f∥

2
2

=
1
3
. (3.9)

We have shown that each of the individual estimates gℓ(x) ·C[hℓ(x), ℓ] has probability at
most 1

3 of differing from the target value fx by more than
√

3/B · ∥f∥2. There are t such
estimates, one for each ℓ∈ [t], and they are independent random variables. In order for their
median to be less than fx−

√
3/B ·∥f∥2 or greater than fx+

√
3/B ·∥f∥2, at least t/2 of the

estimates must differ from fx by more than
√

3/B ·∥f∥2. To finish up, we use the Hoeffding
Bound to show that the probability of this happening is less than e−t/18. In more detail,
let Wℓ be a random variable which equals 1 if |gℓ(x) ·C[hℓ(x), ℓ]− fx| ≥

√
3/B · ∥f∥2,

otherwise Wℓ = 0. Inequality (3.9) says that E[Wℓ] ≤ 1
3 . Since the random variables

{Wℓ : ℓ ∈ [t]} are mutually independent, Hoeffding’s Inequality says that

Pr
(
W1 + · · ·+Wt ≥ t

2

)
= Pr

(
W1 + · · ·+Wt ≥ E[W1 + · · ·+Wt ]+

t
6

)
≤ e−2(t/6)2/t = e−t/18.

■
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Corollary 3.6 For any ε,δ > 0 the Count-Min Sketch with parameters B = ⌈ 3
ε2 ⌉ and t =

⌈18ln(1/δ )⌉ achieves the following guarantee: for any token x, with probability at least
1−δ the estimated frequency of x differs from the true frequcency by no more than ε∥f∥2.
The space complexity of the sketch with these parameters is O

(
log(mn) log(1/δ )/ε2) .

3.4 Quantile estimation
The last streaming algorithm we’ll present in these notes is applicable when the tokens
in the stream come from an ordered set. As in previous sections, we’ll assume the tokens
come from the set [m] = {1,2, . . . ,m}, ordered by the < relation. For convenience, we’ll
assume in this section that a single token can be stored in O(1) space, i.e. that a single
memory location can store log(m) bits. All of the algorithms we present here can be
applied even when this assumption is violated; the space complexity bounds presented
here would just need to be scaled by the amount of space required to store one token from
the stream.

For a stream a1, . . . ,an and a token a ∈ [m], we’ll say the quantile of token a relative to
the stream is

q(a) =
#{i | ai ≤ a}

n

and we’ll say that q̂(a) is an ε-approximate quantile of a if |q̂(a)−q(a)| ≤ ε . Algorithms
for quantile estimation maintain a sketch that enables them to estimate an ε-approximate
quantile of any element.

In this section we’ll present a simple algorithm for quantile estimation using s =
O
(

1
ε2 + logn

)
bits of space. The design of the algorithm illustrates an important technique

called reservoir sampling for maintaining a random sample of elements of a data stream.
To analyze the algorithm we’ll introduce and apply the Glivenko-Cantelli Theorem, an
important theorem in statistics about estimating a univariate distribution from random
samples.

3.4.1 Reservoir sampling
One of the most basic tasks in data streaming is downsampling: for a specific integer t > 0,
draw t tokens uniformly at random from the multiset of n tokens in the stream. To state the
goal of downsampling more precisely, the algorithm should output a sequence of t tokens,
and the distribution of its output as an unordered multiset (i.e., ignoring the ordering of
tokens in the output) should match the output distribution of a hypothetical algorithm
that stores the entire stream, samples t distinct indices 1 ≤ i(1) < i(2) < · · · < i(t) ≤ n
uniformly at random from among all

(n
t

)
such t-tuples of indices, and outputs the multiset

{ai(1),ai(2), . . . ,ai(t)}.
Reservoir sampling is a simple and widely used downsampling procedure that works

by maintaining a buffer b = (b1, . . . ,bt) of size t containing the random samples, and a
counter that keeps track of the number of stream tokens seen so far. After an initialization
phase that fills the buffer with the first t tokens of the stream, the token observed at time
s > t is discarded with probability 1− t

s , and otherwise a random element of the buffer is
overwritten with the new token.
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Algorithm 5 Reservoir sampling
1: Given positive integer t
2: for each s ∈ [n] do
3: Observe as.
4: if s≤ t then
5: Set bs = as.
6: else
7: With probability t

s , sample index i ∈ [t] uniformly at random and set bi = ai.
8: end if
9: end for

10: Output (b1, . . . ,bt).

Proposition 3.7 When Algorithm 5 is used to process a stream of n ≥ t tokens, the
indices of the t tokens it outputs constitute a uniformly random t-element subset of [n].

Proof. We use induction on n. In the base case n = t the algorithm is guaranteed to output
tokens {ai | i ∈ [t]}, and [t] is the only t-element subset of [t].

When n > t, consider any t-tuple of distinct indices 1 ≤ i(1) < i(2) < · · · < i(t) ≤
n. If i(t) < n, then by the induction hypothesis the probability that the buffer stores
elements ai(1), . . . ,ai(t) at the start of the final loop iteration is 1

/(n−1
t

)
. With probability

1− t
n the final loop iteration does not change the buffer, so the probability of outputting

{ai(1), . . . ,ai(t)} is

1− t/n(n−1
t

) =
n− t

n
· t!(n−1− t)!

(n−1)!
=

t!(n− t)!
n!

=
1(n
t

) .
On the other hand, if i(t) = n, then the algorithm outputs {ai(1), . . . ,ai(t)} if and only
if its buffer contents at the start of the final loop iteration are indexed by t-tuple 1 ≤
j(1) < j(2) < · · · < j(t) ≤ n− 1 such that the set Jt = { j(1), . . . , j(t)} contains It−1 =
{i(1), . . . , i(t−1)} as a subset. The number of t-element sets Jt ⊆ [n] containing It−1 as
a subset is n− t, because Jt \ It−1 can be any of the n− t elements of [n− 1] \ It−1. For
each such set Jt , the probability of overwriting the unique element of Jt \ It−1 in the final
iteration is t

n ·
1
t = 1

n . Since there are n− t potential sets Jt , each having 1
/(n−1

t

)
of

being in the buffer at the start of the final loop iteration, and overwriting Jt \ It−1 with
i(t) = n in the final iteration has probability 1/n, we find that the probability of outputting
{ai(1),ai(2), . . . ,ai(t)} is

(n− t) · 1(n−1
t

) · 1
n
=

n− t
n
· t!(n−1− t)!

(n−1)!
=

t!(n− t)!
n!

=
1(n
t

) .
■

3.4.2 Quantile estimation via reservoir sampling
Reservoir sampling leads to a very natural idea for quantile estimation: if the buffer
(b1, . . . ,bt) is a uniformly random t-element subset of the full stream, then it should
constitute a representative sample of the full stream. If so, a good way to estimate the
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quantile of any token a ∈ [m] with respect to the full stream is to calculate its quantile with
respect to the tokens contained in the buffer.

The analysis of the quantile estimation algorithm will go more smoothly if we make
a small modification to it. Rather than maintaining one reservoir sample of size t, our
algorithm will maintain t independent reservoir samples, each of size 1. Reservoir sampling
with t = 1 requires O(1) space for the buffer and O(logn) space for the counter, so t
independent reservoir sampling algorithms with a shared counter use O(t + logn) space.

Given t independent samples b1, . . . ,bt , each uniformly distributed over the multiset of
tokens in the stream, the quantile estimate for any token a ∈ [m] is

q̂(a) =
#{ j | b j ≤ a}

t
. (3.10)

Proposition 3.8 If b1, . . . ,bt are independent random samples from the stream a1, . . . ,an,
each uniformly distributed over its n tokens, then for any a ∈ [m] and ε > 0, the quantile
estimate q̂(a) computed by Equation (3.10) satisfies |q̂(a)−q(a)| ≤ ε with probability
at least 1−2e−2ε2t .

Proof. We can bound the probability that the estimate differs from q(a) by more than ε

using Hoeffding’s Inequality. For 1 ≤ j ≤ t, let X j = 1 if b j ≤ a and X j = 0 otherwise.
The random variables {X j} are independent and {0,1}-valued, and each has expected
value E[X j] = q(a). The event that |q̂(a)−q(a)|> ε is equivalent to the event that the sum
X = X1 + · · ·+Xt satisfies |X−E[X ]|> εt. Hence,

Pr
(
|q̂(a)−q(a)|> ε

)
= Pr

(
|X−E[X ]|> εt

)
< 2exp

(
−2ε2t2

t

)
= 2e−2ε2t .

■

As a corollary, if we want each quantile query to have an (ε,δ )-PAC answer, then t ≥
1
2ε−2 ln(2/δ ) independent uniformly random samples are sufficient.

3.4.3 Uniformly accurate quantile sketches via Glivenko-Cantelli
One can interpret the buffer of samples (b1, . . . ,bt) used in Section 3.4.2 as a sketch that
supports answering quantile queries via the formula (3.10). In light of that interpretation,
Proposition 3.8 says that for any particular quantile query q(a), the response q̂(a) is
(ε,δ )-PAC when t ≥ 1

2ε−2 ln(2/δ ). However, we can ask for more: the sketch (b1, . . . ,bt)
is uniformly ε-accurate for quantile queries if |q̂−q|∞ ≤ ε . In other words, a uniformly ε-
accurate sketch supplies quantile estimates q̂ that satisfy |q̂(a)−q(a)| ≤ ε simultaneously
for all a ∈ [m].

Let us say an algorithm for quantile sketching is uniformly (ε,δ )-PAC if, for all input
streams, the probability that the algorithm produces a uniformly ε-accurate sketch is at
least 1−δ .

A simple application of the union bound and Proposition 3.8 leads to the conclusion
that t ≥ 1

2ε−2 ln(2m/δ ) independent uniformly random samples suffice for a uniformly
(ε,δ )-PAC quantile sketch. That’s because when t satisfies the specified lower bound, for
any a ∈ [m] an application of Proposition 3.8 ensures that

Pr
(
|q̂(a)−q(a)|> ε

)
≤ δ

m
.
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Summing over a ∈ [m] and applying the union bound, we find that the quantile sketch
obtained from (b1, . . . ,bt) is uniformly (ε,δ )-PAC. However, setting t ≥ 1

2ε−2 ln(2m/δ )
results in a sketch whose space complexity is logarithmic in m. A more careful analysis
will justify using a number of samples with no dependence on m at all. The key is the
following inequality for independent samples drawn from any univariate distribution.

Lemma 3.9 Let b1, . . . ,bt be t independent, identically distributed random numbers
each with cumulative distribution function F . The function q̂ defined by formula (3.10)
satisfies

∀ε > 0 Pr
(
|q̂−F |∞ > ε

)
<

4
ε

e−ε2t/2. (3.11)

Proof. Consider any ε > 0, and let k = ⌈2/ε⌉. For 1≤ i≤ k let

a(i) = sup
{

a | F(a)< i
k

}
.

By the definition of a(i), we have

∀a < a(i) F(a)< i
k . (3.12)

Furthermore, since cumulative distribution functions are right-continuous, we have

F(a(i)) = inf{F(a) | a > a(i)} ≥ i
k
. (3.13)

For each a ∈ R define q̂(a) as in Equation (3.10) and define

q̌(a) =
#{ j | b j < a}

t
. (3.14)

Let F(a(i)−) denote sup{F(a) | a < a(i)}, the probability of sampling a value strictly less
than a(i) under the common distribution of b1, . . . ,bt . We claim that whenever ∥q̂−F∥∞ > ε

there exists some i∈ [k−1] such that either F(a(i))− q̂(a(i))> ε/2 or q̌(a(i))−F(a(i)−)>
ε/2. To prove the claim, we suppose |q̂(a)−F(a)|> ε for some a ∈ R and perform the
following case analysis.

1. If F(a)− q̂(a) > ε then let i/k denote the greatest multiple of 1/k less than F(a).
Note that i≤ k−1 because i

k < F(a)≤ 1. We have F(a(i))≥ i
k by (3.13) whereas

q̂(a(i))≤ q̂(a) by monotonicity of q̂. Hence, subtracting the two inequalities,

F(a(i))− q̂(a(i)) ≥ i
k − q̂(a) ≥ F(a)− 1

k − q̂(a) > ε− 1
k > ε

2 .

2. If q̂(a)−F(a) > ε then let i/k denote the least multiple of 1/k greater than F(a).
Note that i≤ k−1 because

i+1
k
≤ F(a)+

2
k
≤ F(a)+ ε < q̂(a)≤ 1.

Since F(a)< i
k we have a < a(i) and hence q̂(a)≤ q̌(a(i)). Then,

q̌(a(i))−F(a(i)−) ≥ q̂(a)−F(a(i)−) ≥ q̂(a)− i
k ≥ q̂(a)−F(a)− 1

k > ε− 1
k > ε

2 .
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For each i ∈ [k] an application of Hoeffding’s inequality as in Proposition 3.8 ensures that

Pr
(
F(a(i))− q̂(a(i))> ε/2

)
< e−ε2t/2

and

Pr
(
q̌(a(i))−F(a(i)−)> ε/2

)
< e−ε2t/2

By the union bound,

Pr
(
∃i∈ [k−1]F(a(i))− q̂(a(i))> ε/2 or q̌(a(i))−F(a(i)−)> ε/2

)
< 2(k−1)e−ε2t/2 <

4
ε

e−ε2t/2

(3.15)

where the second inequality follows because k−1 < 2/ε, by our choice of k. ■

Lemma 3.9 has two corollaries that are worthy of note. The first is an upper bound
with on the number of samples needed for uniformly (ε,δ )-PAC quantile sketching. As
promised, the bound has no dependence on m, the size of the set from which tokens are
drawn.

Corollary 3.10 If t ≥ 2ε−2 ln
( 4

εδ

)
then the quantile sketch obtained from t independent

uniformly-distributed stream tokens is uniformly (ε,δ )-PAC.

The second corollary of Lemma 3.9 is the Glivenko-Cantelli Theorem, an important
theorem in statistics asserting that the empirical distribution of n independent, identi-
cally distributed random variables converges uniformly to the distributon from which the
variables were drawn, as n tends to infinity.

Theorem 3.11 If X1,X2, . . . is an infinite sequence of independent, identically distributed
random variables, each with cumulative distribution function F , and if Ft denotes the
empirical cumulative distribution function

Ft(a) =
♯{i | Xi ≤ a and 1≤ i≤ t}

t

then limt→∞ ∥Ft−F∥∞ = 0 almost surely.

Proof. The function Ft is identical to the quantile estimate q̂ determined by the buffer
(b1, . . . ,bt) = (X1, . . . ,Xt). Hence, for any ε > 0 we can apply Lemma 3.9 and linearity of
expectation to conclude that the expected number of t such that ∥Ft−F∥∞ > ε is less than

4
ε

∞

∑
t=1

e−ε2t/2 =
4
ε
· 1

1− e−ε2/2
< ∞.

By the Borel-Cantelli Lemma, the number of t such that ∥Ft−F∥∞ > ε is almost surely
finite. In other words,

Pr
(

limsup
t→∞

∥Ft−F∥∞ > ε

)
= 0.

Since the above probability equals zero for every ε , it follows that limt→∞ ∥Ft−F∥∞ = 0
almost surely. ■
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One concluding remark is that the bound in Lemma 3.9 can be tightened further. The
sharp bound is called the Dvoretzky-Kiefer-Wolfowitz Inequality (or DKW Inequality)
and takes the following form.

∀ε > 0 Pr
(
∥q̂−F∥∞ > ε

)
< 2e−2ε2t . (3.16)

The inequality is quite remarkable, because the right-hand side is the same as the upper
bound on Pr

(
|q̂(a)−F(a)|> ε

)
for a single value of a derived using Hoeffding’s Inequality

in Proposition 3.8. The DKW Inequality pertains of to the union of the events {|q̂(a)−
F(a)|> ε} for uncountably many values of a, yet somehow taking the union of all these
events comes at no cost in terms of the probability bound.

The DKW inequality justifies that the reservoir-sampling-based quantile sketch is
uniformly (ε,δ )-PAC as long as t ≥ 1

2ε−2 ln(2/δ ). The sketching algorithm runs in

s = O(ε−2 log(1/δ )+ logm(n))

bits of space, with the logm(n) bits being needed for the counter in the reservoir sampling
algorithm. A different quantile estimation algorithm, due to Greenwald and Khanna, runs
in O(ε−1 log(εn)) space, improving the dependence on 1/ε from quadratic to quasi-linear
at the cost of slightly worse dependence on log(n).



4. Random Graphs and the
Probabilistic Method

The study of random graphs began in the middle of the twentieth century, and it led to a
flood of important results in combinatorics and, later on, became a benchmark model for
average-case analysis of algorithms. These notes introduce random graphs and present
some of their basic combinatorial and algorithmic properties.

4.1 The Erdős-Rényi Models
The two most fundamental models of random graphs are denoted by G(n, p) and G(n,m).
Both are named Erdős-Rényi Models, after the two Hungarian mathematicians who founded
and popularied random graph theory. They were the first to write about G(n,m). Inter-
estingly, it turns out that the first person to write about G(n, p) was neither Erdős nor
Rényi, but another mathematician named Edgar Gilbert. (He is also a namesake of the
Gilbert-Varshamov bound in coding theory.)

The models are very similar. The G(n,m) model denotes the uniform distribution on
undirected graphs with n vertices and m edges, whereas G(n, p) is a random graph with n
vertices, where p is the probability that any of the

(n
2

)
pairs of vertices is present in the edge

set of the graph, and the presence or absence of different edges are mutually independent
random variables. In other words, to randomly sample a graph from the G(n, p) model
one samples

(n
2

)
independent Bernoulli random variables X{u,v}, each with expected value

p, and the edge set of the graph is defined to be the set of vertex pairs {u,v} such that
X{u,v} = 1.

The expected number of edges in G(n, p) is p
(n

2

)
. As long as p is not very close to zero,

the ratio of the sampled number of edges to its expected value is very unlikely to lie outside
of [1−ε,1+ε]. By the Chernoff bound, the probability of this event is exponentially small
in n, as long as p > 1/n. So the G(n, p) and G(n,m) models tend to behave very similarly
when m = p

(n
2

)
. It’s usually more convenient to work with G(n, p), so we will focus on
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that model in these notes.

Closely related to both G(n, p) and G(n,m) is the evolving random network process,
which is the random sequence of n-vertex graphs obtained by starting with an empty
graph and introducing edges one by one, in randomly-permuted order, until all

(n
2

)
vertex

pairs have been connected by edges. If the graphs in this random sequence are numbered
G0,G1, . . . ,Gn(n−1)/2, then the mth graph in the sequence is a random sample from the
G(n,m) distribution.

4.2 Connectivity, diameter, and expansion

Recall that a graph G is called connected if every two vertices can be joined by a path
in G. The diameter of a connected graph is the smallest d such that every two vertices
can be joined by a path made up of d or fewer edges. A first question one can ask about
G(n, p) is: what is the probability that a random sample from the G(n, p) distribution is a
connected graph? When p is large enough that G(n, p) is connected with high probability,
one can also ask about the distribution of the random graph’s diameter.

We will see that there exist constants 0 < a < b < ∞ such that when p < a logn
n , the

graph G(n, p) is disconnected with probability very close to 1, while for p > b logn
n , with

probability very close to 1, G(n, p) is connected and has diameter O(logn).

4.2.1 Isolated vertices in G(n, p)

It turns out that isolated vertices constitute the main obstruction to G(n, p) being connected.
This statement can be given a precise interpretation in terms of the evolving random
network process G0,G1, . . . ,Gn(n−1)/2. One can define mconn(n) to be the least m such that
Gm is connected, and misol(n) to be the least m such that Gm has no isolated vertices. It has
been proven that misol(n) = mconn(n) with probability tending to 1 as n→ ∞. The proof of
this result is beyond the scope of these notes, but we will present a simpler analysis that
gives less precise bounds on the probability that G(n, p) has an isolated vertex.

For any vertex v of G(n, p) let Xv denote the Bernoulli random variable that equals 1 if
and only if v is isolated. Since v has n−1 potential neighbors, we have

E[Xv] = (1− p)n−1.

If u and v are any two distinct vertices, there are 2n−3 vertex pairs that intersect {u,v}:
one of them is {u,v} itself, and the other 2n−4 are the pairs composed of one vertex in
{u,v} and one chosen from among the n−2 other vertices. Hence, the probability that
both u and v are isolated is

E[XuXv] = (1− p)2n−3.
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For the number of isolated vertices, X = ∑v∈V Xv, we have

E[X ] = ∑
v∈V

E[Xv] = n(1− p)n−1

Var[X ] = E[X2]−E[X ]2

= ∑
v∈V

∑
u∈V

E[XuXv]−E[Xu]E[Xv]

= ∑
v∈V

Var[Xv]+ ∑
v∈V

∑
u∈V\{v}

(1− p)2n−3− (1− p)2n−2

= n(1− p)n−1(1− (1− p)n−1)+ pn(n−1)(1− p)2n−3

= (1− (1− p)n−1 + p(n−1)(1− p)n−2)E[X ] = (1+(pn−1)(1− p)n−2)E[X ]≤ pnE[X ].

When p≥ ln(n)+c
n−1 we have

Pr(X > 0)≤ E[X ] = n(1− p)n−1 < ne−p(n−1) = e−c, (4.1)

so the probability of G(n, p) having an isolated vertex converges to zero exponentially fast
as p exceeds ln(n)

n−1 . On the other hand, when p≤ ln(n)
2n−2 and n≥ 2, then p< 1

2 so 1− p≥ 4−p.
Now, by Chebyshev’s Inequality,

Pr(X = 0)≤ Var[X ]

E[X ]2
≤ pnE[X ]

E[X ]2
=

pn
n(1− p)n−1 =

p
(1− p)n−1 ≤ p·4p(n−1)≤ p·nln(2)≤ n−0.3,

(4.2)

so the probability of G(n, p) having an isolated vertex converges to 1 as n→ ∞ and
p≤ lnn

2n−2 .
An immediate corollary of our analysis of isolated vertices is the following proposition

about the probability that G(n, p) is disconnected.

Proposition 4.1 When p≤ lnn
2n−2 , the probability that G(n, p) is disconnected converges

to 1 as n tends to infinity.

Proof. We have shown that the probability of G(n, p) containing an isolated vertex con-
verges to 1 as n→ ∞. A graph with n vertices that has at least one isolated vertex is
disconnected as long as n > 1. ■

4.2.2 Connectedness of G(n, p)
In this section we prove that for p≥ 3lnn

n , with probability 1−o(1) the graph G(n, p) is
connected. The proof is based on the observation that a graph is disconnected if and only
if its vertex set can be partitioned into two non-empty subsets, A and B, such that the
graph has no edges joining A to B. Call such a partition a “disconnecting partition”. When
p≥ 3lnn

n we can exhaustively consider all partitions of the vertex set into two non-empty
subsets. Although there are exponentially many such partitions, we can use linearity of
expectation to show that the expected number of disconnecting partitions is much less than
1.

Suppose A,B is a partition of G into two non-empty vertex sets with |A| ≤ |B|. Let
k = |A| and observe that, since k ≤ n− k, we must have k ≤ n/2 and n− k ≥ n/2. Since
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there are k(n− k) vertex pairs (u,v) with u ∈ A, v ∈ B, the probability that A and B form a
disconnecting partition is

(1− p)k(n−k)≤ (1− p)kn/2≤
(

1− 3lnn
n

)kn/2

< exp
(
−3lnn

n
· kn

2

)
= e−

3
2 k lnn = n−3k/2.

Summing over all partitions with 1≤ |A|= k ≤ n/2, we find that

Pr(G(n, p) is disconnected)≤ E[number of disconnecting partitions]

=
n/2

∑
k=1

(
n
k

)
(1− p)k(n−k)

<
n/2

∑
k=1

(
n
k

)
n−3k/2

<−1+
n

∑
k=0

(
n
k

)
n−3k/2

=−1+(1+n−3/2)n <−1+
(

en−3/2
)n

= en−1/2
−1 <

e−1
n1/2

where the last inequality follows from the fact that ex−1 < (e−1)x whenever 0 < x < 1.
To sum up, when p ≥ 3lnn

n , the probability that G(n, p) is disconnected is O(n−1/2).
Combining this with the observation from Section 4.2.1 that G(n, p) contains isolated
vertices with probability 1− o(1) when p ≤ lnn

2n−2 , we have shown that the transition
from disconnectivity to connectivity in G(n, p) occurs when p is somewhere in the range[1

2 ·
lnn
n , 3lnn

n

]
. Using more sophisticated methods, mathematicians have shown that the

connectivity transition occurs in the range
[
(1−ε) lnn

n , (1+ε) lnn
n

]
for any ε > 0. In other

words, when p is below this range G(n, p) is disconnected with probability 1− o(1) as
n→ ∞, whereas when p is above this range G(n, p) is connected with probability 1−o(1)
as n→ ∞.

4.2.3 Diameter and expansion of G(n, p)
In this section we prove that for p≥ 7lnn

n , with probability 1−o(1) the graph G(n, p) is
connected and has diameter O(logn). The method of proof will in fact show that an even
stronger property holds with probability 1−o(1), namely that G(n, p) is a vertex expander.

Definition 4.2 A graph G with n vertices is an α-expander if for every non-empty
vertex set S with |S| ≤ n/2, the set

∂S = {v ̸∈ S | ∃edge (u,v) with u ∈ S}

has at least α|S| elements.

Lemma 4.3 If G is an α-expander with n vertices then its diameter is at most 2ln(n)
ln(1+α) .

Proof. For any vertex s ∈V (G) and any integer r ≥ 0 let Br(s) denote the set of vertices
that can be joined to s by a path composed of r or fewer edges. Trivially, B0(s) = {s}.
Furthermore, for each r such that |Br(s)| ≤ n/2, the relation |Br+1(s)| ≥ (1+α)|Br(s)|
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holds by the α-expansion property, applied to the set S = Br(s). This is because for each
v ̸∈ S such that there exists an edge (u,v) with u ∈ S, we can form a path from s to u
composed of at most r edges, and then we can append the edge (u,v) to the end of this
path, to obtain a path from s to v composed of at most r+1 edges.

Applying the inequality |Br+1(s)| ≥ (1+α)|Br(s)| inductively starting from the base
case r = 0, we find that |Br+1(s)| ≥ (1+α)r+1 for all r such that |Br(s)| ≤ n/2. Contra-
positively, if |Br+1(s)| < (1+α)r+1 then |Br(s)| > n/2. Now, when r =

⌊
ln(n)

ln(1+α)

⌋
we

have (1+α)r+1 > n, so clearly |Br+1(s)|< (1+α)r+1. Consequently, |Br(s)|> n/2.
To deduce the bound on the diameter of G, consider any two vertices, s and t. For

r =
⌊

ln(n)
ln(1+α)

⌋
, we have shown that the sets Br(s) and Br(t) each have strictly more than n/2

elements. Since their union has at most n elements, their intersection must be non-empty.
That means there is a vertex u that can be joined to each of s and t by a path composed of
at most r edges. Concatenating these two paths together (and removing loops if necessary)
we obtain a path from s to t composed of at most 2r edges, which confirms the stated
bound on the diameter. ■

Proposition 4.4 If p≥ 7ln(n)
n then G(n, p) is a 1

2 -expander with probability 1−o(1).

Proof. If G is any graph with n vertices, we will say that a pair of vertex sets S ⊆ T are
“bad” if the following two conditions are satisfied.

1. G has no edges from S to the complement of T

2. 2
3 |T |< |S| ≤

n
2

If S⊆ T is a bad pair then G is not a 1
2 -expander: the first condition ensures that ∂S⊆ T \S,

while the second condition implies that |T \S|< 1
2 |S| while |S| ≤ n

2 . Conversely, if G is
not a 1

2 -expander, then there must exist at least one bad pair: take any S such that |S| ≤ n/2
and |∂S|< 1

2 |S|, and let T = S∪∂S.
Since 1

2 -expanders are precisely the graphs that have no bad pairs, the proposition can
be restated as asserting that when p≥ 7ln(n)

n the probability that G(n, p) has a bad pair of
vertex sets is o(1). We will prove this by calculating the expected number of bad pairs and
showing that it is o(1).

For any specific pair of vertex sets S ⊆ T with |T | = k and |S| = ℓ, the probability
that G(n, p) has no edges from S to the complement of T is (1− p)ℓ(n−k). The cardinality
constraints on bad pairs stipulate that 2

3k < ℓ≤ 1
2n, so k < 3

4n and

ℓ(n− k)>
2k
3
· n

4
=

kn
6

(1− p)ℓ(n−k) < (1− p)kn/6 < exp
(
−7ln(n)

n
· kn

6

)
= n−7k/6.

For any k < 3
4n, there are

(n
k

)
sets T of size k, and for each such T we can bound the

number of subsets of size greater than 2
3k by the total number of subsets of T , which is 2k.
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Hence,

E[♯ bad pairs]≤
3n/4

∑
k=1

(
n
k

)
2kn−7k/6 <−1+

n

∑
k=0

(
n
k

)
2kn−7k/6

=−1+
(

1+
2

n7/6

)n

<−1+
(

e2/n7/6
)n

= e2/n1/6
−1 <

2(e−1)
n1/6

where, in the final step, we made use of the inequality ex− 1 < (e− 1)x which is valid
whenever 0 < x < 1. We have shown that the expected number of bad pairs is o(1) which
concludes the proof that G(n, p) is a 1

2 -expander with probability 1−o(1). ■

In presenting Proposition 4.4 we favored the succinctness of the proof over the sharpness
of the constants. In particular, the constant 7 in our lower bound for p is far from the best
possible: for any constant c > 1 there exists an α > 0 such that when p = c ln(n)

n the graph
G(n, p) is an α-expander with probability tending to 1 as n→ ∞.

4.3 Ramsey’s Theorem and the Probabilistic Method
In analyzing any large dataset, one hopes to find patterns reflecting meaningful and
generalizable properties of the population or process from which the data originated.
However, one must be careful to distinguish the “signal” from the “noise”: patterns that
are present in the data either because of random coincidence or because their presence
is mathematically inevitable. Ramsey Theory is the branch of mathematics that seeks to
understand which patterns are mathematically inevitable. The following story, related
by Noga Alon and Michael Krivelevich in The Princeton Companion to Mathematics,
illustrates the point nicely.

In the course of an examination of friendship between children some fifty years
ago, the Hungarian sociologist Sandor Szalai observed that among any group
of about twenty children he checked he could always find four children any
two of whom were friends, or else four children no two of whom were friends.
Despite the temptation to try to draw sociological conclusions, Szalai realized
that this might well be a mathematical phenomenon rather than sociological
one. Indeed, a brief discussion with the mathematicians Erdős, Turán, and Sós
convinced him this was the case.

To discuss the pattern Szalai noted, it is helpful to define the following terminology.

Definition 4.5 In an undirected graph G, a set of vertices S is called a clique if every
two elements of S are joined by an edge in G. The set S is called an independent set if
no two elements of S are joined by an edge in G.

If one wants to prove that any group of twenty children either contains four children
any two of whom are friends, or four children no two of whom are friends, the logic turns
out to be quite messy. The following simpler proposition illustrates the type of reasoning
involved.
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Proposition 4.6 In any graph with six vertices, there are three vertices that form a clique
or an independent set.

Proof. Consider any vertex, u. Of the five other vertices, either a majority of them are
neighbors of u or a majority of them are not neighbors of u.

Suppose a majority of the five other vertices are neighbors of u. That means u has at
least three distinct neighbors, v1,v2,v3. If any two of v1,v2,v3 are joined to each other by
an edge, then those two vertices together with u form a clique. Otherwise, {v1,v2,v3} is
an independent set.

Now suppose a majority of the five other vertices are not neighbors of u. That means
there are at least three distinct vertices — call them w1,w2,w3 — none of whom are joined
to u by an edge. If any two of these three vertices are not connected to each other, then
those two vertices together with u form an independent set. Otherwise, {w1,w2,w3} is a
clique. ■

Generalizing Proposition 4.6, one can define R(k, ℓ) to be the minimum n such that every
undirected graph with n or more vertices has either a clique of size k or an independent set
of size ℓ, and one can ask whether R(k, ℓ) is finite for every k and ℓ, and if so, how large
can it be? The finiteness of R(k, ℓ) is called Ramsey’s Theorem.

Theorem 4.7 — Ramsey’s Theorem. If n ≥ 2k+ℓ−3 then every graph on n vertices
must either contain a clique of size k or an independent set of size ℓ. In other words,
R(k, ℓ)≤ 2k+ℓ−3.

Proof. Let t = k+ ℓ−3. We will iteratively construct a sequence of vertices v0,v1, . . . ,vt
and vertex sets S0,S1, . . . ,St , with the following properties.

1. vi ∈ Si for 0≤ i≤ t.

2. vi ̸∈ Si+1 for 0≤ i < t.

3. Si ⊃ Si+1 for 0≤ i < t.

4. For 0≤ i < t, either every element of Si+1 is a neighbor of vi in G, or none of the
elements of Si+1 are neighbors of vi in G.

5. Si contains at least 2t−i vertices, for 0≤ i≤ t.

The sequences are constructed as follows. First let v0 be an arbitrary vertex of G and let
S0 = V (G) be the set of all vertices of G. Now, for i = 0,1, . . . , t− 1, assume v0, . . . ,vi
and S0, . . . ,Si have already been constructed. Then, the set Si \{vi} has at least 2t−i−1
elements. If at least half of its elements are neighbors of vi, then let Si+1 be the set of all
neighbors of vi in Si \{vi}. Otherwise, let Si+1 be the set of all elements of Si \{vi} that
are not neighbors of vi. In either case, Si+1 has at least 2t−i−1 elements, which confirms
that Si+1 satisfies the fifth property listed above. By construction, it also satisfies the third
and fourth properties. Since 2t−i−1 ≥ 1, we know Si+1 is non-empty, so we can let vi+1 be
any vertex of Si+1. Then, by construction, vi+1 belongs to Si+1 but vi does not, confirming
the first two properties listed above.

Now, observe that v0,v1, . . . ,vt must all be distinct from one another: if i < j then vi
cannot equal v j because vi ̸∈ Si+1 whereas v j ∈ S j ⊆ Si+1. Assign a color to each vertex in
the sequence except vt , according to the following rule. If vi is adjacent to every element
of Si+1 then color vi blue; if vi is adjacent to none of the elements of Si+1 then color vi
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red. Of the t = k+ ℓ−3 vertices in the sequence v0, . . . ,vt−1, either the number of blue
vertices exceeds k−2 or the number of red vertices exceeds ℓ−2. If there are k−1 blue
vertices in the sequence. Then those k−1 blue vertices, together with vt , form a clique in
G of size k. If there are ℓ−1 red vertices in the sequence, then those ℓ−1 red vertices,
together with vt , form a clique in G of size ℓ. ■

Ramsey’s Theorem has been known since the 1930’s, but there are very few pairs (k, ℓ) for
which the exact value of R(k, ℓ) is known. It is easy to work out the value of R(k, ℓ) when
min{k, ℓ} is equal to 1 or 2. Apart from those trivial cases, the values of R(3, ℓ) for ℓ≤ 9
and the values of R(4, ℓ) for ℓ≤ 5 are known and all other Ramsey numbers R(k, ℓ) with
k ≤ ℓ are unknown.

Given the difficulty of exactly computing Ramsey numbers, attention has focused
on order-of-growth estimates. Theorem 4.7 shows that R(k, ℓ) is at most exponential in
k+ ℓ. Is this the correct order of growth, or is R(k, ℓ) bounded above by a sub-exponential
function of k+ℓ? In 1947 Erdős answered this question by showing that R(k,k)> 2k/2. His
method of proof was revolutionary: rather than directly constructing a graph on n = 2k/2

vertices with no clique or independent set of size k, he proved the existence of such a
k-Ramsey graph non-constructively, by showing that a random sample from G(n,1/2) is
a k-Ramsey graph with positive probability. This paradigm of proving that objects with
certain properties exist by showing that a random object has the specified properties with
positive probability is called the probabilistic method, and it has become an influential and
widely used principle in discrete math and theoretical computer science.

Definition 4.8 An undirected graph G is called a k-Ramsey graph if no k of its vertices
form a clique or independent set.

Theorem 4.9 If k ≥ 3 and n ≤ 2(k+1)/2, then a random sample from G(n,1/2) has
positive probability of being a k-Ramsey graph. Consequently, R(k,k)> 2(k+1)/2.

Proof. If k = 3 or k = 4 then 2(k+1)/2 < 2k− 1 and one can verify that a path graph
composed of n < 2k− 1 vertices is always a k-Ramsey graph. (In a path graph, there
are no cliques of size greater than 2, and the largest independent set has ⌈n/2⌉ vertices.)
For the remainder of the proof, we will assume k ≥ 5. This assumption will be helpful
because every k≥ 5 satisfies the inequality 2k+1 < k! which implies the following binomial
coefficient inequality that is used below.(

n
k

)
=

n(n−1)(n−2) · · ·(n− k+1)
k!

<
nk

k!
<

1
2

(n
2

)k
. (4.3)

We now proceed to calculate the expected number of cliques of size k in G(n,1/2). For
each k-element set S, the probability that S forms a k-clique is 2−k(k−1)/2 because the k
vertices of S form

(k
2

)
= k(k−1)

2 pairs, each of which is an edge of G(n,1/2) independently
with probability 1/2. Since there are

(n
k

)
vertex sets of size k, we find that

E[number of k-cliques] =
(

n
k

)
2−k(k−1)/2 <

1
2

(n
2

)k
2−k(k−1)/2 =

1
2

( n
2(k+1)/2

)k
.

Hence, if n ≤ 2(k+1)/2, the expected number of k-cliques is less than 1
2 . By Markov’s

inequality, the probability that G(n,1/2) contains a k-clique is less than 1
2 . An identical
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calculation shows that the expected number of independent sets of size k is also less than 1
2 ,

hence the probability that G(n,1/2) contains an independent set of size k is less than 1
2 . By

the union bound, the probability that G(n,1/2) is not a k-Ramsey graph is less than 1. ■

With a little bit more care, one can show that for n≤ 2(k+1)/2, the probability that G(n,1/2)
is not a k-Ramsey graph converges to zero super-exponentially fast as k→ ∞; in other
words, the convergence to zero happens at a faster rate than ck for any 0 < c < 1. This
is because the inequality 2k+1 < k! that we used in one step of the proof has a super-
exponential amount of slack as k→ ∞: the factorial function grows strictly more rapidly
than any exponential function. Hence, k-Ramsey graphs are incredibly abundant among
the n-vertex graphs when k is large and n≤ 2(k+1)/2. Despite their abundance, no explicit
construction of a k-Ramsey graph is known when n is exponential in k. People have
jokingly likened the problem of explicitly constructing Ramsey graphs to the problem of
“finding hay in a haystack.” To date, the best known explicit construction of k-Ramsey
graphs yields graphs with 2kc

vertices, where c is a (small) positive constant.
The application of the probabilistic method to prove existence of Ramsey graphs is not

an isolated example. Here is another illustrative example from graph theory.
Definition 4.10 The girth of an undirected graph is the length of the shortest cycle
contained in the graph. (A graph with no cycles has infinite girth.)

Definition 4.11 A k-coloring of a graph G = (V,E) consists of a k-element set C,
called the set of colors, and a function h : V →C that assigns a color to each vertex. A
k-coloring is proper if the endpoints of every edge are assigned distinct colors. The
chromatic number of G is the minimum k such that G has a proper k-coloring.

If a graph G has infinite girth, then every connected component of G is a tree and can be
2-colored. More generally, if G has girth greater than g, then every subgraph of g or fewer
vertices is acyclic, hence 2-colorable, so in some sense G is “locally 2-colorable”. On the
other hand, a graph of high girth may not be globally 2-colorable, i.e., it may not have a
proper 2-coloring. For example, when n≥ 3 is odd, an n-cycle has girth n and chromatic
number 3. It’s less clear, however, how to construct graphs with large girth having no
proper 3-coloring. For example, for girth 5 the smallest such graph has 21 vertices.

In general, given lower bounds on the girth and chromatic number of a graph, can
we always find a finite graph that satisfies the bounds? A famous application of the
probabilistic method, again by Erdős, answers this question affirmatively.

Theorem 4.12 For any finite g and k, there exist finite undirected graphs with girth
greater than g and chromatic number greater than k.

Proof. Consider a random sample G drawn from the G(n, p) distribution, where the value
of p will be determined later. The first part of the proof consists of calculating the expected
number of cycles of length less than or equal to g. To estimate the expected number of
cycles of length ℓ≤ g, we can reason as follows. The vertices of such a cycle constitute
a sequence v1, . . . ,vℓ−1,vℓ, such that for all i ∈ [ℓ], (vi−1,vi) belongs to the edge set of G.
(Here, we are interpreting v0 as being equal to vℓ.) For a given such sequence v1, . . . ,vℓ, the
probability that all of the required edges are present is pℓ. The number of such sequences is
less than nℓ. Hence, the expected number of ℓ-cycles is bounded above by (pn)ℓ. Summing
over all cycle lengths from 3 up to g, the expected number of cycles of length less than or
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equal to g satisfies the bound

E[number of cycles of length ≤ g] ≤
g

∑
ℓ=3

(pn)ℓ.

If we choose p satisfying

1
n
≤ pn ≤

(
n

4g

)1/g

then (pn)ℓ is an increasing function of ℓ so

g

∑
ℓ=3

(pn)ℓ < g(pn)g ≤ n
4
.

By Markov’s inequality,

Pr
(
G has more than n

2 cycles of length ≤ g
)
≤ 1

2
. (4.4)

The second part of the proof examines the probability that G contains an independent set of
size t = ⌈n/(2k)⌉. For a given vertex set S of size t, the probability that S is an independent
set in G(n, p) is

(1− p)t(t−1)/2 < e−pt(t−1)/2.

The number of vertex sets of size t is less than nt , so

Pr(G has an independent set of size t)< nt · e−pt(t−1)/2 =

(
n

ep(t−1)/2

)t

.

If p≥ 4k ln(2n)
n−2k then

p(t−1)
2

≥
p
( n

2k −1
)

2
=

p(n−2k)
4k

= ln(2n)

ep(t−1)/2 ≥ 2n
n

ep(t−1)/2
≤ 1

2
Pr(G has an independent set of size t)< 2−t .

To summarize the proof up to this point, if 4k ln(2n)/(n−2k)≤ p≤ n−1 · (n/4g)1/g then
the event that G has more than n/2 cycles of length g or smaller has probability less than
1
2 , and the event that G has an independent set of size t has probability less than 2−t . By
the union bound, there is a positive probability that neither of these events happens. Hence,
there exists a graph on n vertices with n/2 or fewer cycles of length g or smaller, and with
no independent set of size t. Let G0 be one such graph. Let G1 be a graph obtained from
G0 by deleting one vertex from each cycle of length g or smaller. By assumption, at most
n/2 vertices are deleted from G0 when forming G1, so G1 has at least n/2 vertices. By
construction, G1 has girth greater than g. Now, if h is any k-coloring of G1 then, by the
pigeonhole principle, there is some color c ∈ [k] such that the set S = h−1(c) has at least
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n/(2k) vertices. However, since G1 is a subgraph of G0 it has no independent set of size
t = ⌈n/(2k)⌉. Consequently, S cannot be an independent set in G1; there must be an edge
between two vertices in S. Since h assigns color c to both of these vertices, h is not a
proper coloring. Hence, the chromatic number of G1 is greater than k.

To conclude the proof, we merely need to observe that the inequality 4k ln(2n)
n−2k ≤ n−1 ·(

n
4g

)1/g
, is satisfied by all sufficiently large n, so when n is large enough we may always

choose p satsfying the necessary upper and lower bounds. ■
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5. Vector Spaces

Representing data in the form of vectors lies at the core of machine learning, data science,
and scientific computing. These notes explain the basic theory of vector spaces over the
real numbers. Differing from most introductory courses on linear algebra, we will adopt
a “coordinate-free” viewpoint that treats vectors are an abstract data type supporting the
operations of addition and scalar multiplication.

5.1 Algebraic definitions
Definition 5.1 A vector space (over the real numbers) is a non-empty set V of elements,
called vectors, equipped with two operations, called addition and scalar multiplication.

• Addition is a binary operation of type V ×V →V . In other words two vectors x
and y can be added to yield another vector, x+y.

• Scalar multiplication is a binary operation of type R×V →V . In other words we
can scale a vector x by a real number a to obtain another vector, ax.

These operations are required to satisfy the associative, commutative, distributive, and
multiplicative identity laws.

1. x+y = y+x.

2. (x+y)+ z = x+(y+ z) and (ab)x = a(bx).

3. (a+b)x = ax+bx and a(x+y) = ax+ay.

4. 1x = x.

These laws imply the existence of a vector called the zero vector, which we denote by 0,
that satisfies 0+x = x and 0x = 0 for every x ∈V.

The most important and archetypical vector spaces are the spaces Rn, defined for each
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positive integer n. Vectors in Rn are n-tuples of real numbers. Addition and scalar
multiplication are defined component-wise. In these notes we will represent elements of
Rn by column vectors, such as

[ 1
0
−1

]
.

The key distinction here is that we are not defining vectors to be n-tuples of real
numbers, and then defining addition and scalar multiplication as operations on n-tuples.
Rather, we are defining a vector space to be any structure possessing addition and scalar
multiplication operations that satisfy the key properties in Definition 5.1, and then we are
admitting the vector space Rn as an example of one such structure. This is similar to the
distinction between an abstract data type, such as a list, and a data structure that implements
that abstract data type, such as a doubly linked list. For the purpose of reasoning about
vectors, everything we need to know about them is summarized in the abstract definition;
for the purpose of calculating with them, we need to choose a specific way of representing
the elements of a vector space, e.g., as n-tuples of real numbers.■ Example 5.2 For any set S, there is a vector space RS of functions from S to the real
numbers, with addition and scalar multiplication defined pointwise: if x and y are two
functions from S to R, a ∈R is a scalar, and s is any element of S, then x+y is the function
defined by (x+ y)(s) = x(s)+ y(s) and ax is the function defined by (ax)(s) = ax(s).

For example, if G is the graph shown at right, then RV (G) is the vector
space of functions that label each vertex of G with a real number. It’s
evident that we can represent elements of RV (G) as ordered 3-tuples of
real numbers by choosing an ordering of the vertices of G. However, the
choice of ordering is arbitrary, so there are at least six equally reasonable
ways to model the elements of RV (G) as elements of R3. We describe
this state of affairs by saying that the vector spaces RV (G) and R3 are
isomorphic but not equal to one another.

■

■ Example 5.3 Continuing with the example above, let Z denote the subset of RV (G)

consisting of functions that sum to zero. In other words x belongs to Z if and only if
it satisfies ∑v∈V (G) x(v) = 0. Then Z is also a vector space. An element of Z could be
represented by an ordered triple of real numbers that sum to zero, such as the function
values at the top, left, and right vertices respectively. Alternatively, we could represent an
element of Z by an ordered pair of numbers, such as the function values at the left and
right vertices only, since the value at the top vertex is uniquely determined by the other
two. The vector space Z will become a running example in these notes. ■

5.1.1 Linear transformations and isomorphisms
Now that we’ve defined vector spaces, it’s time to talk about functions between vector
spaces. The most important type of function between vector spaces is called a linear
transformation, and it preserves all of the algebraic structure of the space.

Definition 5.4 If V and W are vector spaces, a linear transformation from V to W is a
function T : V →W that satisfies

T (ax+by) = aT (x)+bT (y)

for all x,y ∈V and a,b ∈ R.
A linear transformation is called an isomorphism, or equivalently invertible, if there
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is another linear transformation T−1 : W → V such that T−1 ◦T and T ◦T−1 are the
identity functions of V and W , respectively. We then call T−1 the inverse of T . We say
V and W are isomorphic if there is an isomorphism from V to W .

■ Example 5.5 When m < n, an important class of linear transformations from Rn to Rm

are the coordinate projections: functions that modify an n-tuple to an m-tuple by extracting
a specified subset of the coordinates. For example, the coordinate projection π13 from
R3 to R2 deletes the middle coordinate of a 3-tuple while preserving the first and third
coordinates, e.g. π13

[ 1
0
−1

]
=
[

1
−1
]
. ■

For any vector spaces V and W , the set of linear transformations from V to W forms
a vector space under pointwise addition and scalar multiplication. This vector space is
denoted by hom(V,W ). The isomorphisms from V to W don’t form a vector space because,
for example, when we multiply an isomorphism by the scalar 0 we obtain the function that
maps every x in V to 0 in W , which is no longer an isomorphism.

5.1.2 Bases and dimension
It seems self-evident that the vector spaces R2 and R3 are not isomorphic, because one
of them is two-dimensional while the other is three-dimensional. How do we actually
define dimension of a vector space? How do we confirm that vector spaces of different
dimensions are really not isomorphic to one another? To answer these questions, we must
first introduce the very important notion of a basis for a vector space.

Definition 5.6 A linear combination of vectors x1, . . . ,xk is a finite sum of the form
a1x1+a2x2+ · · ·+akxk. It is non-trivial if at least one of the coefficients ai is not equal
to zero. A set S of vectors is linearly independent if the zero vector cannot be expressed
as a non-trivial linear combination of elements of S. A basis of a vector space is a
maximal linearly independent set.

Lemma 5.7 If B is a basis of a vector space V , then every element of V can be
represented as a linear combination of elements of B. This representation is unique, up
to a reordering of the summands.

Proof. If v∈V cannot be represented as a linear combination of elements of B, then B∪{v}
is linearly independent, contradicting the maximality of B. Hence, every element of V can
be expressed as a linear combination of elements of B. To see why the representation is
unique, consider any x ∈V and consider two representations

x = a1b1 + · · ·+ambm = a′1b′1 + · · ·+a′nb′n.

Subtracting these two representations of x from one another, we obtain a representation
of 0 as a linear combination of elements of B. Since B is linearly independent, all the
coefficients in this linear combination must be zero. Hence, the two representations of x
are identical, up to a reordering of the terms of the sum. ■

Corollary 5.8 If V is a vector space with a finite basis B, then the linear transformation
T : RB→V defined by T ( f ) = ∑b∈B f (b)b is an isomorphism.

Proof. By Lemma 5.7, for every x ∈ V there is a unique representation of the form
x = ∑b∈B abb. Let C(x) be the function in RB defined by C(x)(b) = ab. We leave it as an
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exercise for the reader to verify that C is a linear transformation and that C ◦T and T ◦C
are the identity functions of their respective vector spaces. ■

The image of x ∈V under the isomorphism C : V → RB is a B-tuple of real numbers.
The elements of this tuple are called the components of x in the basis B. ?? shows that
every finite-dimensional vector space V is isomorphic to Rn for some value of n, and we
will soon see this value is unique. However, there are many isomorphisms from V to Rn,
corresponding to all the different ways to choose an (ordered) basis of V . For this reason,
the components of a vector are only well-defined in contexts where an ordered basis has
been specified.

Definition 5.9 The standard basis of Rn is the basis {e1, . . . ,en}, where ei denotes a
vector whose ith coordinate is 1 and all other coordinates are zero.

Lemma 5.10 A set of vectors B⊂V is a basis if and only if every element of V can be
uniquely expressed as a linear combination of elements of B.

Proof. The “only if” direction was proven in Lemma 5.7. If B ⊂ V is a subset having
the property that every element of V can be uniquely expressed as a linear combination
of elements of B, then in particular the only representation of 0 as a linear combination
of elements of B is the trivial representation; this verifies that B is linearly independent.
Furthermore, for any x ̸∈ B, by our assumption on B we can find a representation x =
a1b1 + · · ·+ ambm. Then the equation 0 = a1b1 + · · ·+ ambm− x shows that B∪{vx} is
not linearly independent. Hence, B is a maximal linearly independent set, i.e. B is a basis,
as claimed. ■

We will be defining the dimension of a vector space to be the cardinality of any basis.
However, in order to make such a definition we need to verify that all bases have the same
cardinality. This is accomplished in the following pair of lemmas.

Lemma 5.11 — Exchange Lemma. If V is a vector space with basis B, then for any
nonzero vector x ̸∈ B we can obtain another basis from B by exchanging x for one of the
vectors y ∈ B. In other words, B′ = (B\{y})∪{x}.

Proof. Using Lemma 5.7 and the fact that x ̸= 0, we know that x can be expressed as a
non-trivial linear combination x = a1b1 + · · ·+ambm. Assume without loss of generality
that a1 ̸= 0. Then

b1 = x− a2

a1
b2−·· ·−

am

a1
bm. (5.1)

For any vector z that can be expressed as a linear combination of elements of B, we can
substitute the right side of (5.1) in place of b1, to obtain a representation of z as a linear
combination of elements of B′ = (B\{b1})∪{x}. To see that this representation of z is
unique, consider subtracting any two distinct representations of z as linear combinations
of elements of B′, to obtain a nontrivial representation of 0 as a linear combination of
elements of B′. Let ax denote the coefficient of x in this representation of 0. Our hypothesis
that B is linearly independent means that 0 cannot be represented as a nontrivial linear
combination of elements of B, so we know that ax ̸= 0. Now if we substitute the expression
a1b1 + · · ·+ambm in place of x, we obtain another representation of 0, this time as a linear
combination of elements of B, in which the coefficient of b1 is a1ax. Since a1ax ̸= 0, this
contradicts the assumption that B is linearly independent. ■
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Theorem 5.12 If V is a vector space with a finite basis, then all bases of V have the
same number of elements.

Proof. Let B and B′ be two bases of V , with B finite. Denote the elements of B by
{b1, . . . ,bd}. Now construct a sequence of bases by the following procedure. Start with
B0 = B′, and repeatedly perform the exchange procedure in the proof of Lemma 5.11,
inserting elements of B one by one. This yields a sequence of bases B0,B1, . . . ,Bd , such
that B0 = B′, and for i > 0, Bi = (Bi−1∪{bi})\b′i−1 for some b′i−1 ∈ Bi−1. When choosing
the vector b′i−1 to remove from Bi−1 while inserting bi, let us never remove a vector that
belongs to B. This is possible because in the proof of Lemma 5.11, the vector that was
removed from the basis when inserting x was allowed to be any vector having a nonzero
coefficient when x is represented using the basis B. We know that when bi is represented
using the basis Bi−1, at least one of the basis vectors with a nonzero coefficient does not
belong to B; this is because B is linearly independent, so bi cannot be represented as a
non-trivial linear combination of elements of B\{bi}.

By the time we reach Bd in this repeated-exchange process, we have inserted each
element of B and have not removed any elements of B, so B⊆ Bd . One basis cannot be a
proper subset of another, since that would violate the maximality property of bases. Hence
B = Bd. Since each two consecutive sets in the sequence of B0, . . . ,Bd have the same
cardinality, we conclude that B′ = B0 must have the same cardinality as B, as claimed. ■

5.1.3 Inner products and the dual of a vector space
An important binary operation on Rn is the dot product operation, defined by x · y =

∑
n
i=1 xiyi. In the setting of abstract vector spaces, the appropriate generalization of the dot

product is a structure called a positive definite inner product, whose essential properties
are defined as follows.

Definition 5.13 An inner product structure on a vector space is a function of type
V ×V →R, with the inner product of vectors x,y∈V being denoted by ⟨x,y⟩ . An inner
product is required to satisfy the following properties.

1. Bilinearity:

⟨ax+by,z⟩= a⟨x,z⟩+b⟨y,z⟩ and ⟨x,ay+bz⟩= a⟨x,y⟩+b⟨x,z⟩ .

2. Symmetry:

⟨x,y⟩= ⟨y,x⟩ .

An inner product is called non-degenerate if for every x ̸= 0 there exists a y such that
⟨x,y⟩ ̸= 0. It is called positive semidefinite if ⟨x,x⟩ ≥ 0 for all x, and positive definite if
the inequality is strict for all x ̸= 0.

Note that a positive definite inner product is always non-degenerate: if x ̸= 0 then
⟨x,x⟩ ̸= 0. The dot product on Rn is positive definite because ⟨x,x⟩= x2

1 + · · ·+ x2
n, which

is always non-negative and equals zero only when x = 0.
An example of a non-degenerate inner product that is not positive definite is the

Lorentzian inner product on Rn:

⟨x,y⟩L =−x1y1 + x2y2 + · · ·+ xnyn.
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This inner product plays an important role in the physics of spacetime, where the first coor-
dinate represents the time dimension and the remaining coordinates represent the spatial
dimensions. According to Einstein’s theory of special relativity, the linear transformations
that one should apply to shift from one observer’s system of spacetime coordinates to
another’s are precisely the linear transformations that preserve the Lorentzian inner product
of vectors.

5.1.4 The dual of a vector space
Definition 5.14 The vector space hom(V,R) of real-valued linear functions on V is
called the dual of V and is denoted by V ∗.

Lemma 5.15 Every finite-dimensional vector space is isomorphic to its own dual.

Proof. Suppose V is a vector space and B is a finite basis for V . Recall from Corollary 5.8
that V is isomorphic to RB. The dual vector space V ∗ is also isomorphic to RB, via the
isomorphism that maps each linear function f : V → R to the function fB : B→ R obtained
by restricting the domain of f from V to B. To prove this is an isomorphism between V ∗

and B we need to prove it has an inverse. In other words, we need to show that for each
function fB : B→ R there is a unique linear function f : V → R that restricts to fB. If f is
any linear function that restricts to fB, then for any vector x = ∑b∈B xbb the value f(x) must
satisfy

f(x) = ∑
b∈B

xbfB(b).

This shows there can be at most one linear function f : V → R that restricts to fB, since the
value f(x) on any x is uniquely determined by the equation above. To verify that there is
exactly one linear function that restricts to fB, we must check that the function f defined
above is linear. Suppose x,y ∈V and r,s ∈ R. If x = ∑b∈B xbb and y = ∑b∈B ybb then

rx+ sy = ∑
b∈B

(rxb + syb)b

so

f(rx+ sy) = ∑
b∈B

(rxb + syb)fB(b) = r ∑
b∈B

xbfB(b)+ s ∑
b∈B

ybfB(b) = rf(x)+ sf(y)

which confirms that f is linear. ■

■ Example 5.16 Every real-valued linear function f on R3 can be represented (uniquely)
by a sequence of three coefficients a1,a2,a3 such that

f
([ x1

x2
x3

])
= a1x1 +a2x2 +a3x3.

The dual of R3 is isomorphic to R3, under the isomorphism that maps a linear function f to
the coefficient vector

[a1
a2
a3

]
. ■

Generalizing the previous example, the dual of Rn is isomorphic to Rn via the iso-
morphism that maps a linear function to its coefficient vector. To facilitate distinguishing
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between Rn and its dual, we will represent elements of (Rn)∗ as row vectors rather than
column vectors. In other words, we will prefer to represent the linear function f in Ex-
ample 5.16 using the row vector f = [a1 a2 a3 ] rather than the column vector

[a1
a2
a3

]
. This

notation is convenient because it means that the application of the function f to the vector
x can simply be written as fx, using the rules for multiplying a 1-by-n matrix by an n-by-1
matrix.

Generalizing these examples still further, a non-degenerate inner product structure on
a finite-dimensional vector space always allows one to define an isomorphism between
V and V ∗. However, it’s important to note that there are many isomorphisms between V
and V ∗, and there’s no particular way to single out one of them without singling out a
non-degenerate inner product structure.

Lemma 5.17 If V is a finite dimensional vector space and ⟨·, ·⟩ is a non-degenerate
inner product, then there is an isomorphism T : V →V ∗ where T (x) is defined to be the
linear function tx specified by the formula tx(y) = ⟨x,y⟩ .

Proof. The bilinearity property of inner products ensures that the function T defined in the
lemma statement is a linear function from V to V ∗. It is injective because if x,y ∈V satisfy
T (x) = T (y), then for all z ∈V we have ⟨x−y,z⟩= ⟨x,z⟩−⟨y,z⟩= tx(z)− ty(z) = 0. As
⟨·, ·⟩ is non-degenerate, this implies x−y = 0 hence x = y. From Lemma 5.15, we know
that V and V ∗ have the same dimension. We leave it as an exercise to the reader to verify
that an injective map between finite-dimensional vector spaces of the same dimension must
be an isomorphism. ■

■ Example 5.18 Suppose V is the subspace of R3 consisting of vectors whose coordinates
sum to zero, with the positive definite inner product structure given by〈[ x1

y1
z1

]
,
[ x2

y2
zz

]〉
= x1x2 + y1y2 + z1z2.

One element of V ∗ is the linear function f that sums the first two coordinates of a vector,
i.e. the function f

([ x
y
z

])
= x+ y. If we are representing elements of V by three-tuples[ x

y
z

]
then f can be represented by the row vector [1 1 0 ]. However, since −z = x+ y for

every
[ x

y
z

]
∈V , the function f is also expressed by the formula f

([ x
y
z

])
=−z and can be

represented by the vector [0 0 −1 ].
This example underscores the importance of distinguishing between a vector space

and its dual. The vector space R3 is isomorphic to its dual, however when we pass to a
subspace of R3, the dual of the subspace is not a subspace of (R3)∗. Instead, it is a quotient
of (R3)∗, i.e. a vector space whose elements are equivalence classes of vectors in (R3)∗. ■

5.2 Convexity and norms
One the wonderful things about vector spaces is that, although they are defined by algebraic
operations, we can also reason about them using geometric notions like convexity, distance,
and volume. In this section we develop some basic facts about these three notions.
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5.2.1 Convex sets and functions
A subset of a vector space is convex if it contains the line segment joining any two of its
points. This informal definition is formalized as follows.

Definition 5.19 If F = {x1, . . . ,xm} is a finite subset of a vector space V , an affine
combination of points of F is a linear combination a1x1+ · · ·+amxm whose coefficients
satisfy a1 + · · ·+am = 1. A convex combination of points of F is an affine combination
whose coefficients are non-negative. (Another name for a convex combination of vectors
is a weighted average.) The affine hull and convex hull of F are the set of all affine
combinations and all convex combinations of elements of F , respectively.

The affine hull of two points is the line passing through them, the affine hull of three
non-collinear points is the plane passing through them, and so on. The convex hull of two
points is the line segment joining them, the convex hull of three non-collinear points is the
triangle joining them, and so on.

Definition 5.20 A subset K of a vector space is convex if every convex combination
of points in K belongs to K. Equivalently, K is convex if, for every x,y ∈ K and every
t ∈ [0,1], the vector (1− t)x+ ty also belongs to K.

A simple inductive proof verifies that the two formulations of convexity in Defini-
tion 5.20 are, indeed, equivalent. Clearly, the first definition implies the second because
the expression (1− t)x+ ty defines a convex combination of x and y when 0 ≤ t ≤ 1.
Conversely, suppose K satisfies the second definition. We assert that for every m ≥ 2,
every convex combination of m points of K belongs to K. The base case m = 2 is simply
a restatement of the second definition. For the inductive step, if non-negative coeffi-
cients a1,a2, . . . ,am sum up to 1, assume without loss of generality that am > 0, and let
t = 1−a1 = a2 +a3 + · · ·+am. Since t > 0, we have

a1x1 +a2x2 + · · ·+amxm = (1− t)x1 + t
(a2

t x2 + · · ·+ am
t xm

)
.

By the induction hypothesis, the vector x′ =
(a2

t x2 + · · ·+ am
t xm

)
belongs to K. Hence,

(1− t)x1 + tx′ also belongs to K, as desired.
An important type of convex set is a halfspace, which is a set of the form

H = {x | f(x)≤ θ} , (5.2)

for some nonzero f ∈V ∗ and some θ ∈R. Equivalently, due to Lemma 5.15, we can define
a halfspace using a non-degenerate inner product as

H = {x | ⟨w,x⟩ ≤ b} , (5.3)

where w is a nonzero vector in V called the normal vector to H, and θ ∈ R. To verify that
the set H defined using (5.2) is convex, observe that

f(a1x1 + · · ·+amxm) = a1f(x1)+ · · ·+amf(xm).

If a1,a2, . . . ,am are the coefficients of a convex combination, then the right side of this
equation is a weighted average of the values f(x1), . . . , f(xm). If each of those values is less
than or equal to θ , then their weighted average must also be less than or equal to θ .

Convexity of a closed set1 can be equivalently defined using halfspaces.
1A subset S of a finite-dimensional vector space is called closed if the limit point of every convergent

sequence of vectors in S is also contained in S.
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Lemma 5.21 If V is a finite-dimensional vector space and K is a closed subset of V ,
then K is convex if and only if it is equal to the intersection of a set of halfspaces.

The proof of the lemma is not quite self-contained. It uses some facts from topology that
we state here without proof.

1. If V is a finite-dimensional vector space and ⟨·, ·⟩ is a positive definite inner product,
then for any x the function q(y) = ⟨y−x,y−x⟩ is continuous.

2. If S is a non-empty, closed, bounded subset of a finite-dimensional vector space
and f is a continuous function on S, then there exists a point z ∈ S such that
f (z) = inf{ f (y) | y ∈ S}.

Proof. From the definition of a convex set, it is clear that an intersection of convex sets
is convex. Conversely, if K is convex then we must prove it is the intersection of a set of
halfspaces. Specifically, letH (K) denote the set of halfspaces that contain K as a subset,
and let K′ = ∩H∈H (K)H. (If H (K) = /0 then interpret this intersection to be the entirety
of V .) Then K′ is the intersection of a set of halfspaces, and we shall show that K′ = K.
The containment K ⊆ K′ is immediate from the definition of K′. To show that K′ ⊆ K, we
prove the reverse containment V \K ⊆V \K′. In other words, if x ∈V \K, we must find
a halfspace H that contains K but not x. Let ⟨·, ·⟩ be a positive-definite inner product on
V , and consider the continuous function q(y) = ⟨y−x,y−x⟩. Let q0 = inf{q(y) | y ∈ K}
and observe that q0 > 0. The set K0 = {y ∈ K | q(y)≤ q0 +1} is non-empty, closed, and
bounded, so there exists z ∈ K0 with q(z) = q0.

Now consider the set

H = {y | ⟨z−x,y−x⟩ ≥ q0}= {y | ⟨z−x,y⟩ ≥ q0 + ⟨z−x,x⟩}.

This is a halfspace, and x ̸∈ H because ⟨z−x,x−x⟩= 0 < q0. To conclude the proof we
will show that K ⊆ H. For any y ∈ K consider the function

f (t)= q(z+t(y−z))= ⟨z−x+ t(y− z),z−x+ t(y− z)⟩= q(z)+2t ⟨z−x,y− z⟩+t2 ⟨y− z,y− z⟩ .

For 0 ≤ t ≤ 1 the vector z+ t(y− z) = (1− t)z+ ty belongs to K, and we know that
the minimum value of q on K is attained at z, so the quadratic function f (t) on the
interval 0≤ t ≤ 1 attains its minimum value at t = 0. Therefore, f ′(0)≥ 0, which implies
⟨z−x,y− z⟩ ≥ 0. Now, we find that

⟨z−x,y−x⟩= ⟨z−x,y− z⟩+ ⟨z−x,z−x⟩ ≥ 0+q0

hence y satisfies the defining inequality of the halfspace H. As y was an arbitrary element
of K, we have proven K ⊆ H as desired. ■

In addition to convex sets, another important notion is that of a convex function.
Definition 5.22 If V is a vector space, K ⊆ V is a convex set, and h : K → R is a
function, we say that h is convex if it satisfies

h((1− t)x+ ty)≤ (1− t)h(x)+ th(y) ∀x,y ∈ K, 0≤ t ≤ 1
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Analogous to the two equivalent definitions of a convex set, it is equivalent to say that h
is convex if and only if, for all finite sets F = {x1, . . . ,xm} ⊆ K and convex combinations
x = a1x1 + · · ·+amxm, the inequality

h(x)≤ a1h(x1)+ · · ·+amh(xm).

This inequality (along with its generalization to integrals rather than finite sums) goes by
the name of Jensen’s convex function inequality.

We proceed to state two more definitions related to convex functions and then a lemma
providing two equivalent characterizations of convexity.

Definition 5.23 If V is a vector space, K ⊆V , and h : K→ R, then the epigraph of h is
the set of all pairs (x,y) ∈V ×R such that y≥ h(x). For any x ∈ K, the subdifferential
of h at x is defined to be the set

∂h(x) = {f ∈V ∗ | f(y)− f(x)≤ h(y)−h(x) ∀y ∈ K}.

One can visualize the epigraph of h as an infinitely tall multidimensional bowl-shaped
region sitting above the graph of h in V ×R. To visualize what it means for f to belong
to the subdifferential of h, note that the graph of the function Lf,x(y) = f(y)− f(x)+h(x)
is a hyperplane in V ×R and it touches the graph of h at the point (x,h(x)). If the graph
of Lf,x is a supporting hyperplane of the epigraph of h (i.e., a hyperplane that touches the
epigraph of h at least once point and lies (weakly) below it everywhere) then f belongs to
the subdifferential ∂h(x).

If V has a non-degenerate inner product, this defines an isomorphism between V ∗ and
V . The image of ∂h(x) under this isomorphism is a set of vectors called the subgradient of
h at x.

To relate epigraphs and subgradients to convexity, we need to define one more notion:
open subsets of a finite-dimensional vector space. Intuitively, a subset U ⊆ V is open
if every point of U is completely surrounded by other points of U . For example, in the
open-dimensional vector space R, an open interval (a,b) = {x | a < x < b} is open whereas
a closed interval [a,b] = {x | a≤ x≤ b} is not, because the endpoints of a closed interval
are not surrounded on both sides by other points of the interval.

Definition 5.24 If V is a finite-dimensional vector space, a subset U ⊆V is called an
open set if it satisfies the following property: for all x,y ∈U there exists some δ > 0
such that for every ε with |ε|< δ , the vector x+ εy belongs to U .

Lemma 5.25 For a convex open subset K of a finite-dimensional vector space V , the
following properties of a function h : K→ R are equivalent.

1. h is convex.

2. The epigraph of h is a convex subset of V ×R.

3. The subdifferential of h is nonempty at every point of K.

Proof. We will prove the cycle of implications (3)⇒ (1)⇒ (2)⇒ (3), which suffices to
prove the equivalence of the three condiions.

(3)⇒ (1): If the subdifferential of h is nonempty at every point of K, then consider
any two points x,x′ and their convex combination x′′ = (1− t)x+ tx′. The subdifferential
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∂h(x′′) is non-empty, so it contains some f ∈V ∗ that satisfies f(y)− f(x′′)≤ h(y)−h(x′′)
for all y ∈ K. In particular, we have the two inequalities

f(x)− f(x′′)≤ h(x)−h(x′′)
f(x′)− f(x′′)≤ h(x′)−h(x′′).

Multiplying the first by 1− t and the second by t we obtain

(1− t)f(x)+ tf(x′)− f(x′′)≤ (1− t)h(x)+ th(x′)−h(x′′).

The left side is zero, because f is a linear function that x′′ = (1− t)x+ tx′. Hence, (1−
t)h(x)+ th(x′)≥ h(x′′) = h((1− t)x+ tx′′) which confirms that h is convex.

(1)⇒ (2): Suppose h is convex. Let (x,y) and (x′,y′) denote two points in the epigraph
of h. Then y≥ h(x) and y′ ≥ h(x′) so

(1− t)y+ ty′ ≥ (1− t)h(x)+ th(x′)≥ h((1− t)x+ tx′)

which shows that (1− t)(x,y)+ t(x′,y′) belongs to the epigraph of h and thus confirms
that the epigraph is convex.

(2)⇒ (3): If the epigraph of h is convex and x is a point of K, then for every n > 0
the point (x,h(x)−1/n) does not belong to the epigraph of h. The closure of the epigraph
of h (i.e., the set consisting of the epigraph along with every point in V ×R that is the
limit of a sequence of points in the epigraph) is a closed, convex subset of V ×R. By
Lemma 5.21 it follows that there is a halfspace Hn that contains the epigraph of h but
doesn’t contain (x,h(x)−1/n). The set of points (x′,y′) ∈ Hn is defined by an inequality
of the form fn(x′)−any′ ≤ θn, where fn ∈V ∗ and an,θn ∈ R.

Choose an isomorphism between V ∗×R and Rd+1, where d is the dimension of V ,
and let S be the image of the unit sphere in Rd+1 under this isomorphism. By rescaling
(fn,an) if necessary, we can assume that (fn,an) ∈ S for each n. Since S is a closed and
bounded subset of V ∗×R, and V ∗×R is finite dimensional, the sequence (fn,an)

∞
n=1 has

an infinite subsequence that converges to a limit point (f,a) ∈ S. If we look at the values
θn as n ranges over the same subsequence, we claim that they converge to the number
θ = x(x)−ah(x). To prove this, note that (x,h(x)) ∈ Hn but (x,h(x)−1/n) ̸∈ Hn, which
means

fn(x)−anh(x)≤ θn < fn(x)−anh(x)+an/n. (5.4)

Passing to a subsequence on which (fn,an) converges to (f,a), the left and right sides both
converge to f(x)−ah(x), so θn must converge to the same number.

Next we claim that the halfspace H consisting of all pairs (x′,y′) satisfying the inequal-
ity f(x′)−ay′ ≤ θ contains the epigraph of h. To see that this is so, assume y′ ≥ h(x′) and
note that for each n we know that (x′,y′) belongs to Hn hence it satisfies fn(x′)−any′ ≤ θn.
Passing to a subsequence on which (fn,an)→ (f,a) and then taking the liminf of both
sides, we find that f(x′)−ay′ ≤ θ , as claimed.

For any x′ in K, the point (x′,h(x′)) belongs to the epigraph of H, hence it satisfies

f(x′)−ah(x′)≤ θ = f(x)−ah(x).

Rearranging this equation we find that
1
a f(x′)− 1

a f(x)≤ h(x′)−h(x)

for all x′ ∈ K, which confirms that 1
a f belongs to ∂h, so ∂h is nonempty. ■
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5.2.2 Norms
A norm on a vector space provides a way to measure the length of a vector, and hence the
distance between two vectors.

Definition 5.26 If V is a vector space, a norm on V is a function ∥ · ∥ from V to R
satisfying:

1. Non-negativity: ∥x∥ ≥ 0 for all x ∈V , with equality if and only if x = 0.

2. Linear homogeneity: ∥ax∥= |a|∥x∥ for all a ∈ R and x ∈V .

3. Subadditivity: ∥x+y∥ ≤ ∥x∥+∥y∥ for all x,y ∈V .

Common examples of norms on Rn are the Lp norms, defined for 1≤ p < ∞ by

∥x∥p =

(
n

∑
i=1
|xi|p

)1/p

and for p = ∞ by

∥x∥∞ =
n

max
i=1
{|xi|}.

It is easy to check that these norms satisfy non-negativity and linear homogeneity; the
proof of subadditivity is omitted from these notes but can be found in many textbooks.

Lemma 5.27 For x ∈ Rn, the p-norm ∥x∥p is a non-increasing function of p.

Proof. For x = 0 the assertion is trivial, since ∥x∥p = 0 for all p. Otherwise, consider any
x ̸= 0 and any p,q such that 1≤ p < q. We wish to show that ∥x∥p ≥ ∥x∥q. By rescaling
x if necessary, we may assume ∥x∥q = 1. (The rescaling doesn’t affect the validity of
the inequality, since the linear homogeneity property ensures both sides are scaled by
the same amount.) This implies that |xi| ≤ 1 for all i, either because q = ∞ or because
q < ∞, ∑

q
i=1 |xi|q ≤ 1, and every term in the sum is non-negative. Since |xi| ≤ 1 and p < q,

we have |xi|p ≥ |xi|q. Summing these inequalities,

∥x∥p
p =

n

∑
i=1
|xi|p ≥

n

∑
i=1
|xi|q = 1.

Taking the pth root of both sides, ∥x∥p ≥ 1 = ∥x∥q. ■

When x is a vector with just one nonzero coordinate xi, the p-norm ∥x∥p is equal to |xi|
for every p. When x has more than one nonzero coordinate, ∥x∥p is a strictly decreasing
function of p: it is largest when p = 1 and smallest when p = ∞. More generally, having
large 1-norm can often be interpreted as a sign of density (i.e., having many nonzero
coordinates) while having small 1-norm is often interpreted as a sign of sparsity. This
intuition will be put to use later in the course.

Definition 5.28 If V is a vector space and ∥ · ∥ is a norm, the unit ball of ∥ · ∥ is the set
of all vectors in V whose norm is less than or equal to 1.
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Lemma 5.29 If V is a vector space and ∥ · ∥ is a norm, the unit ball of ∥ · ∥ is a closed,
bounded, convex set that is centrally symmetric, meaning that for every vector x in
the unit ball, −x along belongs to the unit ball. Conversely, for any closed, bounded,
centrally symmetric convex set B, there exists a norm whose unit ball is B.

The following important inequality is usually called the Cauchy-Schwartz inequal-
ity.

Lemma 5.30 If ⟨·, ·⟩ is a positive definite inner product on a vector space, then for any
two vectors x,y we have

⟨x,y⟩ ≤ ⟨x,x⟩1/2 · ⟨y,y⟩1/2 ,

with equality if and only if x is a scalar multiple of y or vice-versa.

Proof. If x or y is equal to 0 then both sides of the inequality are zero, so the lemma
holds. Otherwise, note that replacing x and y with ax and by, respectively, multiplies both
sides of the inequality by ab. Hence, we may prove the lemma in the special case when
⟨x,x⟩= ⟨y,y⟩= 1; the general case will then follow by scaling x and y suitably.

When ⟨x,x⟩= ⟨y,y⟩= 1, we have

0≤ ⟨x−y,x−y⟩= ⟨x,x⟩−2⟨x,y⟩+ ⟨y,y⟩= 2−2⟨x,y⟩ .

Furthermore, the inequality is strict when x−y ̸= 0. Hence, we conclude that ⟨x,y⟩ ≤ 1 =

⟨x,x⟩1/2 · ⟨y,y⟩1/2 and that the inequality is strict unless x = y. ■

An easy application of the Cauchy-Schwartz inequality shows that any positive definite
inner product can be used to define a norm on a vector space.

Lemma 5.31 If V is a vector space with a positive definite inner product ⟨·, ·⟩, then the
function defined by

∥x∥= ⟨x,x⟩1/2

is a norm.

Proof. Non-negativity follows from positive definiteness of the inner product, and linear
homogeneity follows from bilinearity. To prove subadditivity, observe that for any x,y,

∥x+y∥2 = ⟨x+y,x+y⟩= ∥x∥2 +2⟨x,y⟩+∥y∥2.

(∥x∥+∥vy∥)2 = ∥x∥2 +2∥x∥∥y∥+∥y∥2.

The Cauchy-Schwartz inequality implies that the right side of the first equation is less than
or equal to the right side of the second equation. ■

For the standard inner product on Rn the norm defined in Lemma 5.31 coincides with the
L2 norm. For other positive definite inner products on Rn, it constitutes a different norm
whose unit ball is an ellipsoidal (egg-shaped) region.
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5.2.3 Differentials and gradients
The gradient of a function on Rn is usually defined using partial derivatives. In this section
we will see that a differentiable function on a vector space V always has a well-defined
“differential” at every point, which is an element of the dual space V ∗. However, to define
the gradient requires choosing an isomorphism between V and V ∗; hence, the gradient of a
multivariate function depends on the choice of inner product structure for the vector space
on which the function is defined.

Definition 5.32 If (V,∥ · ∥) is a normed vector space, a function g : V → R is said to
vanish to first order at 0 if g(x)

∥x∥ → 0 as ∥x∥ → 0, uniformly in x. More precisely, g

vanishes to first order at 0 if for every ε > 0 there exists a δ > 0 such that g(x)
∥x∥ < ε

whenever ∥x∥< δ .

Definition 5.33 If (V,∥ · ∥) is a normed vector space, S ⊆ V , and f : V → R, we say
that f is differentiable at a point x ∈ S if there exists a linear function dfx ∈V ∗, called
the differential of f at x, such that

∀y f (x+y) = f (x)+dfx(y)+g(y),

where the remainder g(y) vanishes to first order at 0. If f is differentiable at every point
of S, we simply say that f is differentiable.

The following lemma explains the relationship between differentials and subdifferen-
tials of convex functions.

Lemma 5.34 If f is a convex function and f is differentiable at x, then the subdifferential
∂ f (x) at the point x is the one-element set {dfx}.

Proof. Let g(y) = f (x+ y)− f (x)− dfx(y). From the Definition 5.33 we know that g
vanishes to first order at 0. On the other hand, g is convex because it is a convex function,
minus a constant, minus a linear function. To complete the proof of the lemma it suffices
to prove that the subdifferential of g at 0 is a singleton set consisting of 0 ∈ V ∗, i.e. the
constant function that maps every vector in V to 0. From Definition 5.22 we know that
the subdifferential ∂g(x) is a nonempty set. To prove it equals {0}, let h be any nonzero
element of V ∗ and we will show h ̸∈ ∂g(0). Suppose y is a vector such that h(y) ̸= 0.
Replacing y with −y if necessary, we can assume h(y) > 0. Now, since h ∈ ∂g(0), we
have g(z)≥ g(0)+h(z−0) = h(z) for all vectors z. In particular, letting z = ty for t ∈ R,
we find that g(z) = th(y) and

lim
t→0

g(z)
∥z∥

= lim
t→0

t h(y)
t ∥y∥

=
h(y)
∥y∥

> 0.

This contradicts the fact that g vanishes to first order at 0. ■

Closely related to the differential of a function is its gradient, which encodes informa-
tion about the derivative of f in the form of a vector in V rather than V ∗.

Definition 5.35 If V is a vector space, ⟨·, ·⟩ is a non-degenerate inner product, and
f : V → R is a function differentiable at x, the gradient of f at x, denoted by ∇fx, is
the image of the differential dfx under the isomorphism V ∗→V induced by the inner



5.2 Convexity and norms 81

product.

When V = Rn with the standard inner product structure, these definitions accord with
the usual definitions given using partial derivatives. The differential of f is the row vector

dfx =
[

∂ f
∂x1

∂ f
∂x2
··· ∂ f

∂xn

]
and the gradient ∇fx is the column vector obtained by transposing this row vector.

■ Example 5.36 This example illustrates the difference between the gradient with respect
to the standard inner product and the gradient with respect to a non-standard inner product.
Let V = R2 and consider the function f : V → R defined by f (x1,x2) = 4x2

1 + x2
2.

To calculate the differential of f at x = [ x1
x2 ], we expand f (x+y) in powers of y1 and

y2:

f (x+y)= 4(x1+y1)
2+(x2+y2)

2 =(4x2
1+x2

2) + (8x1y1+2x2y2) + (4y2
1+y2

2)= f (x)+(8x1y1+2x2y2)+g(y),

where the function g(y) = 4y2
1 + y2

2 vanishes to first order at 0. This indicates that

dfx(y) = 8x1y1 +2x2y2.

The right side of the equation is a linear function of y ∈R2. In other words, the differential
of f an element of (R2)∗, as expected.

The gradient of f with respect to the standard inner product is obtained by stacking the
two partial derivatives of f into a vector.

∇fx =

[
8x1
2x2

]
.

What about the gradient of f with respect to the non-standard inner product defined by

⟨x,y⟩= 2x1y1 + x2y2.

The gradient ∇fx is defined to be the image of dfx under the isomorphism (R2)∗→ R2

induced by the inner product. In other words, ∇fx is the unique vector z = [ z1
z2 ] that satisfies

∀y = [ y1
y2 ] ⟨z,y⟩= 8x1y1 +2x2y2.

Recall that the inner product ⟨z,y⟩ is defined to be 2z1y1 + z2y2. So, for all y ∈ R2, we
require the equation

8x1y1 +2x2y2 = 2z1y1 + z2y2

to hold. Equating the coefficients of y1 and y2, we may conclude that z1 = 4x1 and z2 = 2x2.
Hence,

∇fx =

[
4x1
2x2

]
.

■
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5.2.4 Gradient descent
Minimizing a real-valued function on a vector space is one of the most important opti-
mization problems in Computer Science. Among other uses, it underlies the training of
machine learning models: in that application, each vector in the vector space represents a
different parameter setting for the model, and the function to be minimized is called a “loss
function” and is interpreted as a measure of how poorly the model with those parameters
fits the training data.

The most popular family of algorithms for minimizing real-valued functions on vector
spaces is based on a principle called gradient descent. These are iterative algorithms that
take a sequence of small steps, each in a direction that locally improves the function value.
In this section we introduce the gradient descent algorithm and analyze its performance
when minimizing a convex function. Many of the most important contemporary applica-
tions of gradient descent involve non-convex functions, but the performance guarantees for
gradient descent are much weaker when the function being optimized is non-convex.

The most elementary gradient descent algorithm has a “step size” parameter, η . The
algorithm is as follows.

Algorithm 6 Gradient descent with fixed step size
Parameters: Starting point x0 ∈ Rn, step size η > 0, number of iterations T ∈ N.

1: for t = 0, . . . ,T −1 do
2: xt+1 = xt−η∇fxt

3: end for
4: Output x̂ = argmin{ f (x0), . . . , f (xT )}.

We will analyze the behavior of gradient descent under the following assumptions.

1. V has a positive definite inner product, ⟨·, ·⟩. Gradients and norms of vectors are
defined with respect to this inner product.

2. f is convex.

3. For some L < ∞ called the Lipschitz constant of f , the following inequality is
satisfied by all x,y ∈V .

| f (x)− f (y)| ≤ L · ∥x−y∥.

Let x∗ denote a point in V at which f is minimized. The analysis of the algorithm will
show that if ∥x∗− x0∥ ≤ D then gradient descent (Algorithm 6) with η = ε/L2 finds a
point x̂ where f (x̂)≤ f (x∗)+ ε after T = L2D2/ε2 iterations. The key parameter in the
analysis is the squared distance ∥xt−x∗∥2. The following lemma does most of the work,
by showing that this parameter must decrease if f (xt) is sufficiently far from f (x∗).

Lemma 5.37 ∥xt+1−x∗∥2 ≤ ∥xt−x∗∥2−2η( f (xt)− f (x∗))+η2L2.
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Proof. Letting x = xt we have

∥xt+1−x∗∥2 = ∥x−x∗−η∇fx∥2

= ∥x−x∗∥2−2η ⟨∇fx,x−x∗⟩+η
2∥∇fx∥2

= ∥x−x∗∥2 +2ηdfx(x∗−x)+η
2∥∇fx∥2

≤ ∥x−x∗∥2 +2η( f (x∗)− f (x))+η
2∥∇fx∥2.

The proof concludes by observing that the L-Lipschitz property of f implies ∥∇fx∥ ≤
L. ■

Now, to complete the analysis of gradient descent, let Φ(t) = ∥xt−x∗∥2; we will refer
to Φ as the “potential function” and to Φ(t) as the “potential at time t”. When η = ε/L2,
the lemma implies that for every t such that f (xt)> f (x∗)+ ε , the decrease in potential at
time t is bounded below by

Φ(t)−Φ(t +1)> 2ηε−η
2L2 = ε

2/L2. (5.5)

Since Φ(0) ≤ D and Φ(t) ≥ 0 for all t, the equation (5.5) cannot be satisfied for all
0≤ t ≤ L2D2/ε2. Hence, if we run gradient descent for T = L2D2/ε2 iterations, at least
one of the iterates xt satisfies f (xt)≤ f (x∗)+ ε , and hence the algorithm will set x̂ to be a
point that satisfies such that f (x̂)≤ f (x∗)+ ε .

A few observations about this analysis of gradient descent are in order.

1. The upper bound on the number of iterations does not depend on the dimension of
the vector space. The bound is L2D2/ε2, which depends on the Lipschitz constant of
the function (namely L) and on the distance of the starting point x0 from the optimal
point x∗ (namely D), but the number of iterations required to find an ε-optimal point
does not tend to infinity as the dimension increases, provided those other parameters
do not increase with dimension. This partially explains why gradient descent is
such a useful algorithm for contemporary optimization problems with billions of
parameters, such as training very large neural networks. To be honest, though, in
those applications it is quite unlikely that the initial distance from optimality, D,
would remain constant as the number of parameters tends to infinity.

2. The number of iterations depends quadratically on 1/ε , which is quite bad. Later
in the course we will see a variant of gradient descent that needs only O(log(1/ε))
iterations, when the gradient ∇fx is neither too rapidly nor too slowly varying as x
varies.

3. As noted in Section 5.2.3, the gradient (unlike the differential) is only well-defined
in the context of an inner product structure on V . Under a different choice of inner
product, the gradient of a function would be calculated in a different way, which
would cause gradient descent to behave differently. This can be seen by plotting the
iterations of gradient descent when minimizing a function such as f (x) = 4x2 + y2,
whose level sets are ellipses. The gradient vectors with respect to the standard
inner product are perpendicular to the level sets. The negative gradient (i.e., the
direction of the steps taken by the gradient descent algorithm) is directed toward
a point on the major axis of the ellipse but not toward its center. Hence, gradient
descent with respect to the standard inner product will tend to zig-zag back and forth
across the major axis as it makes it way toward the global minimum of f , repeatedly
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overshooting in the x direction and then correcting its course, while making steady
progress in the y direction. If, instead of the standard inner product, one takes the
gradient of f with respect to the non-standard inner product

⟨x,y⟩= 2x1y1 + x2y2,

then the gradient descent algorithm makes steady progress in both the x and y direc-
tions. Thus, while gradient descent using the standard inner product is adequately
efficient, if one knows something about the geometry of the function being optimized
then choosing an inner product adapted to the geometry of the problem can make
gradient descent even more efficient.

5.3 Geometry in high dimensions
When visualizing high-dimensional vector spaces, it is important to keep in mind some
stark quantitative differences between low-dimensional and high-dimensional geometry.
In high dimensions, when we circumscribe a cube around a sphere, the cube’s volume
exceeds that of the sphere by a greater-than-exponential factor. (In other words, as the
dimension increases, the volume ratio of the two shapes grows faster than any exponential
function of the dimension.) Almost all of the volume of a high-dimensional ball is located
in a thin shell near the surface. In addition, almost all of the ball’s volume is located near
the equator. Finally, if we sample m vectors at random from a d-dimensional ball and m is
subexponential in d, then with high probability all of the vectors are nearly orthogonal to
one another.

5.3.1 Preliminaries
We will derive all of the geometric facts cited above using a few basic facts from geometry
and analysis.

In the vector space Rd there is a function denoted by Vold(·) that assigns to certain
subsets S⊆Rd a non-negative (possibly infinite) number Vold(S) called the d-dimensional
volume of S. The sets for which Vold(S) is defined are called measurable sets and we will
not give a definition here, but we will note that any (topologically) closed subset of Rd

is measurable, and the collection of measurable subsets is closed under complementation
and under taking unions or intersections of countably many sets. The d-dimensional
volume of a set S contained in a d-dimensional hyperplane in Rn (i.e., a set obtained from
a d-dimensional linear subspace by translation) because

Furthermore, the d-dimensional volume satisfies the following properties.

1. The d-dimensional volume of a set is invariant under translations and rotations.

2. When we scale a set by a scale factor λ > 0, its d-dimensional volume is scaled by
λ d . In other words, if we define

λ ·S = {λ ·x | x ∈ S}

and if S is measurable, then λ ·S is measurable and Vold(λ ·S) = λ d ·Vold(S).

3. If A and B are disjoint measurable sets, then Vold(A∪B) = Vold(A)+Vold(B). More
generally, if A1,A2, . . . is an infinite sequence of pairwise disjoint measurable sets,
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then

Vold

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

Vold(Ai).

Define a d-dimensional hyperplane in Rn to be a set obtained from a d-dimensional
linear subspace by translation. For every d-dimensional hyperplane W in Rn we can
let w : W → Rd be any (Euclidean) distance-preserving bijection and define Vold(·) on
measurable subsets of W by specifying that Vold(S) = Vold(w(S)). This definition of
Vold(S) doesn’t depend on the choice of distance-preserving bijection, because Vold is
invariant under translations and rotations.

The volumes of d-dimensional and (d−1)-dimensional sets are related by the following
integral formula.

Fact 5.38 If S⊆ Rd is measurable and Ws = {x ∈ Rd | x1 = s}, then

Vold(S) =
∫

∞

−∞

Vold−1(S∩Ws)ds.

Using Fact 5.38 we can derive the formula for the volume of a cone. If T is a subset of
Rd−1 and h > 0, then a cone of height h with base T is any set congruent to the following
subset of Rd = R×Rd−1:

Cone(T,h) = {x = ((1− t)h, ty) | 0≤ t ≤ 1,y ∈ T}.

Fact 5.39 If T ⊆ Rd−1 is measurable, the volume of Cone(T,h) is h
d Vold−1(T ).

Proof. The intersection Cone(T,h)∩Ws is empty unless 0≤ s≤ h, and then its (d−1)-
dimensional volume is td ·Vold−1(T ), where t is the solution to the equation s = (1− t)h;
in other words, t = 1− s

h . Using Fact 5.38 and the substitution t = 1− s
h we obtain

Vold(Cone(T,h)) =
∫ h

0

(
1− s

h

)d ·Vold−1(T )ds=Vold−1(T ) ·
∫ 1

0
htd dt = h

d Vold−1(T ),

as claimed. ■

Finally, in evaluating the volumes of high-dimensional sets it will be useful for us to
be able to estimate the factorial function up to a constant factor. The following lemma
furnishes the required estimate.

Lemma 5.40 For any positive integer n,

√
en
(n

e

)n
< n! < e

√
n
(n

e

)n
. (5.6)

Proof. Upon taking logarithms, the inequalities stated in the lemma become equivalent to

n ln(n)−n+ 1
2 ln(n)+ 1

2 < ln(n!)< n ln(n)−n+ 1
2 ln(n)+1, (5.7)
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and we will prove the stated inequalities in this equivalent form. For all k and all t ∈ (0,1)
we have

ln(k)+ t (ln(k+1)− ln(k))< ln(k+ t)< ln(k)+ t
k ,

where the left inequality is derived from the fact that the logarithm function is strictly
concave, and the right inequality is derived from strict concavity along with the fact that
the derivative of the natural logarithm at k is 1

k . Integrating with respect to t and applying
the substitution x = k+ t, we find that

ln(k)+ 1
2 (ln(k+1)− ln(k))<

∫ k+1

k
ln(x)dx < ln(k)+ 1

2k . (5.8)

Now, summing over k = 1, . . . ,n−1,

ln(n!)− 1
2 ln(n)<

∫ n

1
ln(x)dx < ln(n!)− ln(n)+

1
2

n−1

∑
k=1

1
k
< ln(n!)− 1

2 ln(n)+ 1
2 , (5.9)

where we have used the fact that ∑
n−1
k=1

1
k < ln(n)+ 1. (To derive that inequality, write

the sum on the left as 1+∑
n−1
k=2

1
k and note that this is bounded above by 1+

∫ n−1
1

dt
t .)

Rearranging terms in (5.9) and using the fact that
∫ n

1 ln(x)dx = n ln(n)−n+1, we derive

n ln(n)−n+ 1
2 ln(n)+ 1

2 < ln(n!)< n ln(n)−n+ 1
2 ln(n)+1 (5.10)

as claimed. ■

5.3.2 Volume distribution near boundary
In this section we will explore a simple consequence of the rule for how Vold transforms
under scaling, Vold(λ · S) = λ d ·Vold(S). We’ll see that this implies almost all of a
high-dimensional sphere’s volume is concentrated in a thin shell near the surface of the
sphere.

Proposition 5.41 Let Bd(r) denote the Euclidean ball of radius r centered at 0 ∈ Rd ,
i.e. the ball of radius r in the L2 norm. For any c > 0, the set of points whose distance
from the boundary of Bd(1) is greater than c/d constitutes less than e−c fraction of the
ball’s volume.

Proof. If c≥ d, then the set of points whose distance from the boundary of B = Bd(1) is
greater than c/d is empty. Otherwise, the set is equal to the interior of the ball Bd(1− c

d ),
so its volume is equal to(

1− c
d

)d Vold(B).

To finish up, we use the inequality 1− x < e−x which is valid for all non-zero x ∈ R.
Applying this inequality with x = c

d , we find that

(
1− c

d

)d
<
(

e−c/d
)d

= e−c

which completes the proof of the proposition. ■
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5.3.3 Estimating the volume of the Euclidean ball
Let Bd

1(r),B
d
2(r),B

d
∞(r) denote the unit balls of radius r in Rd under the L1,L2, and L∞

norms, respectively. In this section we will show that the volume of Bd
2(1) is d−d/2+o(d),

where the expression o(d) in the exponent indicates an error term that grows sublinearly
in d, as d→ ∞. To do so, we will inscribe an L∞ ball inside B = Bd

2(1) and circumscribe
an L1 ball around it, and we’ll bound the volume of B from below and above by these
inscribed and circumscribed shapes.

Lemma 5.42 For any dimension d ≥ 1, Bd
∞(d

−1/2)⊂ Bd
2(1)⊂ Bd

1(d
1/2).

Proof. Every x ∈ Bd
∞(d

−1/2) satisfies |xi| ≤ d−1/2 for i = 1,2, . . . ,d, which implies

d

∑
i=1

x2
i ≤

d

∑
i=1

1
d = 1,

hence x ∈ Bd
2(1). To prove Bd

2(1)⊆ Bd
1(d

1/2), consider any x ∈ Bd
2(1) and let y denote a

vector in {±1}d such that xiyi ≥ 0 for all i; in other words, yi = −1 if xi < 0, yi = 1 if
xi > 0, and yi is an arbitrary element of {±1} if xi = 0. We have

∥x∥1 =
d

∑
i=1
|xi|=

d

∑
i=1

xiyi ≤ ∥x∥2∥y∥2,

where the last step is the Cauchy-Schwartz Inequality. Recalling that ∥x∥2 ≤ 1 and
calculating that ∥y∥2 = d1/2, we find that ∥x∥1 ≤ d1/2, as claimed. ■

Lemma 5.43 The unit balls of the L1 and L∞ norms Rd have volumes

Vold(Bd
1(1)) =

2d

d!
, Vold(Bd

∞(1)) = 2d.

Proof. The L∞ ball Bd
∞ is simply the set [−1,1]d of vectors whose coordinates are all

between −1 and 1. This is a product of d intervals of length 2, so its volume is 2d .
To estimate Vold(Bd

1), first dissect Bd
1 into two congruent pieces: one consisting of the

vectors in Bd
1 whose first coordinate is non-negative, and the other consisting of the vectors

in Bd
1 whose first coordinate is non-positive. (These sets have a non-empty intersection

consisting of vectors whose first coordinate is zero, but the d-dimensional volume of this
intersection is zero.) Both pieces of this dissection are congruent to Cone(Bd−1,1). Hence,

Vold(Bd) = 2Vold(Cone(Bd−1,1)) =
2
d

Vold−1(Bd−1).

Solving this recurrence with the base case Vol1(B1) = 2, we obtain Vold(Bd) = 2d

d! . ■

Proposition 5.44 The volume of the Euclidean unit ball in Rd satisfies(
2√
d

)d

< Vold(Bd
2(1))<

(
2e√

d

)d

. (5.11)
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Proof. By Lemma 5.42 we have Vold(Bd
∞(d

−1/2))< Vold(Bd
2(1))< Vold(Bd

1(d
1/2)). Ap-

plying the rule that scaling a set in Rd scales its volume by λ to the formulas for
Vold(Bd

∞(1)) and Vold(Bd
1(1)), we can calculate the volumes of Bd

∞(d
−1/2) and Bd

1(d
1/2)

exactly and conclude that

2d ·d−d/2 < Vold(Bd
2(1))<

2d ·dd/2

d!
. (5.12)

From Lemma 5.40 we know that 1
d! < ( e

d )
d , and substituting this upper bound for 1

d! into
inequality (5.12), we obtain inequality (5.11). ■

Above we have estimated the volume of a Euclidean unit ball by “sandwiching” it
between the unit balls of the L∞ and L1 norms. A slightly more complicated way to obtain
qualitatively similar estimates is to sandwich the d-dimensional ball between a cylinder
and a cone. The benefit of the latter approach is that it enables us to estimate (within a
constant factor) to volume ratio of the unit balls in d and d−1 dimensions, which will be
helpful in the following section.

Lemma 5.45 For any ε > 0, the Euclidean unit ball B = Bd
2(1) is contained in the cone

C(ε) =
{

x ∈ Rd
∣∣∣εx1 +

√
(1− ε2)(x2

2 + x2
3 + · · ·+ x2

d)≤ 1
}

.

Proof. For any x ∈ B, apply the Cauchy-Schwartz inequality to the two-dimensional
vectors

a =
[

a1
a2

]
=

[
x1√

x2
2 + · · ·+ x2

d

]
, b =

[
ε√

1− ε2

]
.

Observe that ∥a∥2 = ∥x∥2≤ 1 since x∈ B, and that ∥b∥2 = 1. Hence, the Cauchy-Schwartz
Inequality implies ⟨a,b⟩ ≤ 1. Expressing this inequality in terms of the coordinates of the
vector x, we find that x satisfies the inequality defining C(ε). ■

Lemma 5.46 Let Bd = Bd
2(1) and Bd−1 = Bd−1

2 (1) denote the Euclidean unit balls in d
and d−1 dimensions respectively. The volumes Vold(Bd) and Vold−1(Bd−1) obey the
following relation:

2√
e
· Vold−1(Bd−1)√

d
≤ Vold(Bd)≤ 2

√
e · Vold−1(Bd−1)√

d
. (5.13)

Proof. Let A denote the cylinder

A =

{
x ∈ Rd

∣∣∣∣x2
1 ≤

1
d
, x2

2 + x2
3 + · · ·+ x2

d ≤
d−1

d

}
and observe that A⊂ Bd since every x ∈ A satisfies x2

1 + x2
2 + · · ·+ x2

d ≤
1
d +

d−1
d = 1. The

height of cylinder A is 2√
d

and its base is a (d−1)-dimensional ball of radius

r = (1+
1

d−1
)−1/2 > e−1/(2d−2)
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so its volume is

Vold(A) =
2√
d

rd−1 Vold−1(Bd−1)>
2√
e
· Vold−1(Bd−1)√

d
. (5.14)

Recall the infinite cone C(ε) defined in Lemma 5.45, and let −C(ε) denote the set {−x |
x ∈ C(ε)}. The intersection C = C(ε)∩−C(ε) is a union two cones, each of height 1

ε
,

whose common base is a (d−1)-dimensional ball whose radius is (1− ε2)−1/2. If we set
ε = 1√

d
then

(1− ε
2)−1/2 =

(
1− 1

d

)−1/2

=

(
1+

1
d−1

)1/2

< e1/2(d−1).

Vold(C) =
2
d
· 1

ε
·
(
1− ε

2)−(d−1)/2 ·Vold−1(Bd−1)<
2
√

e√
d
·Vold−1(Bd−1) (5.15)

Since Lemma 5.45 tells us that Bd ⊂C(ε) and Bd ⊂−C(ε), we have B⊂C. Combining
the set-theoretic relations A⊆ B⊆C with the volume bounds derived in Inequalities (5.14)
and (5.15), we obtain the relation (5.13) asserted in the lemma statement. ■

5.3.4 Volume distribution near equator
As one consequence of estimating the Euclidean ball’s volume, we can prove that most
of the volume is located in a thin layer near the equator. In fact, letting B = Bd

2(1) denote
the Euclidean unit ball in Rd , if Li(w) = {x ∈ B | −w≤ xi ≤ w} denotes a layer of width
2w centered on the equatorial disc {x ∈ B | xi = 0}, then we will prove that for any c > 0,
the complement of Li = Li

(√
c/d
)

contains only 2e−βc fraction of the volume of B, for
some constant β > 0.

As a warm-up before proving this exponentially small upper bound on the volume
of B \Li, let us prove a simpler upper bound showing that for any c > 1, the set Ci =
B \Li(

√
c/d) contains at most 1

c of the volume of B. The key observation is that every
point x ∈ B belongs to fewer than d/c of the sets C1,C2, . . . ,Cd . Indeed, if x ∈ Ci then
x2

i > c/d, and the constraint ∑
d
i=1 x2

i ≤ 1 ensures that fewer than d/c indices i satisfy the
inequality x2

i > c/d. Since C1,C2, . . . ,Cd are subsets of B and every point of B belongs to
fewer than d/c of them, their combined volume is less than d

c Vol(B). Since all of the sets
are congruent to each other, they all have the same volume, which must therefore be less
than 1

c Vol(B).

Proposition 5.47 Let B = Bd
2(1) denote the Euclidean unit ball, and for some c≥ 4 let

L = Li(
√

c/d) denote the layer of width 2
√

c/d around the equator. The volume of
B\L satisfies

Vold(B\L)<
√

e
c

e−c/2 Vold(B).

Proof. If c≥ d then B\L is an empty set and there is nothing to prove. Assume henceforth
that c < d. Then the set B\L consists of two congruent spherical caps. The base of each
spherical cap is a (d− 1)-dimensional ball Bd−1

2 (r) whose radius r satisfies r2 + c
d = 1.
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For c≥ 4 this implies r < 1− c
2(d−1) < e−c/2(d−1). Applying Lemma 5.45 with ε =

√ c
d ,

we know that B is contained in the infinite cone C(ε). The portion of this cone sitting
above the hyperplane {x1 = ε} has base consisting of the points x such that x1 = ε and
x2

2+x2
3+ · · ·+x2

d ≤ 1−ε2 = 1− c
d = r2; this matches the base of the spherical cap. Hence,

the volume of the spherical cap is less than the volume of the cone, which is

1
d
·
(

1
ε
− ε

)
· rd−1 ·Vold−1(Bd−1)<

√
1
cd
· e−c/2 ·Vold−1(Bd−1) <

1
2

√
e
c

e−c/2 ·Vold(Bd),

where the last inequality follows from Lemma 5.46. ■

5.3.5 Random high-dimensional vectors are nearly orthogonal
In d dimensions, if non-zero vectors z1, . . . ,zk are pairwise orthogonal, meaning that the
dot product of any two of them is zero, then the vectors are linearly independent2 and thus
k must be less than or equal to d. In this section we will see that the situation is completely
different if we require the vectors to be nearly orthogonal, meaning that the angle between
any two of them lies in the interval from π

2 − ε to π

2 + ε radians, for some arbitrarily small
ε > 0. We will prove that the maximum number of pairwise nearly orthogonal vectors in d
dimensions grows exponentially with d, for any fixed ε > 0. The proof that we present
shows, in fact, that if m < e−ε2d/16, then with high probability a random set of m vectors
sampled independently and uniformly at random from the unit ball Bd in d-dimensional
Euclidean space will be pairwise nearly orthogonal. This is an illustration of a powerful
technique called the probabilistic method in which one proves that an object having a
certain property exists by showing that a random object possesses the property with positive
probability. (In the case presented here, the “object” in question is a collection of m vectors
in Rd , and the property is pairwise near orthogonality.) In many cases, including this
one, directly constructing an object with the required property is much more difficult than
proving the existence of such an object using the probabilistic method.

At the heart of our proof that a random m-tuple of vectors in Bd are likely to be pairwise
nearly orthogonal is the following lemma concerning the probability that two random
vectors form an angle that differs from π

2 by more than ε .

Lemma 5.48 Suppose x,y are two random vectors sampled independently and uniformly
at random from Bd . Let θ ∈ [0,π] denote the angle formed between x and y. For any ε

such that 0 < ε < 1
8 and any d > 4e

ε2 , the probability that |π2 −θ |> ε is less than 2e−ε2d/8.

Proof. The joint distribution of the pair x,y is rotation-invariant, so the conditional distri-
bution of the angle θ given that y is parallel to the standard basis vector e1 is the same as
the unconditional distribution of θ . Furthermore, since θ depends only on the orientations
of x and y, not their lengths, we can condition on the event y = e1 without affecting the
distribution of θ .

Recalling now that the dot product of two vectors is equal to the product of their lengths,
times the cosine of the angle between them, we find that our assumption that y = e1 allows

2One way to see this must be the case is to consider the linear function fi(x) = ⟨zi,x⟩ for i = 1,2, . . . ,k.
By assumption, f(x) evaluates to zero at z j for any j ̸= i, hence f(x) = 0 whenever x is a linear combination
of {z j | j ̸= i}. However, f(zi) = ⟨zi,zi⟩> 0, so zi is not a linear combination of {z j | j ̸= i}. Since this holds
for every i, we may conclude that z1, . . . ,zk are linearly independent as claimed.
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us to calculate the cosine of θ as follows.

cos(θ) =
⟨x,y⟩
∥x∥2∥y∥2

=
x1

∥x∥2
. (5.16)

Using the identity sin
(

π

2 −θ
)
= cos(θ), we find that the event |π2 −θ |> ε is equivalent

to the event

|sin(θ)|> sin(ε).

The inequality sin(ε)> ε/2 is valid whenever 0 < ε < 1
8 , hence

Pr
(∣∣∣π

2
−θ

∣∣∣> ε

)
≤ Pr

(
|x1|
∥x∥2

>
ε

2

)
≤ Pr(∥x∥2 < 1− ε)+Pr

(
|x1|> (1− ε) · ε

2

)
.

(5.17)

The second inequality follows because the inequality |x1|
∥x∥2

> ε

2 is only satisfied when at
least one of the following two events happens: either ∥x∥2 < 1− ε or |x1| > (1− ε) · ε

2 .
Therefore the event |x1|

∥x∥2
> ε

2 is contained in the union of the latter two events, and its
probability is bounded above by the sum of their probabilities.

Proposition 5.41 implies that the probability of the event ∥x∥2 < 1−ε is less than e−εd,

which is less than e−ε2d/8 due to our assumption that ε < 1/8. Applying Proposition 5.47
with c= ε2d/4, and hence

√
c/d = ε/2, we find that the probability of the event |x1|> ε/2

is less than
√

4eε2de−ε2d/8, which is less than e−ε2d/8 due to our assumption that d > 4e
ε2 .

To sum up, we have shown that both probabilities on the right side of (5.17) are less than
e−ε2d/8, hence the probability on the left side is less than 2e−ε2d/8. ■

Proposition 5.49 For every ε,d,m satisfying 0 < ε < 1
8 , d > 4e

ε2 , m < eε2d/16, if vectors
x1, . . . ,xm are drawn independently and uniformly at random from the Euclidean unit ball
Bd ⊂ Rd , then with probability at least 1

2m every pair of vectors in the set {x1, . . . ,xm}
forms an angle between π

2 − ε and π

2 + ε .

Proof. We can use Lemma 5.48 to put an upper bound on the expected number of pairs
xi,x j that form an angle θ such that |π2 −θ |> ε . The probability that any one such pair
forms such an angle is less than 2e−ε2d/8, which is less than 2

m2 by our assumption on m.
The number of unordered pairs {xi,x j} with i ̸= j is(

m
2

)
=

m2−m
2

.

By linearity of expectation, the expected number of (unordered) pairs {xi,x j} that form an
angle θ not lying between π

2 − ε and π

2 + ε is less than

2
m2 ·

m2−m
2

= 1− 1
2m

.

The proposition follows, since a non-negative integer-valued random variable must always
satisfy the inequality E[X ]≥ Pr(X > 0). ■
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5.4 Matrices
A matrix is a two-dimensional array of real numbers, M, with entries denoted by Mi j. Here,
the ranges of i and j are finite intervals [m] = {1,2, . . . ,m} and [n] = {1,2, . . . ,n}, where
m and n are the number of rows and columns, respectively, of the matrix M.

Matrices play at least three distinct important roles in mathematics, computer science,
and data science.

1. They encode information that takes the form of a two-dimensional array. A running
example in this section will be a matrix encoding course enrollments in a department,
with two rows that tabulate the number of undergraduate and graduate students,
respectively, and with one column for each course offered by the department. In this
example, the column for course j would contain entries M1 j and M2 j encoding the
number of undergraduates and grad students, respectively, enrolled in course j.

2. An m×n matrix can encode a linear transformation from Rn to Rm. In this encoding,
the matrix M encodes the function T : Rn→ Rm where T (x) is the vector y ∈ Rm

whose coordinates are defined, for each i ∈ [m] by the equation

yi =
n

∑
j=1

Mi jx j.

3. An m× n matrix can also encode a bilinear function on Rm×Rn. A function
A : Rm×Rn→ R is called bilinear if it satisfies

∀x,y ∈ Rm,z ∈ Rn A(ax+by,z) = aA(x,z)+bA(y,z)
∀x ∈ Rm,y,z ∈ Rn A(x,ay+bz) = aA(x,y)+bA(x,z).

Equivalently, A is bilinear if and only if for every y ∈Rn the function f (x) = A(x,y)
is a linear function of x, and for every x ∈ Rm the function g(y) = A(x,y) is a linear
function of y. We say that matrix M encodes the bilinear function A : Rm×Rn→ R
if

A(x,y) =
m

∑
i=1

n

∑
j=1

Mi jxiy j.

5.4.1 Change of basis
One of the tricky things about working with matrices is that we often want to write a matrix
representing “the same thing” as M using a different basis. Doing this can be confusing
because the way to rewrite M depends on what “thing” we are encoding using M.

■ Example 5.50 Let us return to our running example of a matrix M with 2 rows and n
columns, representing the enrollments of n courses by noting the number of undergraduate
students in the first row and the number of graduate students in the second row. A different
matrix representing the same information might have the total number of students in the
first row and the number of graduate students in the second row. Let us call this second
matrix M′. Its relationship to M can be expressed by the formulas

M′1 j = M1 j +M2 j, M′2 j = M2 j
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or more succinctly by the equation

M′ =
[

1 1
0 1
]
M.

The matrix B =
[

1 1
0 1
]

is a “change of basis” matrix describing how the entries of M
transform when we rewrite the data in the format of M′.

To illustrate the subtlety of working with change-of-basis matrices, let us now suppose
that the university’s budget model credits the department with $2 for every undergraduate
student and $1 for every graduate student. (These aren’t realistic numbers, we’re just using
them for the sake of this example.) Consider course j whose enrollment is represented in

the first basis by the vector m j =
[

M1 j
M2 j

]
and in the second basis by the vector m′ j =

[
M′1 j
M′2 j

]
.

The department’s revenue from course j can be calculated by the expression [2 1 ]m j ($2
for every undergraduate student plus $1 for every graduate student), but it can also be
calculated by the expression [2 −1 ]m′ j ($2 for every student, minus $1 for every graduate
student). Evidently, the change of basis which transforms m j to m′ j also transforms the
linear function represented by the row vector [2 1 ] to the one represented by the row vector
[2 −1 ], even though

[2 1 ] ·
[

1 1
0 1
]
̸= [2 −1 ] and

[
1 1
0 1
]
·
[

2
1

]
̸=
[

2
−1
]
.

What’s going on here is that a linear function represented in the first basis by a row
vector r becomes represented in the second basis by a row vector r′ = rB−1. A change of
basis which operates on vectors via left multiplication by B operates on linear functions
(represented as row vectors) via right multiplication by B−1. If we choose to represent
a linear function of m as an inner product ⟨c,m⟩, where c is a column vector, then the
change-of-basis formula becomes even more obscure: the change of basis that transforms
m to Bm acts on c by transforming it into (B−1)⊤c. ■

To derive the correct change-of-basis formulae for different types of vectors and
matrices it is useful to introduce the notion of a based vector space. This is not a widely
used mathematical term, but just a useful term we are using in this course to simplify the
discussion of how to account for a change of basis.

Definition 5.51 A based vector space is a finite-dimensional vector space V together
with a choice of isomorphism β : Rn→V for some n ∈ N.

Recall that Rn has a standard basis e1, . . . ,en where ei has a 1 in its ith coordinate and
0 in every other coordinate. If V is a based vector space then the vectors β (e1), . . . ,β (en)
constitute a basis of V . Conversely, if v1, . . . ,vn is an ordered n-tuple of vectors that form
a basis of V , then there is a unique isomorphism β : Rn→V such that β (ei) = vi. Thus,
giving a vector space V the structure of a based vector space is equivalent to choosing a
basis for V and arranging the elements of the basis into an ordered n-tuple.

For a vector space V whose elements are semantically meaningful (e.g., course enroll-
ments rather than abstract ordered pairs of numbers), giving V the structure of a based
vector space is tantamount to settling on a convention for how to represent elements of
V as n-tuples of numbers. This phenomenon already exists — and is well known — in
the context of one-dimensional vector spaces, where the process of representing physical
quantities as numbers requires choosing units. For example, it is meaningless to say, “The
mass of my textbook is 2.5,” whereas the sentence, “The mass of my textbook is 2.5 kilo-
grams,” is perfectly meaningful. In this case, masses of physical objects can be interpreted
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as elements of an abstract one-dimensional vector space V in which addition represents the
operation of combining two disjoint physical objects. Two different choices of units, such
as kilograms versus grams, are represented by two differed based vector space structures
βkg : R→ V and βg : R→ V that send the element 1 ∈ R to a one-kilogram mass and
a one-gram mass, respectively. Choosing different based vector space structures for a
higher-dimensional vector space V can be interpreted as a higher-dimensional counterpart
to the process of converting between two different systems of units.

Definition 5.52 If V is an n-dimensional vector space and β1 : Rn→V and β2 : Rn→V
are two different based vector space structures on V , the linear transformation β

−1
2 ◦β1 :

Rn→ Rn is represented by an n×n matrix called the change of basis matrix from β1 to
β2.

■ Example 5.53 Returning to our running example, course enrollments can be interpreted
as elements of an abstract two-dimensional vector space V . When course enrollments are
represented as columns of the matrix M in Example 5.50, this corresponds to choosing
a based vector space structure β1 on V that sends e1 to the element of V represented in
matrix M by the column vector

[
1
0
]
, i.e. a course with one undergraduate and no graduate

students. Let us denote this element of V by u, for “undergraduate”. Meanwhile β1(e2)
is the element of V represented in matrix M by the column vector

[
0
1

]
, i.e. a course with

no undergraduates and one graduate student. Let us denote this element of V by g, for
“graduate”.

The matrix M′ represents course enrollments (i.e., elements of V ) in an alternate data
format that corresponds to a different based vector space structure. In this structure, β2(e1)
is the element of V represented in matrix M by the column vector

[
1
0
]
, i.e. a course with

one student in total, but zero graduate students. This is again the vector u ∈V . However,
β2(e2) is the element of V represented in matrix M′ by the column vector

[
0
1

]
, i.e. a course

with zero students in total, but one graduate student! It’s a bit hard to wrap one’s head
around what this means, but the most natural way to interpret it is that adding this vector
to a course enrollment represents the operation of one undergraduate dropping the course
and being replaced by a graduate student. (That operation has zero effect on the total
number of students, but it increments the number of graduate students.) In other words,
β2(e2) = g−u.

Now, let’s compute the change of basis matrix B. It is a two-by-two matrix whose
columns are Be1 and Be2. We can calculate each column as follows.

Be1 = β
−1
2 (β1(e1)) = β

−1
2 (u) = β

−1
2 (β2(e1)) = e1

Be2 = β
−1
2 (β1(e2)) = β

−1
2 (g) = β

−1
2 (u+(g−u)) = β

−1
2 (β2(e1)+β2(e2)) = e1 + e2.

Hence, B =
[

1 1
0 1
]
, consistent with the change of basis formula for converting matrix M to

M′ derived in Example 5.50. ■

As the preceding example makes clear, when a matrix M represents a data table whose
columns belong to a vector space V , if we change from one basis of V to another, the
matrix M is transformed to BM, where B is the change-of-basis matrix. When M represents
a linear transformation from V to W or a bilinear function on V ×W , the rules for how M
transforms under a change of basis for V or W (or both) can be derived by reasoning about
the equations that must be satisfied after the change of basis.

For example, suppose V and W are vector spaces of dimensions n and m, respectively.
Suppose V and W each have two different bases, represented by based vector space
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structures βV 1 and βV 2 in the case of V , and by βW1 and βW2 in the case of W . Let BV and
BW denote the respective change of basis matrices. Consider any linear transformation
T : V →W and let M1,M2 be the matrices that represent T with respect to the based vector
space structures βV 1,βW1 and βV 2,βW2, respectively. Then for all x ∈V,

T (x) = βW1(M1(β
−1
V 1 (x)))

T (x) = βW2(M2(β
−1
V 2 (x)))

hence

βW1 ◦M1 ◦β
−1
V 1 = βW2 ◦M2 ◦β

−1
V 2 .

To isolate a formula for M2 we multiply the last equation on the left by β
−1
W2 and on the

right by βV 2, obtaining

M2 = β
−1
W2 ◦βW1 ◦M1 ◦β

−1
V 1 ◦βV 2 = BW M1B−1

V . (5.18)

■ Example 5.54 We return once more to our running example of course enrollments.
Recall that in Example 5.50, if V is the vector space of course enrollments, we defined
a linear function V → R represented in basis βV 1 by the row vector r = [2 1 ]. When we
transform to the basis βV 2, the change-of-basis formula for a linear transformation specifies
that we should transform r to rB−1

V . This explains the reason why right-multiplication by
the inverse of the change-of-basis matrix is the appropriate way to transform the coefficient
vector of a linear function. ■

Now let us explore how the matrix representing a bilinear function transforms under
change of basis. Recall that a bilinear function A on Rm×Rn is represented by a matrix M
satisfying

A(x,y) =
m

∑
i=1

n

∑
j=1

Mi jxiy j =
m

∑
i=1

xi

n

∑
j=1

Mi jy j = ⟨x,My⟩ .

More generally, if A : V ×W → R is a bilinear function and βV ,βW are based vector space
structures on V and W , respectively, then the matrix M representing A with respect to these
bases satisfies

∀v ∈V, winW A(v,w) =
〈
β
−1
V (v),Mβ

−1
W (w)

〉
.

As before, if V and W each have two based vector space structures, denoted by βV 1,βV 2
and βW1,βW2, and the bilinear function A is represented by matrices M1 and M2 with
respect to these two pairs of based vector space structures, then we have the equation

∀vinV, w ∈W
〈
β
−1
V 2 (v),M2β

−1
W2(w)

〉
=
〈
β
−1
V 1 (v),M1β

−1
W1(w)

〉
.

Let v = βV 2(x) and w = βW2(y).

∀x∈Rm, y∈Rn ⟨x,M2y⟩=
〈
β
−1
V 1 (βV 2(x)),β−1

W1(βW2(y))
〉
=
〈
B−1

V x,B−1
w y
〉
=
〈

x,(B−1
V )⊤M1B−1

W y
〉

where the last step used the identity ⟨Mx,y⟩=
〈
x,M⊤y

〉
. Hence M2 = (B−1

V )⊤M1B−1
W .
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5.4.2 Adjoints and orthogonality
Taking the transpose of a matrix is an important operation in linear algebra. When
the matrix represents a linear transformation between abstract vector spaces, the linear
transformation that corresponds to the transpose of the matrix is called its adjoint and
is defined in the following lemma. Before stating the lemma, we need the following
definition.

Definition 5.55 If V is a finite-dimensional vector space with an inner product ⟨·, ·⟩V , a
based vector space structure β : Rn→V is said to be compatible with the inner product
structure on V if it satisfies

∀x,y ∈ Rn ⟨x,y⟩= ⟨β (x),β (y)⟩V

where ⟨x,y⟩ denotes the dot product of x and y, i.e. the standard inner product structure
on Rn.

Lemma 5.56 If V,W are finite-dimensional vector spaces, each equipped with a non-
degenerate inner product, and T : V →W is a linear transformation, then there is a
unique linear transformation U : W →V called the adjoint of T , that satisfies

∀v ∈V, w ∈W ⟨T v,w⟩= ⟨v,Uw⟩ .

If βV ,βW are based vector space structures on V,W that are compatible with their
respective inner products, and MT ,MU are the matrices representing T and its adjoint U ,
respectively, then MU is the transpose of MT .

Proof. Because the inner product structures on V and W are non-degenerate, there are
isomorphisms ιV : V →V ∗ and ιW : W →W ∗ such that ιV (x) is the linear function f that,
when applied to a vector y ∈V , yields the inner product f(y) = ⟨x,y⟩ , and ιW is defined
similarly using the inner product on W . Let T ∗ : W ∗→V ∗ denote the linear transformation
such that for all g ∈W ∗, T ∗(g) is the linear function f ∈V ∗ defined by f(y) = g(T (y)). Let
U = ι

−1
V ◦T ∗ ◦ ιW . Then for any v ∈V,w ∈W , if we let f = T ∗(ιW (w)), then

⟨v,Uw⟩=
〈
v, ι−1

V (T ∗(ιW (w)))
〉
=
〈
v, ι−1

V (f)
〉
=
〈
ι
−1
V (f),v

〉
= f(v)= ιW (w)(T v)= ⟨w,T v⟩= ⟨T v,w⟩ ,

which verifies that U satisfies the equation defining the adjoint of T . To verify that U is
unique, observe that if U ′ also satisfies the defining equation of the adjoint, then for all
v ∈V, w ∈W,〈

v,Uw−U ′w
〉
= ⟨v,Uw⟩−

〈
v,U ′w

〉
= ⟨T v,w⟩−⟨T v,w⟩= 0.

Since v was an arbitrary vector in V and the inner product on V is non-degenerate, this
implies that Uw−U ′w = 0. Since w was an arbitrary vector in W , this means U =U ′.

Finally, the fact that MU is the transpose of MT can be checked by verifying that the
standard inner product on Rn satisfies ⟨Mx,y⟩ =

〈
x,M⊤y

〉
for all vectors x,y ∈ Rn and

matrices M ∈ Rn×n. ■

A matrix M ∈ Rn×n is called symmetric if M = M⊤, and it is called orthogonal if M⊤

is the inverse of M. Based on Lemma 5.56 we can generalize the definitions of symmetric
and orthogonal matrices to the setting of abstract inner product spaces as follows.
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Definition 5.57 If V is a vector space with a non-degenerate inner product and T :V→V
is a linear transformation, we say that T is self-adjoint with respect to the inner product
on V if it equal to its own adjoint. In other words, a self-adjoint linear transformation is
one that satisfies the equation

⟨T x,y⟩= ⟨x,T y⟩

for all x, y ∈V. We say that T is orthogonal with respect to the inner product on V if its
adjoint is T−1. Equivalently, an orthogonal linear transformation is one that satisfies
the equation

⟨T x,T y⟩= ⟨x,y⟩

for all x, y ∈V.

5.4.3 Symmetric positive definite matrices
A very important set of square matrices are the symmetric positive definite matrices,
i.e. the set of all matrices that represent positive definite inner products on Rn. There are
a number of equivalent characterizations of symmetric positive definite matrices, and all
of them are important in different contexts. In this section we present several equivalent
characterizations and prove their equivalence. A key starting point for the proof is the
following observation.

Lemma 5.58 If V in a vector space of dimension n < ∞ with a positive definite inner
product ⟨·, ·⟩V , then V is isomorphic to Rn with the standard inner product structure. In
other words there is a based vector space structure β : Rn→V such that for all x,y ∈Rn,

∀x,y ∈ Rn ⟨x,y⟩= ⟨βx,βy⟩V . (5.19)

Proof. The proof is by induction on n. When n = 0 there is nothing to prove, since V and
Rn are both singleton sets consisting of the vector 0, whose inner product with itself is 0.

For n > 0, let W be an (n− 1)-dimensional subspace of V , equipped with the inner
product structure obtained by restricting ⟨·, ·⟩V to pairs of vectors in W . There is a
linear transformation T : V →W ∗ that maps each vector x ∈ V to the linear function
fx : W → R defined by fw(w) = ⟨x,w⟩V . Let v1, . . . ,vn be a basis of V . The vectors
T (v1), . . . ,T (vn) ∈W ∗ must be linearly dependent, since dim(W ∗) = dim(W ) = n− 1.
Hence we can express 0 ∈W ∗ as a non-trivial linear combination

0 =
n

∑
i=1

aiT (vi) = T

(
n

∑
i=1

aivi

)
where the coefficients a1, . . . ,an are not all equal to zero. Let v = ∑

n
i=1 aivi, which is a

nonzero vector in V since v1, . . . ,vn is a basis and a1, . . . ,an are not all zero. Recalling the
definition of the linear transformation T , we see that the equation T (v) = 0 means

∀w ∈W ⟨v,w⟩V = 0. (5.20)

Since the inner product on V is positive definite and v ̸= 0, we know that ⟨v,v⟩V > 0.
Rescaling v if necessary, we can assume ⟨v,v⟩= 1. The rescaling doesn’t affect the validity
of (5.20).
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The induction hypothesis implies there is an isomorphism βW : Rn−1→W such that
⟨x,y⟩= ⟨βW x,βW y⟩V for all x,y ∈Rn−1. Let us now define β : Rn→V by specifying that

β

x1
...

xn

= βW

 x1
...

xn−1

+ xnv.

We must verify that this β satisfies Equation (5.19). For any x,y ∈ Rn, let x′,y′ denote the
vectors in Rn−1 obtained by extracting the first n−1 coordinates of x and y, respectively.
We have

⟨βx,βy⟩V =
〈
βW x′+ xnv,βW y′+ ynv

〉
V

=
〈
βW x′,βW y′

〉
V + xn

〈
v,βW y′

〉
V + yn

〈
βW x′,v

〉
V + xnyn ⟨v,v⟩V

Thinking about the four terms on the right side, the induction hypothesis implies that the
first term equals ⟨x′,y′⟩, the second and third terms vanish because of equation (5.20), and
the four term equals xnyn because we normalized v to ensure ⟨v,v⟩= 1. Hence,

⟨βx,βy⟩V =
〈
x′,y′

〉
+ xnyn = ⟨x,y⟩ ,

as desired. ■

Proposition 5.59 For a square matrix M ∈ Rn×n the following properties are equivalent.

1. The bilinear function f (x,y) = ⟨x,My⟩ is a positive definite inner product.

2. M = BB⊤ for some invertible square matrix B.

3. M = BB⊤ for some (possibly rectangular) matrix B whose column space is Rn.

4. M = ∑
m
i=1 aixix⊤i for some coefficients a1, . . . ,am > 0 and some sequence of vec-

tors x1, . . . ,xm ∈ Rn that contains a basis for Rn.

5. M = QDQ⊤ for some orthogonal matrix Q and diagonal matrix D with positive
diagonal entries.

6. M is a symmetric matrix whose eigenvalues are all strictly positive.



6. Markov Chains and Sampling
Algorithms

Markov chains model discrete-time random processes whose future state evolution depends
only on the present state, not on the entire sequence of states leading up to the present. As
such, they represent an important class of probabilistic models. However, in algorithm
design they serve an important additional role: the most popular algorithmic procedure for
sampling from complicated probability distributions is to design an appropriate Markov
chain and simulate its state evolution. This method is known as Markov Chain Monte
Carlo (MCMC). In these notes we will present some aspects of the fundamental theory of
Markov chains and of the MCMC paradigm for designing sampling algorithms.

Before delving into definitions, let us give some examples to illustrate what we mean
by “sampling from complicated probability distributions.”

■ Example 6.1 If G is a q-colorable graph then the uniform distribution on proper q-
colorings of G is easy to define but potentially hard to sample. For example if q≥ 3 and G
is allowed to be an arbitrary graph, it is NP-hard to decide if any q-coloring of G exists, let
alone sample a uniformly random one. ■

■ Example 6.2 Generalizing the preceding example, given a graph G and two parameters
β ,γ , we may want to sample a random labeling of its vertices using labels in some set Σ,
i.e. a random function L : V (G)→ Σ, with probability proportional to

w(L) = ∏
(u,v)∈E(G)

{
β if L(u) = L(v)
γ if L(u) ̸= L(v).

The first example (sampling a random q-coloring) specializes this one by setting |Σ| =
q, β = 0, γ = 1. ■

■ Example 6.3 Given a tuple of non-negative integers (d1,d2, . . . ,dn), consider the set of
graphs with vertex set [n] = {1,2, . . . ,n} such that for all i ∈ [n] the degree of vertex i is di.
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When this set is non-empty, one may wish to draw random samples from it. For example,
sampling graphs from this distribution may be useful for simulating the performance of
algorithms or distributed protocols on networks that resemble (in terms of their size and
degree distribution) observed real-world network topologies. Alternatively, the ability
to draw samples from this distribution may aid a statistician in testing the hypothesis
that a network topology observed in the real world has some structure that is statistically
distinguishable from random graphs with the same size and degree distribution. ■

■ Example 6.4 Suppose we are given:

1. a deep neural network (DNN) that generates random images by transforming an
input layer of independent (Gaussian) random numbers into an output layer of pixels;

2. an image I with some missing pixels.

The DNN defines a probability distribution over output images (i.e., the distribution that
results from feed-forward propagation of Gaussian random numbers at the input layer),
and one may wish to draw samples from the conditional distribution over output images,
conditioned on the pixel values matching the data present in I. For example, this sampling
task may form part of the pipeline in an image completion algorithm: given a DNN that
models natural scenes, and an image with a natural scene in the background and an object
in the foreground that occludes part of the scene, the sampling algorithm could be used to
generate hypothetical completions of the background image. ■

One can define the following class of algorithmic random sampling problems that
includes all of the examples above, along with many other important and practical random
sampling problems.

Definition 6.5 An unnormalized distribution on a finite set X is a function w : X→R≥0
such that

Zw
∆
= ∑

x∈X
w(x)> 0.

The corresponding probability distribution is p(x) = w(x)/Zw. Sampling from w refers
to the process of drawing a random sample x ∈ X with probability p(x) = w(x)/Zw.
Approximately sampling from w refers to any process that draws a random sample x
from X such that for all A⊆ X,

|Pr(x ∈ A)−∑
y∈A

p(y)| ≤ ε

for some specified approximation parameter ε > 0.

One can often specify an unnormalized distribution w by specifying an efficient algo-
rithm to calculate w(x) for every x ∈ X. This brings us to the main question we address
below.

Given an efficient algorithm for evaluating an unnormalized distribution
w(x), when is it possible to efficiently draw random samples from the proba-
bility distribution p = w/Zw?

Before continuing, let us pause to illustrate how the first and last examples above can
be cast as special cases of this problem.
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For the example of sampling a random q-coloring of a graph G = (V,E), we can take
X to be the set of all functions from V to [q] (called “labelings” henceforth), and we can
take w to be a function that assigns the value 1 to labelings that are proper colorings of G
and 0 to all other labelings. Then the probability distribution p is the uniform distribution
on proper colorings of G.

For the example of image completion, we can take X to be the set of all functions
that label each node of the DNN with a number called the node’s activation.1 We can
then define w(x) to be zero if the node activations in x don’t obey the DNN’s weights and
activation functions, or if the values in the output layer don’t match the pixel values given
in the input, I. However, when x does obey the DNN’s weights and activation functions
and matches the given pixel values in the output layer, we define w(x) to be the product of
the (Gaussian) probabilities of the input node activations. Then the distribution p(x) is the
conditional distribution defined in Example 6.4.

6.1 Markov chains and their stationary distributions
In this section we formally define Markov chains, introduce the notion of a stationary
distribution, and identify conditions under which a Markov chain has a unique stationary
distribution such that the marginal distribution of the time-t state is guaranteed to converge
to the stationary distribution as t→ ∞.

Definition 6.6 A Markov chain with (finite) state set X is a probability distribution on
infinite sequences X0,X1, . . . of elements of X, satisfying the Markov property:

∀t > 0∀(x0,x1, . . . ,xt)∈Xt+1 Pr(Xt = xt |X0 = x0, . . . ,Xt−1 = xt−1)=Pr(Xt = xt |Xt−1 = xt−1).

In other words, the conditional distribution of Xt depends only on the value of Xt−1 and
not on any of the values that came before time t−1.

A Markov chain is time-homogeneous if for all pairs (x,y) ∈ X2, and all t > 0,

Pr(Xt = x|Xt−1 = y) = Pr(Xt+1 = x|Xt = y).

For a time-homogeneous Markov chain, the matrix P defined by Pxy = Pr(Xt = y|Xt−1 =
x) is called the transition matrix.

For the remainder of these lecture notes, all the Markov chains we consider will be time-
homogeneous. Accordingly, when we use the term Markov chain below it always implicitly
refers to a time-homogeneous Markov chain.

The probability distribution of a Markov chain’s state at time t can be represented by a
row vector πt ∈ RX, whose xth coordinate is the probability that Xt = x:

(πt)x = Pr(Xt = x).

1Since our formalism requires X to be finite, we must quantize the set of numbers that can be used as a
node’s label. For example, we could limit the label set to be the set of 32-bit floating point numbers, or we
could quantize node activations even more aggressively. Such quantization schemes have been advocated
in the neural network literature, for the sake of making the training and inference process more efficient in
terms of storage space, running time, and energy consumption.
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For t > 0 we can then calculate that

(πt)x = Pr(Xt = x) = ∑
y∈X

Pr(Xt = x∧Xt−1 = y)

= ∑
y∈X

Pr(Xt = x |Xt−1 = y) ·Pr(Xt−1 = y) = ∑
y∈X

(πt−1)yPyx

This can be summarized more succinctly as

πt = πt−1P

and, by induction, we obtain

πt = π0Pt .

Definition 6.7 A probability distribution π is a stationary distribution for a Markov
chain with transition matrix P if it satisfies

πP = π.

A stationary distribution is thus a fixed point of the Markov chain’s transition dynamics: if
the initial state distribution π0 is equal to the stationary distribution π , then every future
state πt is also distributed according to π .

It turns out that every Markov chain with finite state set has a stationary distribution.
This fact, as well as a sufficient condition for the stationary distribution to be unique, can be
deduced from the Perron-Frobenius Theorem, a fundamental theorem from linear algebra
that concerns the eigenvalues of square matrices with non-negative entries.

Definition 6.8 If A is an n× n square matrix with non-negative entries, let GA be
the directed graph (potentially with self-loops) having vertex set [n] and edge set
{(i, j)|Ai j > 0}. We say A is irreducible if GA is strongly connected, and we say A is
aperiodic if the cycle lengths in GA have no common divisor greater than 1.

Irreducible matrices are characterized by the property that every entry of A+A2 +
A3 + . . .+An is strictly positive. Among irreducible matrices, the aperiodic ones are
characterized by the property that for some positive integer k, every entry of Ak is strictly
positive.

Theorem 6.9 — Perron-Frobenius. If A is an irreducible n×n square matrix with non-
negative entries, then A has a unique right eigenvector v ∈ Rn whose components are
strictly positive. The eigenvalue associated to v, called the Perron-Frobenius eigenvalue,
has multiplicity one, and every other (complex) eigenvalue λ ′ satisfies |λ ′| ≤ λ . This
inequality is strict if A is aperiodic.

The proof of the Perron-Frobenius Theorem can be found in many linear algebra textbooks,
for example Felix Gantmacher’s The Theory of Matrices (AMS Chelsea Publishing, 2000).
For the sake of making these lecture notes self-contained, we will prove an easier result
that pertains to Markov chain transition matrices.
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Theorem 6.10 If P is the transition matrix of an irreducible, aperiodic Markov chain
with finite state set, then there is a unique stationary distribution π such that πP = π .
For any starting distribution π0, the time-t state distribution πt = π0Pt converges to π

as t→ ∞. In fact, the convergence is exponentially fast: there are constants C < ∞ and
δ > 0 such that

∥πt−π∥1 ≤C(1−δ )t

for all t ∈ N.

Proof. Since P is irreducible and aperiodic, there exists some k such that all entries of Pk

are positive. Let N = |X| denote the number of states of the Markov chain, and choose
ε < 0 such that all entries of Pk are greater than or equal to ε/N. Let Q = (11⊤)/N. Then

Pk = εQ+(1− ε)R

where R is a non-negative matrix.
A row-stochastic matrix is a non-negative matrix whose row sums are all equal to 1.

Equivalently, the non-negative matrix A is called row-stochastic if A1 = 1; from this charac-
terization it is evident that the set of row-stochastic matrices is closed under multiplication.
Note that Q is row-stochastic since 1⊤1 = N. Furthermore, P is row-stochastic since for
every x ∈ X we have ∑y Pxy = ∑y∈X Pr(Xt = y |Xt−1 = x) = 1. Hence Pk is row-stochastic,
and we may conclude that R is also row-stochastic using the equation

(1− ε)R1 = Pk1− εQ1 = 1− ε1 = (1− ε)1.

For t ≥ 0 let ∆t = πt+1−πt = π0(Pt+1−Pt). We have

∆tQ =
1
N

π0(Pt+1−Pt)11⊤ = 0,

since (Pt+1−Pt)ones = 1−1 = 0. Therefore,

∆t+k = ∆tPk = (1− ε)∆tR.

The inequality ∥vR∥1 ≤ ∥v∥1 holds for any vector v. To prove this, it suffices to verify it
when ∥v∥1≤ 1. A vector whose 1-norm is less than or equal to 1 is a convex combination of
the standard basis vectors and their negations, hence we only need to check that ∥vR∥1 ≤ 1
when v is one of the standard basis vectors. In that case vR is a row of R, i.e. a non-
negative vector whose components sum up to 1, so ∥vR∥= 1. Now, using the inequality
∥vR∥1 ≤ ∥v∥1, we find that

∥∆t+k∥1 ≤ (1− ε)∥∆t∥.

For any t ∈ N, if q = ⌊t/k⌋, then

∞

∑
s=t
∥∆s∥ ≤

∞

∑
r=q

k−1

∑
i=0
∥∆kr+i

≤
∞

∑
r=q

k−1

∑
i=0

(1− ε)r∥∆i∥

=
(1− ε)q

ε
(∥∆0∥1 + · · ·+∥∆k−1∥1)
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This confirms that the sequence πt = π0 +∑
t−1
s=0 ∆s converges absolutely as t→ ∞ and that

the rate of convergence is exponential. Denote the limit point by π . To conclude the proof
we must show that π is a stationary distribution of P. The equation πP = π follows by
observing that

πP = lim
t→∞

(πtP) = lim
t→∞

πt+1 = π.

The fact that π is a probability distribution follows from the fact that πt is a probability
distribution for each t, and that the set of probability distributions on RX is topologically
closed. ■

6.2 Reversible Markov chains and the Metropolis-Hastings
algorithm
In general, computing the stationary distribution of a Markov chain requires solving a linear
system, but there is one case in which the stationary distribution has a simple closed-form
formula. This is the case of a reversible Markov chain.

In this section, for an unnormalized distribution w, we will use the notations w(x) and
wx interchangeably.

Definition 6.11 A Markov chain with transition matrix P is reversible with respect to
(unnormalized) distribution w if it satisfies

wxPxy = wyPyx

for all x,y ∈ X.

Lemma 6.12 If P is reversible with respect to w, then π = w/Zw, is a stationary
distribution for P.

Proof. Multiplying both sides of the reversibility equation wxPxy = wyPyx by the normaliz-
ing constant Z−1

w = (∑x wx)
−1, we find that πxPxy = πyPyx for all x,y ∈ X. Hence,

(πP)x = ∑
y∈S

πyPyx = ∑
y∈S

πxPxy = πx

(
∑
y∈S

Pxy

)
= πx.

■

The reversibility condition can be interpreted as a type of “detailed balance” condition:
at stationarity, the rate of state transitions from x to y equals the rate of state transitions
from y to x, for all state pairs x and y.

The Metropolis-Hastings algorithm is a procedure that takes an unnormalized distribu-
tion w and creates a Markov chain P whose state transitions are computationally easy to
simulate, and whose stationary distribution is w̄. Actually the procedure makes use of an
auxiliary Markov chain K, called the proposal distribution, whose stationary distribution
is simple and often unrelated to w. In many applications the stationary distribution of K
is simply the uniform distribution on X. To define the Metropolis-Hastings algorithm we
assume we have:

1. An unnormalized probability distribution specified by a function κ : X→ [0,1].
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2. A Markov chain K that is reversible with respect to κ .

3. Algorithms for sampling state transitions of K and for computing the function κ .

The Markov chain K is called the proposal distribution for the Metropolis-Hastings
procedure. As stated earlier, in many applications κ(x) = 1 for all x (i.e., the normalization
of κ is the uniform distribution on X) and the reversibility condition κxKxy = κyKyx simply
states that the Markov transition matrix K is a symmetric matrix.

Now for x ̸= y define

Pxy = Kxy ·κx ·
min

{
wx,wy

}
wx

, (6.1)

and define Pxx = 1−∑y̸=x Pxy. Note that

∑
y̸=x

Pxy = κx ·

(
∑
y̸=x

Kxy
min

{
wx,wy

}
wx

)
≤ κx ·

(
∑
y̸=x

Kxy

)
≤ κx ≤ 1,

so Pxx ≥ 0. Thus, P is indeed a Markov transition matrix.

Lemma 6.13 The Markov chain P defined by Equation (6.1) is reversible with respect
to w.

Proof. Consider any x,y ∈ X. If x = y then the equation wxPxy = wyPyx holds trivially.
Otherwise,

wxPxy = Kxy ·κx ·min
{

wx,wy
}

wyPyx = Kyx ·κy ·min
{

wy,wx
}
.

The lemma follows because min{wx,wy}= min{wy,wx} and because our assumption that
K is reversible with respect to κ implies Kxyκx = Kyxκy. ■

An algorithm to simulate state transitions of the Markov chain P can be described as
follows. Suppose the current state of the Markov chain is x ∈ X.

1. Using the sampling oracle for Markov chain K, sample “proposed state” y ∈ X with
probability Kxy.

2. Compute wx,wy, and κx.

3. With probability minwx,wy
wx

·κx, transition to state y.

4. Otherwise, remain at state x.

■ Example 6.14 — Glauber dynamics for sampling q-colorings. To illustrate the
Metropolis-Hastings procedure, we show how to use it to define a simple Markov chain
whose unique stationary distribution is the uniform distribution over proper q-colorings of
a graph G = (V,E). For two labelings x,y : V → [q] define their Hamming distance as

d(x,y) = #{v ∈V | x(v) ̸= y(v)}.

Assume that q is large enough that the graph whose vertices are proper q-colorings of
G, and whose edges are pairs of colorings whose Hamming distance is 1, constitutes a
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non-empty connected graph. (If this graph is not connected, the Markov chain defined here
will be reducible and it will have multiple stationary distributions.)

We will take κ(x) = 1 for all x ∈ X, and for our proposal distribution we will define
n = |V | and

Kxy =


1

nq if d(x,y) = 1
1
q if x = y

0 otherwise.

A state transition of K can be simulated by the following algorithm: starting from state x,
sample vertex v ∈V and color c ∈ [q] independently and uniformly at random, and let y be
the state obtained from x by recoloring v with color c and leaving all other colors the same.
From the definition of K it follows easily that Kxy = Kyx, i.e. K is reversible with respect to
κ .

Recall that our goal is to design a Markov chain whose stationary distribution is the
uniform distribution on proper q-colorings of G. In other words, we want to draw samples
from the distribution given by the unnormalized density function w such that w(x) = 1
when x is a proper coloring and w(x) = 0 otherwise. To simulate a state transition of the
Markov chain P defined by the Metropolis-Hastings procedure we do the following steps,
starting from state x. Assume that x is a proper coloring.

1. Sample “proposed state” y ∈ X with probability Kxy.
In other words, sample vertex v ∈V and color c ∈ [q] independently and uniformly
at random, and let y be the state obtained from x by recoloring v with color c and
leaving all other colors the same.

2. Compute wx,wy, and κx.
By assumption, x is a proper coloring, so wx = κx = 1. Recall from above that
wy = 1 if and only if y is a proper coloring. Since x is a proper coloring and y is
obtained from x by recoloring v, we only need to check whether every edge incident
to v remains properly colored. In other words, to execute this step we merely need
to test whether vertex v has any neighbor whose color is already c. If so, wy = 0;
otherwise, wy = 1.

3. With probability min{wx,wy}
wx

·κx, transition to state y.
The probability in question is 1 if the color of every neighbor of v is different from c,
and 0 otherwise.

4. Otherwise, remain at state x.

Hence, the Metropolis-Hastings Algorithm in this case corresponds to the following very
simple procedure. The starting state of the Markov chain is any proper coloring of G.
To simulate one state transition, we sample a uniformly random vertex v and uniformly
random color c, and we change the color of v to c if and only if the color of every neighbor
of v is different from c. This Markov chain on the set of proper colorings of G is called
Glauber dynamics. ■

6.3 Mixing time
The ability to efficiently simulate state transitions of a Markov chain whose stationary
distribution is π doesn’t necessarily imply the ability to efficiently draw samples from π ,



6.4 Coupling 107

or from a distribution close to π. The reason is that the Markov chain might be slowly
mixing: for small — or even moderately large — values of t, the state distribution after t
steps, πt , might be quite far from the eventual stationary distribution, π . Distance between
distributions is often measured using the total variation distance (also known as statistical
distance):

∥π−π
′∥TV = max

S⊂X
{|π(S)−π

′(S)|}= 1
2∥π−π

′∥1.

(The second equation can be confirmed by observing that the maximum of |π(S)−π ′(S)|
is attained when S = {x | π(x)> π ′(x)}.)

Definition 6.15 For any ε > 0 and any irreducible Markov chain P, the ε-mixing time
τP(ε) is defined to be the smallest t0 such that for all initial state distributions π0 and all
t ≥ t0, the time-t state distribution πt = π0Pt satisfies ∥πt−π∥TV ≤ ε , where π denotes
the stationary distribution of P.

Theorem 6.10 shows that when P is irreducible and aperiodic, the mixing time τP(ε)
depends logarithmically on 1/ε as ε → 0. On the other hand, since we are primarily
interested in Markov chains whose state space |X| is exponentially large (i.e., exponential
in the size of the problem description) it is usually very important to understand how τP(ε)
depends on |X|.

Definition 6.16 A Markov chain P is called rapidly mixing if its mixing time τP(ε) is
bounded above by a polynomial function of log |X/ε|.

Determining which Markov chains are rapidly mixing and which ones aren’t is a very
active research area. In the following section we will present a very useful technique for
proving rapid mixing of Markov chains.

6.4 Coupling
This section presents a method for bounding the mixing time of a Markov chain by
“coupling” two parallel executions of the Markov chain that start from different states but
converge toward occupying the same state as time progresses.

Definition 6.17 If π,π ′ are two probability distributions on a sample set X, a coupling
of π and π ′ is a probability measure ν on ordered pairs (x,x′) ∈ X×X such that the
marginal distribution of x is π and the marginal distribution of x′ is π ′. In other words,
for every set S⊆ X,

ν(S×X) = π(S), ν(X×S) = π
′(S).

The total variation distance has an important characterization in terms of coupling.

Lemma 6.18 ∥π−π ′∥TV = inf{ν(x ̸= x′) | ν a coupling of π,π ′}.

Proof. Let ∆ = {(x,x) | x ∈ X} ⊆ X×X, and let ∆c denote the complementary set,

∆
c = {(x,x′) | x ̸= x′} ⊂ X×X.

The probability denoted by ν(x ̸= x′) in the lemma statement can also (more accurately)
be written as ν(∆c). If ν is a coupling of π and π ′, then for every set S⊆ X,

π(S)−π
′(S) = ν(S×X)−ν(X×S)≤ ν(S× (X\S))≤ ν(∆c).
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Since the inequality holds for every S⊆ X and every coupling ν , it follows that

sup
S⊆X
∥π(S)−π

′(S)∥ ≤ inf{ν(∆c) | ν a coupling of π,π ′}.

The left side is ∥π−π ′∥TV , so we have proven an inequality between the two sides of the
equation asserted by the lemma. To prove the opposite inequality, we directly construct a
coupling ν such that ∥π−π ′∥TV = ν(∆c). For this purpose, let δ = ∥π−π ′∥TV . If δ = 0
then π = π ′ and the coupling can simply be defined by setting ν(x,x) = π(x) = π ′(x) for
all x ∈ X and ν(x,x′) = 0 for x ̸= x′. If δ > 0 then for each x ∈ X let

δ (x) = (π(x)−π
′(x))+ = max{π(x)−π

′(x),0}
δ
′(x) = (π ′(x)−π(x))+ = max{π ′(x)−π(x),0}

and define

ν(x,x′) =

{
min{π(x),π ′(x)} if x = x′

δ−1 ·δ (x) ·δ ′(x′) if x ̸= x′.

If S = {x | π(x)> π ′(x)} then π(S)−π ′(S) = ∥π−π ′∥TV = δ . This justifies the following
identities.

∑
x∈X

δ (x) = ∑
x:π(x)>π ′(x)

(π(x)−π
′(x)) = π(S)−π

′(S) = δ (6.2)

∑
x′∈X

δ
′(x′) = ∑

x:π ′(x)≥π(x)
(π ′(x)−π(x)) = π

′(X\S)−π(X\S) = δ . (6.3)

Using these identities we can see that ν is a coupling of π and π ′.

∑
x′∈X

ν(x,x′)=min{π(x),π ′(x)}+ ∑
x′ ̸=x

δ
−1 ·δ (x)·δ ′(x′)=min{π(x),π ′(x)}+δ

−1 ·δ (x)·∑
x′ ̸=x

δ
′(x′).

If π(x)≤ π ′(x) then min{π(x),π ′(x)}= π(x) and δ (x) = 0, so the right side equals π(x)
as required by the definition of a coupling. If π(x)> π ′(x) then δ ′(x) = 0, so the right side
is equal to min{π(x),π ′(x)}+ δ−1 · δ (x) ·∑x′∈X δ ′(x′). According to equation (6.2) the
sum equals δ , so the entire right side is equal to min{π(x),π ′(x)}+δ (x), which equals
π(x). Thus, in either case, ∑x′∈X ν(x,x′) = π(x) as required by the definition of coupling.
The proof that ∑x∈X ν(x,x′) = π ′(x′) follows similarly. Finally, to prove that ν(∆c) = δ ,
we calculate

ν(∆) = ∑
x∈X

min{π(x),π ′(x)}= ∑
x∈X

(π(x)−δ (x)) = ∑
x∈X

π(x)− ∑
x∈X

δ (x) = 1−δ

and subtract both sides of this equation from 1. ■

A special case of coupling two probability distributions occurs when both of the
probability distributions are Markov chains with the same transition matrix.

Definition 6.19 A Markov coupling with transition matrix P and initial state distribu-
tions π0,π

′
0 is a probability distribution over sequences of pairs {(Xt ,X ′t ) | t = 0,1, . . .}

such that:

1. The distributions of the random sequences X0,X1,X2, . . . and X ′0,X
′
1,X

′
2, . . . are

both Markov chains with transition matrix P.
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2. The distribution of X0 is π0, and the distribution of X ′0 is π ′0.

Although each of the random state sequences X0,X1, . . . and X ′0,X
′
1, . . . in a Markov coupling

must evolve according to the transition matrix P, they may use shared randomness to evolve
in a correlated way. In particular, by constructing Markov couplings in which Xt and X ′t
tend to become more similar over time, we can bound mixing times of Markov chains.

Lemma 6.20 — Markov Coupling Lemma. Let P be a Markov transition matrix with
stationary distribution π . For any t0 ∈ N and ε > 0, the mixing time bound τP(ε)≤ t0
is implied by the following sufficient condition: every initial state distribution π0 has a
Markov coupling with transition matrix P and initial state distributions π0,π , satisfying
Pr(Xt ̸= X ′t )≤ ε for all t ≥ t0.

Proof. Let π = π ′0 be the stationary distribution of P. Since X ′0 is distributed according to
π and π is stationary for P, the distribution of X ′t must be equal to π for every t > 0 as
well. Letting πt denote the distribution of Xt , we find that the joint distribution of the pair
(Xt ,X ′t ) is a coupling of πt with π . Lemma 6.18 now implies that ∥πt−π∥TV ≤ ε for all
t ≥ t0, hence τP(ε)≤ t0. ■

■ Example 6.21 — Lazy random walk on the hypercube. As a first example of a
Markov coupling, let us analyze the following Markov chain with state space probspc =
{0,1}n, called “lazy random walk on the hypercube.” Given state Xt ∈ {0,1}n, the follow-
ing state Xt+1 is sampled by setting Xt+1 = Xt with probability 1

2 , and otherwise choosing
one of the n bits of Xt uniformly at random and flipping that bit to obtain Xt+1. The state
transition dynamics can equivalently be described by a process that inverts the order of the
two random decisions, i.e. which bit to flip and whether or not to be “lazy” and remain at
Xt .

1. Sample a coordinate it ∈ [n] uniformly at random.

2. Sample a uniformly random bit bt ∈ {0,1}.
3. Let Xt+1 equal Xt with the itht bit set to bt .

To analyze the mixing time of the lazy random walk on the hypercube, we will use a
Markov coupling. Specifically, consider two Markov chains X0,X1, . . . and X ′0,X

′
1, . . .

that start from (potentially) different initial states but evolve according to the sampling
rule described above, at each time step t using the same random index it and random
bit bt to define the transitions Xt → Xt+1 and X ′t → X ′t+1. An easy inductive argument
establishes that for all t ≥ 0, the strings Xt and X ′t match on the set of coordinates indexed
by It = {is | s < t}. This is true for t = 0 since I0 is the empty set. For t > 0 and i ∈ It ,
either we have i = it , in which case that ith coordinates of Xt and X ′t are both equal to bt , or
i ∈ It−1. In the latter case, by the inductive hypothesis the ith coordinates of Xt−1 and X ′t−1
are equal, and then there is no way for them to become unequal since our Markov coupling
doesn’t allow any coordinates of Xt and X ′t to become unequal if they were equal in the
preceding time step.

Having established that Xt and X ′t match in every coordinate indexed by It , we can
conclude that Xt = X ′t whenever It = [n]. Analyzing the ε-mixing time of the lazy random
walk on the hypercube thus boils down to analyzing the question, “What is the distribution
of the earliest time τ such that Iτ = [n]?” Since the sequence i0, i1, . . . is a sequence of
independent uniform draws from the set [n], this question is just a restatement of the
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coupon collector problem! Our analysis of the coupon collector problem implies that the
answer is

τP(ε) = n lnn+O
(
n/
√

ε
)
.

■

6.4.1 Analyzing Card Shuffling via Coupling
One of the most famous applications of mixing time analysis is to card shuffling: how many
times must one shuffle a deck of cards, if one wants the resulting permutation of the cards
to be close to uniformly distributed? This is a question about the mixing time of a Markov
chain whose states are permutations of the cards, and whose transition probabilities Pστ

represent the probability that a deck of cards initially ordered according to the permutation
σ becomes ordered according to τ after one shuffle.

Of course, to analyze the mixing time of the card-shuffling Markov chain, we need
to specify a mathematical model of the act of shuffling. The most popular such model is
the Gilbert-Shannon-Reeds model. The GSR shuffle of a deck of n cards is the random
permutation obtained by the following procedure, which resembles the physical process of
a “riffle shuffle.”

1. First, one divides the deck into two halves, a “left half” and a “right half”, consisting
of the first m cards and the last n−m cards respectively, where m is a random sample
from the binomial distribution B

(
n, 1

2

)
, i.e. the probability of sampling m cards in

the left half is
(n

m

)/
2n.

2. Next, the left and right halves of the deck are randomly interleaved to form the
shuffled deck. The shuffled deck is assembled from the bottom up, by iteratively
selecting the last remaining card from the left or right half, choosing between them
with probability proportional to the number of cards remaining in each half. In other
words, if ℓ cards remain in the left half and r cards remain in the right half, the
probability that the next card placed into the shuffled deck is from the left half is
ℓ/(ℓ+ r) and the probability that it is from the right half is r/(ℓ+ r).

The following equivalent description of the process is somewhat simpler to state, bears less
resemblance to the physical act of shuffling a deck of cards by riffling two halves together.

1. A random binary string x ∈ {0,1}n is sampled.

2. Let I0 denote the set of i ∈ [n] such that xi = 0, and let I1 denote the set of i ∈ [n]
such that xi = 1. Let m denote the number of elements in I0.

3. The first m cards of the deck are matched, in an order-preserving manner, to the
positions in the permuted deck identified by the index set I0.

4. The last n−m cards of the deck are matched, in an order-preserving manner, to the
positions in the permuted deck identified by the index set I1.

Bounding the ε-mixing time of the Markov chain defined by the GSR shuffle is equivalent
to finding a value of t such that the composition of t random GSR shuffles is ε-close to a
uniformly random permutation in total variation distance. Equivalently, we are looking
for a t such that the inverse of the composition of t random GSR shuffles is ε-close to
uniformly random. Restating the problem in this way is convenient because the second
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description of the GSR shuffle above admits a beautifully simple description of a procedure
for sampling the inverse permutation.

1. Each card selects an element of {0,1} independently and uniformly and random.

2. The cards that selected 0 are moved to the front of the deck, preserving their order.

3. The cards that selected 1 are moved to the end of the deck, preserving their order.

We can couple two executions of the inverse-GSR Markov chain by having the cards choose
identical random bits in both branches of the coupling. Starting from initial permutations
X0 and X ′0 respectively, the states reached after t transitions are permutations defined by
the following rule for sorting cards.

1. Each card i selects a length-t string bt(i) ∈ {0,1}t independently and uniformly at
random.

2. Cards are sorted in lexicographically increasing order of the strings bt(i), breaking
ties according to the card’s position in X0 or X ′0, depending whether we are defining
the permutation Xt or X ′t .

The probability that Xt ̸= X ′t is bounded above by the probability that there exists a pair of
cards i ̸= j such that bt(i) = bt( j). Thus, to bound the mixing time of the GSR shuffle, we
are led to the following question: if n elements of {0,1}t are sampled independently and
uniformly at random, how large must t be so that the probability of two elements being
equal is less than ε? We learned how to resolve this type of question when we learned
about the birthday paradox. The expected number of collisions is

(n
2

)/
2t , so if t is large

enough that
(n

2

)/
2t < ε then the collision probability will be less than ε . We may conclude

that the ε-mixing time of the GSR shuffle satisfies

τP(ε)≤ log2

((n
2

)
ε

)
< 2log2(n)+ log2

(1
ε

)
.

Bayer and Diaconis famously worked out a tight analysis of the mixing time of the GSR
shuffle, showing that τP(ε) =

3
2 log2(n)+Θ(1) where the Θ(1) term depends on ε .

6.4.2 Analyzing Glauber Dynamics via Coupling
Recall the Glauber dynamics for sampling a uniformly random q-coloring of an undirected
graph G. This is the Markov chain whose states are proper colorings of G, and whose
transition dynamics are described by the following sampling process: in state x : V (G)→
[q], sample a uniformly random vertex v and color c, and let y : V (G)→ [q] be the function
defined by setting

y(u) =

{
c if u = v
x(u)if u ̸= v.

If y is a proper coloring then transition from x to y, otherwise remain in state x.
In this section we will prove Glauber dynamics mixes rapidly when q > 4∆, where ∆ is

the maximum degree of a vertex of G. There is a long-standing conjecture that Glauber
dynamics mixes rapidly whenever q > ∆+1. At present, however, the best known result
in this direction asserts that Glauber dynamics mixed rapidly whenever q−1

∆
> α , where

α ≈ 1.763 . . . is the solution to the equation e1/x = x.
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To analyze Glauber dynamics we will use the Markov Coupling Lemma. The construc-
tion of the Markov coupling is very simple to describe. Starting from states X0 and X ′0
sampled from some arbitrary initial distribution π0 and from the stationary distribution,
respectively, we repeatedly update the pair of states by choosing the same vertex v and
color c in both Markov chains. To bound the probability of the event Xt ̸= X ′t , we will
analyze the Hamming distance

d(Xt ,X ′t ) = #{v | Xt(v) ̸= X ′t (v)}.

How does the Hamming distance change when both sides of the coupling undergo a
Markov transition corresponding to choosing vertex v and color c?

1. If Xt(v) ̸= X ′t (v), and Xt+1(v) = X ′t+1(v) = c, then the Hamming distance decreases
by 1. Let us call this event a color merge.

2. If Xt(v) = X ′t (v) but Xt+1(v) ̸= X ′t+1(v), then the Hamming distance increases by 1.
We will call this event a color split. A color split occurs when v is recolored with
color c on one side of the coupling, but on the other side the recoloring doesn’t take
place because a neighbor of v is already colored with c.

3. In all other cases, the Hamming distance is unchanged.

Let dt = d(Xt ,X ′t ). To estimate the probability of a color merge, observe that the probability
of sampling a vertex v such that Xt(v) ̸= X ′t (v) is dt/n, and when such a vertex v is sampled,
a color merge takes place unless we sample a color c which is among the colors of v’s
neighbors in Xt or X ′t . Since v has ∆ or fewer neighbors, there are at least q−2∆ colors that
are not used by v’s neighbors in either Xt or X ′t . Hence, the probability of a color merge is
at least:

Pr(color merge)≥ dt

n
· q−2∆

q
.

Now let’s estimate the probability of a color split. In order for such an event to take place,
v must have a neighbor w such that Xt(w) = c and X ′t (w) ̸= c or Xt(w) ̸= c and X ′t (w) = c.
When this happens, we will say that the color split is blamed on the directed edge (v,w).
Every color split can be blamed on at least one directed edge, possibly more than one.
Now, in order for a directed edge (v,w) to be blamed for a color split, w must be among
the dt vertices whose colors in Xt and X ′t differ, c must be one of the two elements of the
set {Xt(w),X ′t (w)}, and v must be one of the (at most) ∆ neighbors of w, so

Pr(color split)≤ E[number of blamed edges]≤ dt ·
2
q
· ∆

n
=

dt

n
· 2∆

q
.

Combining these two bounds, we find that

E[dt+1 | dt ] = dt−Pr(color merge)+Pr(color split)

≤ dt−
dt

n
· q−2∆

q
+

dt

n
· 2∆

q

=

(
1− q−4∆

qn

)
·dt .

By induction on t,

E[dt ]≤
(

1− q−4∆

qn

)t

·d0 < exp
(
−q−4∆

qn
· t
)
·n. (6.4)
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When t ≥ q
q−4∆

· n ln(n/ε), the right side of (6.4) is less than or equal to ε . Hence, by
Lemma 6.20, the ε-mixing time of Glauber dynamics is bounded above by q

q−4∆
·n ln(n/ε).





7. Probability in Vector Spaces

This chapter introduces some important and commonly used probability distributions,
especially the Gaussian distribution which is ubiquitous in statistics, data science, and
all of the natural and social sciences. We begin by briefly reviewing some material from
probability theory. In doing so, we adopt an unorthodox approach that emphasizes random
variables and the operations one can perform on them, rather than the traditional approach
of starting with sample spaces, events, and probabilities.

7.1 Review of Random Variables
Our presentation of probability will focus on random variables. A random variable X
taking values in a set T can be thought of as a variable whose value definitely belongs to T ,
but the value is undetermined until X is randomly sampled. If φ(x) is a Boolean predicate
on T (i.e., a mapping from T to {TRUE, FALSE}) then there is a number Pr(φ(X)) in [0,1]
called the probability of the event φ(X).

Technically, Pr(φ(X)) is only defined when φ is “measurable.” We will not give the
definition of measurable here, but we will say that when T is a vector space and φ is
any predicate that can defined using continuous functions, equations, and inequalities,
φ is measurable. For example, if X is a real-valued random variable, the predicate
φ(x) = (x≥ 0) is measurable and its probability, written as Pr(X ≥ 0), is a well-defined
number between 0 and 1. Any Boolean predicate that could be defined in an ordinary
programming language is measurable. Henceforth when we use the word “predicate” we
always mean “measurable predicate.”

In addition to being well-defined and non-negative, probabilities must satisfy the
following properties:

1. normalization: Pr(X ∈ T ) = 1.
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2. finite additivity: If φ0 and φ1 are mutually exclusive, meaning no x ∈ T satisfies
φ0(x) and φ1(x), then

Pr(φ0(X)∨φ1(X)) = Pr(φ0(X))+Pr(φ1(X)).

3. monotone convergence: If φ1,φ2, . . . is a countable sequence of predicates,

Pr(∃n ∈ N φn(X)) = lim
N→∞

Pr(∃n≤ N φn(X)).

Two random variables X and Y , taking values in T , are said to have the same distri-
bution, or to be identically distributed, if the equation Pr(φ(X)) = Pr(φ(Y )) holds for
every predicate φ . We will denote the relation “X and Y are identically distributed” by the
notation X ∼ Y . This is an equivalence relation on the set of T -valued random variables,
and its equivalence classes are called probability distributions on T . We will sometimes
use calligraphic font to refer to probability distributions, and we will abuse notation and
write X ∼ X when X is a random variable and X is a probability distribution, to denote
that X is the distribution of X , i.e. that X belongs to the equivalence class X. (The notation
X ∈ X already expresses this relationship, since an equivalence class is by definition a
set. However it’s not customary to think of probability distributions as sets, and it’s more
customary to write X ∼ X when the distribution of X is X.)

If X is a random variable and G is a function, then one can construct another random
variable Y = G(X). The distribution of Y is defined by the property that for every predicate
φ , Pr(φ(Y )) = Pr(φ(G(X))). (Once again, there is a technicality that F must be what is
called a “measurable function”. The set of measurable functions includes any function on
a vector space that can be defined using continuous functions and if-then statements whose
conditional is a measurable predicate is a measurable. Any function that can be written
in an ordinary programming language is measurable. Henceforth, when we use the word
“function” we implicitly mean “measurable function.”)

For a random variable X taking values in T , we say that X is supported in a subset
S⊆ T if Pr(X ∈ S) = 1.

7.1.1 Finitely supported random variables
Given a finite set S ⊆ T and a function p : S→ [0,1] satisfying ∑s∈S p(s) = 1, we can
construct a T -valued random variable X such that Pr(X = s) = p(s) for all s ∈ S. Such
an X is called a finitely-supported random variable, and its support set is the set {s ∈ S |
p(s)> 0}. The distribution of a finitely-supported random variable is uniquely determined
by its support set and by the probabilities of each element of the support set.

7.1.2 Independence
Two random variables X ,Y are independent if they satisfy the equation

Pr(φ(X)∧ψ(Y )) = Pr(φ(X)) ·Pr(ψ(Y ))

for every two predicates φ ,ψ. More generally, a (possibly infinite) set of random variables
{Xi | i ∈ I} is mutually independent if the following equation holds whenever φ1, . . . ,φn is
a finite sequence of predicates and i(1), . . . , i(n) is a finite sequence of distinct indices in
I:

Pr(φ1(Xi(1))∧φ2(Xi(2))∧·· ·∧φn(Xi(n))) =
n

∏
k=1

Pr(φk(Xi(k))).
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If X and Y are two random variables, then one can always construct a pair of indepen-
dent random variables (X ′,Y ′) having the same distributions as X and Y , respectively. More
generally, for any (possibly infinite) index set I, if we are given a probability distribution
Xi for each i ∈ I, then one can construct an I-indexed family {Xi | i ∈ I} of mutually
independent random variables, such that Xi ∼Xi for all i ∈ I.

7.1.3 Real-valued random variables
If X is a random variable taking values in the real numbers, its cumulative distribution
function FX (known as the CDF, for short) is the function

FX(θ) = Pr(X ≤ θ).

It is a theorem that if two R-valued random variables have the same CDF then they are
identically distributed.

Lemma 7.1 If X is a real-valued random variable then its CDF, FX , is a non-decreasing
function that satisfies

lim
θ→∞

FX(θ) = 1, lim
θ→−∞

FX(θ) = 0.

Proof. If θ0 < θ1 then

FX(θ1) = Pr(X ≤ θ0)+Pr(θ0 < X ≤ θ1)≥ Pr(X ≤ θ0) = FX(θ0),

so FX is non-increasing. Since FX(θ) is bounded below by 0 and above by 1 for all θ ,
and FX is non-increasing, it follows that limθ→∞ FX(θ) and limθ→−∞ FX(θ) exist. By
monotone convergence,

lim
θ→∞

FX(θ) = lim
n→∞

FX(n) = Pr(∃n ∈ N X ≤ n) = 1,

since for every real number is less than some natural number. Similarly,

lim
θ→−∞

FX(θ) = 1− lim
θ→−∞

1−FX(θ) = 1− lim
n→∞

1−FX(−n) = Pr(∃n∈N X >−n) = 1,

since every real number is greater than −n for some n ∈ N. ■

An important distribution on R is the uniform distribution on [0,1]. This is the distribu-
tion whose CDF is

Funif(θ) =


0 if θ ≤ 0
θ if 0 < θ < 1
1 if θ ≥ 1.

Equivalently, a random variable X supported in [0,1] is uniformly distributed if and only if
the binary digits of X (after the decimal point) are mutually independent and each of them
is 0 or 1 with equal probability.
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Lemma 7.2 If X is a real-valued random variable whose CDF, FX , is continuous, then
the random variable Y = FX(X) is uniformly distributed in [0,1].

Proof. Consider any θ ∈ (0,1). Since FX(θ) converges to 0 and 1 as θ tends to −∞ and
∞, respectively, and FX is continuous, the intermediate value theorem guarantees that the
set F−1({θ}) is non-empty. Let t denote the maximum element of F−1({θ}). (It is a
non-empty, closed, bounded subset of R, so it has a maximum element.) Then, X ≤ t if
and only if FX(X)≤ θ . Hence,

Pr(Y ≤ θ) = Pr(FX(X)≤ θ) = Pr(X ≤ t) = FX(t) = θ .

Since this equation holds for all θ ∈ (0,1), Y is uniformly distributed. ■

Corollary 7.3 If X is a random variable whose CDF, FX , is continuous and strictly
increasing, and Y is uniformly distributed in [0,1], then X and F−1

X (Y ) are identically
distributed.

Corollary 7.3 gives a useful recipe for drawing random samples from a distribution
with specified CDF, F : one draws a uniformly random sample from [0,1] and applies the
function F−1.

■ Example 7.4 A random variable X is exponentially distributed with rate r if it satisfies

Pr(X > θ) = e−rθ .

Equivalently, X is exponentially distributed with rate r if its CDF is FX(θ) = 1− e−rθ .
Using Corollary 7.3 we can see that one way to sample an exponentially distributed
random variable with rate r is to sample a uniformly random number Y ∈ [0,1] and apply
the transformation X = 1

r ln( 1
1−y). ■

7.1.4 Probability density
If V is a finite-dimensional vector space and f : V → [0,∞) is a function satisfying∫

V f (x)dx = 1 then one can construct a random variable X whose distribution satisfies
Pr(X ∈ S) =

∫
S f (x)dx for every (measurable) subset S ⊂V . We say that f is the proba-

bility density function of X . In the special case when V = R, if X has probability density
function f then its CDF is FX(θ) =

∫
θ

−∞
f (x)dx. Conversely, if the CDF of a real-valued

random variable is differentiable, then the derivative of the CDF is a probability density
function for that random variable.

If X and Y are independent random variables taking values in vector spaces V and
W , respectively, and X and Y have density functions f ,g, respectively, then the random
variable (X ,Y ), which takes values in V ×W , has density function h defined by

h(x,y) = f (x)g(y).

7.1.5 Expected value
If X is a random variable taking values in [0,∞] its expected value (also known as its
expectation) is defined by the formula

E[X ] =
∫

∞

θ=0
Pr(X > θ)dθ =

∫
∞

θ=0
(1−FX(θ))dθ .
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The standard definition of expected value represents it as the weighted average of the
possible values of X , weighted by their respective probabilities. That definition turns
out to be equivalent to the formula above; the following two lemmas state and prove the
equivalence, first for the case when X has finite support and then for the case when X has a
probability density function.

Lemma 7.5 If X is a finitely-support random variable with support set S⊂ [0,∞] then
E[X ] = ∑s∈S s ·Pr(X = s).

Proof. Enumerate the elements of S in increasing order as s1 ≤ s2 ≤ . . . ≤ sn and let
pi = Pr(x = si). For notational convenience let s0 = 0. Then we have

n

∑
i=1

si pi =
n

∑
i=1

i

∑
j=1

(s j−s j−1)pi =
n

∑
j=1

n

∑
i= j

(s j−s j−1)pi =
n

∑
j=1

(s j−s j−1)Pr(X > s j−1) (7.1)

In addition we have∫
∞

0
Pr(X > θ)dθ =

n

∑
j=1

∫ s j

s j−1

Pr(X > θ)dθ =
n

∑
j=1

(s j− s j−1)Pr(X > s j−1). (7.2)

The right sides of Equations (7.1) and (7.2) are identical. The left sides are, respectively,
equal to ∑s∈S s ·Pr(X = s) and E[X ], which completes the proof of the lemma. ■

Lemma 7.6 If X is a [0,∞)-valued random variable that has a probability density
function fX , then

E[X ] =
∫

∞

0
θ fX(θ)dθ .

Proof. The probability density satisfies fX(θ) =
d

dθ
FX(θ). Using integration by parts we

find that∫
∞

0
θ fX(θ)dθ ==

∫
∞

θ=0
(1−FX(θ))dθ +

(
lim

θ→∞
θ · (1−FX(θ))

)
=E[X ]+ lim

θ→∞
θ ·(1−FX(θ)).

(7.3)

The proof divides now into two cases. If the limit on the right side of Equations (7.3) is
zero, then we are done. Otherwise, there is some ε > 0 such that the set

Θε = {θ | θ · (1−FX(θ)> ε}

is unbounded. In this case we claim that both the left and right sides of Equation (7.3)
are infinite. Define an infinite sequence of positive numbers θ1,θ2, . . . recursively, by
choosing θ1 to be any element of Θε and choosing θn+1 to be any element of Θε that
exceeds 2θn. Define θ0 = 0 for notational convenience. Then for any θ ∈ [θn−1,θn] we
have 1−FX(θ)≥ 1−FX(θn), so∫

∞

0
(1−FX(θ))dθ =

∞

∑
n=1

∫
θn

θn−1

(1−FX(θ))dθ ≥
∞

∑
n=1

∫
θn

θn−1

(1−FX(θn))dθ

=
∞

∑
n=1

(θn−θn−1)(1−FX(θn))>
∞

∑
n=1

θn

2
(1−Fx(θn)).
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The sum on the right side is infinite because each summand is greater than ε

2 . Hence, the
right side of Equation (7.3) is infinite, as claimed. As for the left side of (7.3),∫

∞

0
θ fX(θ)dθ =

∞

∑
n=1

∫
θn

θn−1

θ fX(θ)dθ ≥
∞

∑
n=1

∫
θn

θn−1

θn−1 fX(θ)dθ

=
∞

∑
n=1

θn−1(FX(θn)−FX(θn−1))

=
∞

∑
n=1

θn−1 [(1−FX(θn−1))− (1−FX(θn))]

=
∞

∑
n=1

(θn−θn−1)(1−FX(θn))>
∞

∑
n=1

θn

2
(1−FX(θn))

Again, the sum on the last line is infinite because each summand is at least ε/2. ■

For a random variable X that takes both positive and negative values in R, define
X+ = max{0,X} and X− = min{0,X}. Both X+ and −X− are non-negative random
variables. If at least one of them has finite expectation, then E[X ] is defined by the equation

E[X ] = E[X+]−E[−X−].

If E[X+] = E[−X−] = ∞ then the expectation of X is undefined.
An important property of the expectation operator is linearity of expectation: for

real-valued random variables X ,Y , we have

E[X +Y ] = E[X ]+E[Y ]

whenever the terms on the left and right sides are well-defined. Linearity of expectation
also holds for countable sums: if X1,X2, . . . is an infinite sequence of random variables
such that either

1. ∑
∞
n=1 |E[Xi]|< ∞, or

2. each variable Xn is supported on [0,∞],

then

E

[
∞

∑
n=1

Xn

]
=

∞

∑
n=1

E[Xn].

For a random variable X taking values in Rn, one can define the expectation E[X ]
coordinatewise. In other words, the ith coordinate of E[X ] is the expectation of the ith

coordinate of X . Using linearity of expectation for scalar-valued random variables, one
can prove that the expectations of vector-valued random variables satisfy the following
version of linearity of expectation: for any random variables X ,Y taking values in Rn and
any n×n matrices A and B,

E[AX +BY ] = AE[X ] + BE[Y ].

If X is a random variable taking values in a finite-dimensional vector space V , its expec-
tation is defined by choosing a based vector space structure β : Rn → V , and defining
E[X ] = β (E[β−1(X)]). Using linearity of expectation, one can verify that the vector E[X ]
defined by this equation does not depend on the choice of based vector space structure.

We present the following lemma about expectations of products of independent random
variables without proof.
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Lemma 7.7 If X ,Y are independent random variables and f ,g are real-valued functions,
then

E[ f (X)g(Y )] = E[ f (X)]E[g(Y )].

Another useful fact about expected values is Markov’s Inequality, which bounds the
probability that a non-negative random variable exceeds its expected value by a specified
factor.

Lemma 7.8 — Markov’s Inequality. If X is a random variable taking values in [0,∞)
and E[X ]< ∞, then for all θ > 0,

Pr(X ≥ θ)≤ E[X ]

θ
.

Proof. The function G(t) = Pr(X ≥ t) is non-negative and non-increasing in t, so

E[X ] =
∫

∞

0
Pr(X ≥ t)dt ≥

∫
θ

0
Pr(X ≥ t)dt ≥

∫
θ

0
Pr(X ≥ θ)dt = θ ·Pr(X ≥ θ).

Dividing both sides by θ we obtain Markov’s Inequality. ■

7.1.6 Variance and covariance
If X is a real-valued random variable whose expectation is well-defined and finite, the
variance of X is defined by

Var(X) = E
[
(X−E[X ])2] .

An important property of the variance is that when one sums up a sequence of independent
random variables, the variance of their sum equals the sum of their variances.

Lemma 7.9 If X1,X2, . . . ,Xn are independent real-valued random variables, each with
finite variance, then

Var(X1 + · · ·+Xn) =
n

∑
i=1

Var(Xi).

Proof. We will prove the n = 2 case of the lemma, i.e. that the relation Var(X +Y ) =
Var(X)+Var(Y ) holds when X and Y are independent. The full lemma then follows easily
by induction on n, using X = Xn and Y = X1 + · · ·+Xn−1.

Let x̄ = E[X ] and ȳ = E[Y ]. Using the definition of variance, along with linearity of
expectation, we find that

Var(X +Y ) = E
[
(X− x̄+Y − ȳ)2]

= E
[
(X− x̄)2] + 2E [(X− x̄)(Y − ȳ)] + E

[
(Y − ȳ)2]

= Var(X)+Var(Y )+2E [(X− x̄)(Y − ȳ)] .

Since X and Y are assumed to be independent we can apply Lemma 7.7 to conclude that

E [(X− x̄)(Y − ȳ)] = E[X− x̄] ·E[Y − ȳ] = 0

which concludes the proof. ■
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The covariance of two real-valued random variables X and Y is defined by

Cov(X ,Y ) = E [(X−E[X ])(Y −E[Y ])] .

If X and Y are independent one can check, using linearity of expectation, that their
covariance is zero.

For a vector-valued random variable X taking values in Rn, the covariance matrix
Cov(X) is the n×n matrix whose (i, j) entry is Cov(Xi,X j). Equivalently, Cov(X) can be
defined using the formula

Cov(X) = E
[
(X−E[X ]) (X−E[X ])⊤

]
.

7.2 Gaussian distributions
The normal distribution on R is the probability distribution with density function f (x) =
1
Z e−

1
2 x2

, where the normalizing factor 1
Z is chosen to ensure that

∫
∞

−∞
f (x)dx = 1, as

required for a probability density function. The normal distribution (and its multi-
dimensional generalization, the Gaussian distribution) is the most important distribution in
continuous probability theory. One reason for its importance is the Central Limit Theorem,
which says that (under mild conditions) the distribution of the average of n identically
distributed random variables converges to a normal distribution, when suitably shifted and
rescaled.

Theorem 7.10 — Central Limit Theorem. Let X1,X2, . . . be an infinite sequence of
identically distributed real-valued random variables, each with finite expectation µ and
finite variance σ2. Then as n→ ∞,

√
n

σ

(
X1 + · · ·+Xn

n
− µ

)
d−→ N (0,1).

The relation d−→ in the theorem statement is called “convergence in distribution.” It
means that if Fn denotes the CDF of the random variable on the left side and F denotes the
CDF of the random variable on the right side, then Fn(θ)→ F(θ) as n→ ∞, uniformly in
θ . In other words, for every ε > 0 there is some n0 < ∞ such that for all n > n0 and all
θ ∈ R, |Fn(θ)−F(θ)|< ε.

Unfortunately there is no closed-form expression for the CDF of the normal distribu-
tion. This raises the question of how to sample normally-distributed random variables.
Fortunately there is a clever trick that allows drawing two independent normally-distributed
random variables at once. This is based on the observation that if X and Y are independent,
normally-distributed random variables, then the probability density function of the pair
(X ,Y ) is

f (x,y) =
(

1
Z

e−
1
2 x2
) (

1
Z

e−
1
2 y2
)
=

1
Z2 e−

1
2(x2+y2).

Now, represent the pair (X ,Y ) in polar coordinates as (R,Θ) where R and Θ are random
variables satisfying X = Rcos(Θ), Y = Rsin(Θ). We have

1
Z2

∫
∞

−∞

∫
∞

−∞

e−
1
2(x2+y2)dxdy =

1
Z2

∫ 2π

0

∫
∞

0
e−

1
2 r2

r dr dθ (7.4)
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The extra factor of r in the integrand is attributable to the change-of-variables formula for
integrals in polar coordinates, dxdy = r dr dθ . It makes a huge difference because re−

1
2 r2

is the derivative of 1− e−
1
2 r2

. Hence, we can perform the substitution u = 1
2r2 and rewrite

the integral as

1
Z2

∫
∞

−∞

∫
∞

−∞

e−
1
2(x2+y2)dxdy =

1
Z2

∫ 2π

0

∫
∞

0
e−ududθ . (7.5)

This integral formula has a few consequences.

1. It’s easy to evaluate the right side and find that it equals 2π

Z2 . Since the left side must
be equal to 1 (integrating a random variable’s probability density over its support set
always yields 1) we may conclude that Z =

√
2π. Therefore,

The normal distribution N (0,1) has density f (x) = 1√
2π

e−
1
2 x2

.

2. From the right side of Equation (7.5) we can deduce that R and Θ are independent
random variables, Θ is uniformly distributed in [0,2π), and U = 1

2R2 is exponentially
distributed with rate 1. Therefore, one can use the following procedure to draw
samples from N (0,1).

a. Sample Θ uniformly at random from [0,2π).
b. Sample Z uniformly at random from [0,1].
c. Let U = ln( 1

1−Z ).

d. Let R =
√

2U.
e. Let X = Rcos(Θ).

3. An exponentially distributed random variable with rate 1 has expected value 1, so
1
2E[R

2] = 1. Since R2 =X2+Y 2 and X ,Y are identically distributed random variables
with E[X ] = E[Y ] = 0, we have Var(X) = E[X2] = 1

2E[X
2 +Y 2] = 1

2E[R
2] = 1.

Therefore,

A random variable with distribution N (0,1) has variance 1.

If X is a random sample from N (0,1), then the random variable Y = σX +µ has expecta-
tion µ and variance σ2, because

E[Y ] = σE[X ]+µ = µ

Var[Y ] = E[(Y −µ)2] = E[(σX)2] = σ
2E[X2] = σ

2.

The distribution of Y = σX + µ is denoted by N (µ,σ2) and is called the Gaussian
distribution with mean µ and variance σ2.

7.2.1 Moments and cumulants of the normal distribution
Recall the moment generating function and cumulant generating function of a distribution.

MX(t) = E[etX ]

KX(t) = lnMX(t).
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When X is drawn from theN (0,1) distribution, we can evaluate MX(t) and Kx(t) by direct
calculation. Let f (x) = 1

Z e−x2/2 denote the probability density function of N (0,1), where
Z =
√

2π . We have

MX(t) = E[etX ] =
∫

∞

−∞

etx f (x)dx

=
1
Z

∫
∞

−∞

etx−x2/2 dx

=
1
Z

∫
∞

−∞

et2/2 · e−(x−t)2/2 dx

= et2/2 · 1
Z

∫
∞

−∞

e−u2/2 du = et2/2,

where the last line was derived using the substitution u= x−t. Taking the natural logarithm
of both sides, we find that

KX(t) = 1
2t2.

From the Taylor series for MX(t) and KX(t) we deduce that the moments and cumulants of
the normal distribution are as follows.

mn(X) =

{
0 if n is odd
(2k)!
2k·k! if n = 2k is even

κn(X) =

{
0 if n ̸= 2
1 if n = 2

The fact that κ2 is the only non-zero cumulant of the normal distribution explains why
the central limit theorem holds. The following argument is not a rigorous proof but offers
some insight into the justification for the central limit theorem.

Suppose X1,X2, . . . are independent, identically distributed random variables with finite
mean and variance, whose distribution is not necessarily Gaussian. Our goal is to show that
the distribution of the random variable X (n) =

√
n

σ

(
X1+···+Xn

n −µ

)
converges to N (0,1),

where µ and σ2 denote the mean and variance of each Xi. Let Yi =
Xi−µ

σ
√

n and note that

X (n) = Y1 + · · ·+Yn.
To gain some quantative understanding of the distribution of X (n), and why it is similar

to N (0,1), it helps to look at the cumulant generating function KX (n)(t). The following
facts will be extremely helpful.

1. If A and B are independent random variables, then KA+B(t) = KA(t)+KB(t). This
follows by taking the logarithm of both sides of the equation

MA+B(t) = E[eAt+Bt ] = E[eAt ] ·E[eBt ] = MA(t) ·MB(t).

2. If A is a random variable and c is a constant, then KA+c(t) = KA(t)+ ct. This is a
special case of the preceding observation, where B is taken to be a random variable
whose value is deterministically equal to c.
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3. If A is a random variable with mean µ and variance σ2 then

KA(t) = µt +
1
2

σ
2t2 +

∞

∑
m=3

κm(A)
m!

tm.

This is a restatement of the fact that the first two cumulants of A are its mean and
variance.

4. If A is a random variable and α is a scalar, then KαA(t) = KA(αt). This follows by
taking logarithms of both sides of the equation

MαA(t) = E[eαAt ] = E[eαtA] = MA(αt).

Combining these facts, we find that

∀i KXi(t) = µt +
1
2

σ
2t2 +

∞

∑
m=3

κm(Xi)

m!
tm

∀i KXi−µ(t) =
1
2

σ
2t2 +

∞

∑
m=3

κm(Xi)

m!
tm

∀i KYi(t) = K(Xi−µ)/(σ
√

n)(t) =
1
2

σ2t2

σ2n
+

∞

∑
m=3

κm(Xi)

m!
tm

σmnm/2

KX (n)(t) =
n

∑
i=1

KYi(t) =
1
2

t2 +
∞

∑
m=3

κm(Xi)

m!
tm

σmn(m/2)−1
.

As n→ ∞, every term of the infinite sum on the right side of the last line converges to
zero. So, if the series converges absolutely for all t (which is a sufficient condition for
interchanging the limit with the summation) we could conclude that for all t,

lim
n→∞

KX (n)(t) =
1
2

t2 = KN (0,1)(t).

Furthermore, if the pointwise convergence KX (n)(t)→ KN (0,1)(t) were sufficient to con-

clude that X (n) d−→N (0,1), this argument would establish the central limit theorem.
Both of the unresolved technicalities in the above argument can be dealt with by

working with a different generating function, the characteristic function, which is simply
the moment generating function evaluated along the pure imaginary number line instead of
the real number line:

ϕX(t) = MX(it) = E[eitX ].

The relation limn→∞ ϕX (n)(t) = ϕN (0,1)(t) can be proven using a line of reasoning similar
to the argument sketched above for cumulant generating functions. Then, the proof of the
central limit theorem finishes up by applying a powerful theorem called Lévy’s Continuity
Theorem, which says that if limn→∞ ϕX (n)(t) = ϕX(t) for all t ∈ R, then X (n) d−→ X .

7.2.2 Multivariate Gaussian distributions
For vector-valued random variables taking values in Rn, the counterpart of the normal
distribution is the multivariate normal distribution N (0,1), which is the distribution of a
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random vector whose coordinates are independent random samples from N (0,1). In other
words, the density of N (0,1) is the function

f (x) =
( 1

2π

)n/2
e−

1
2(x2

1+x2
2+···+x2

n) =
( 1

2π

)d/2
e−

1
2 ⟨x,x⟩. (7.6)

If X ∼N (0,1), then its expectation and covariance matrix are E[X ] = 0 and Cov(X) = 1,
respectively.

If X ∼N (0,1) then the distribution of X has two key properties that are evident from
Equation (7.6).

1. The n coordinates of X are independent random variables.

2. The distribution of X is rotation-invariant. In other words, for any orthogonal matrix
Q, the random variable QX has the same distribution as X .

A surprising number of identities regarding normally distributed random variables can be
derived from these observations.

Lemma 7.11 If X1, . . . ,Xn are independent random variables, each distributed according
to N (0,1), then 1√

n(X1 + · · ·+Xn) also has the distribution N (0,1). More generally,
for any coefficients a1, . . . ,an ∈ R, not all equal to zero, the random variable Y =
a1X1 +a2X2 + · · ·+anXn has the distribution N (0,a2

1 + · · ·+a2
n).

Proof. Let σ =
√

a2
1 + · · ·+a2

n, and observe that the vector a = 1
σ
(a1,a2, . . . ,an) satisfies

∥a∥2 = 1. Hence, there exists an orthogonal matrix Q whose first row is a. The random
vector X = (X1, . . . ,Xn) has the distribution N (0,1), so QX ∼N (0,1) as well. The first
coordinate of the vector QX is Y/σ , hence Y/σ ∼N (0,1) and Y ∼N (0,σ2). ■

If X is a Rn-valued random variable with distribution N (0,1), B is an invertible
n×n matrix, and µ is any vector in Rn, then the distribution of Y = BX + µ is called a
multivariate Gaussian distribution. The expectation of Y is µ and its covariance is

Cov(Y ) = E
[
(Y −µ)(Y −µ)⊤

]
= E

[
(BX)(BX)⊤

]
= BE[XX⊤]B⊤ = BB⊤,

since E[XX⊤] = Cov(X) = 1. The distribution of Y is denoted byN (µ,BB⊤). The density
of Y can be calculated as follows. Let T denote the function T (x) = Bx+µ. Its inverse
is the function T−1(y) = B−1(y− µ). A small ball B of volume ε > 0 centered at y is
mapped by T−1 to a small ellipsoid E of volume |det(B−1)| · ε centered at x = T−1(y).
We have

Pr(Y ∈ B) = Pr(X ∈ E) =
[
|det(B−1)|

( 1
2π

)n/2
e−

1
2 ⟨x,x⟩+o(1)

]
· ε,

where o(1) denotes an error term that converges to zero as ε→ 0. Thus, the density of Y at
y is |det(B−1)|

( 1
2π

)n/2
e−

1
2 ⟨x,x⟩. Now, recalling that x = T−1(y) = B−1(y−µ), we have

⟨x,x⟩=
〈
B−1(y−µ),B−1(y−µ)

〉
=
〈

y−µ,(B−1)⊤B−1(y−µ)
〉
=
〈

y−µ,(BB⊤)−1(y−µ)
〉
.

The right side depends only on BB⊤, not on B. Thus, if two multivariate Gaussian random
variables have the same mean µ and the same covariance matrix Σ = BB⊤, then they are
identically distributed and their density is

f (y) = det(Σ)−1/2
(

1
2π

)n/2

e−
1
2⟨y−µ,Σ−1(y−µ)⟩.
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Lemma 7.12 If A is a d×n matrix of rank d and X ∼N (0,1) is a Rn-valued multivariate
normal random variable, then Y = AX is a Rd-valued Gaussian random variable with
distribution N (0,AA⊤).

Proof. Using the singular value decomposition, write A as A =USV⊤ where S is a d×n
matrix whose diagonal entries, Sii, are equal to the singular values of A and whose off-
diagonal entries, Si j (i ̸= j), are all equal to zero. We can factor S as S = D [1 0] , where
D is a d×d diagonal matrix with the singular values of A on the diagonal, and [1 0] is a
d×n matrix formed by juxtaposing the d×d identity matrix with a d× (n−d) block of
zeros. Then

Y =UD [1 0]V⊤X .

Let W = [1 0]V⊤X . Since the distribution of X is rotation-invariant and V⊤ is a rotation
matrix, the distribution of W is the same as the distribution of [1 0]X , i.e. the first d
coordinates of X . In other words, W ∼N (0,1), where 1 now refers to the d×d identity
matrix rather than n×n identity. The matrix B =UD is invertible, and we have derived
above that when W ∼N (0,1) and Y =BW for an invertible matrix B, then Y ∼N (0,BB⊤).
To finish up, note that

BB⊤ =UD2U⊤ =USS⊤U⊤ = AA⊤,

so Y ∼N (0,AA⊤) as claimed. ■

We remark that Lemma 7.11 corresponds to the special case of Lemma 7.12 where A has
only one row.

7.3 Matrix Concentration Inequalities
Analogous to the Chernoff and Hoeffding bounds, there are important probabilistic in-
equalities asserting that a sum of independent random matrices is unlikely to be far from
its expected value. These matrix concentration inequalities have powerful applications to
the analysis of randomized algorithms and to understanding the performance of algorithms
applied to random high-dimensional datasets.

In this section we will present two important matrix concentration inequalities, one for
sums of independent bounded matrices and one for singular values of Gaussian matrices.
In later sections of these notes we’ll see applications of both.

7.3.1 The Matrix Chernoff Bound
The matrix Chernoff bound is a generalization of the Chernoff bound for scalar-valued
random variables. The Chernoff bound assumes the random variables are independent and
that each of them obeys some inequalities, namely 0≤ Xi ≤ 1 for all i, and it concludes
that the sum X = X1 + · · ·+XN obeys some inequalities with high probability, namely
(1− ε)E[X ]≤ X ≤ (1+ ε)E[X ]. Similarly, the matrix Chernoff bound assumes that some
symmetric-matrix-valued random variables Xi are independent and that they obey some
inequalities, and it concludes that their sum obeys some inequalities with high probability.
The inequalities are expressed in terms of the Loewner order on symmetric matrices,
defined as follows.
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Definition 7.13 The Loewner order is the partial ordering defined on n×n symmetric
matrices, for any finite n, by the relation

A⪰ B ⇔ ∀x ∈ Rn ⟨x,Ax⟩ ≥ ⟨x,Bx⟩ ⇔ A−B is positive semi-definite.

Theorem 7.14 Suppose X1,X2, . . . ,XN are independent random symmetric matrices
satisfying 0⪯ Xi ⪯ 1 for all i ∈ [N]. Furthermore, suppose their sum X = X1+X2+ · · ·+
XN satisfies a1⪯ E[X ]⪯ b1. Then for 0≤ ε < 1,

Pr
(
X ̸⪰ (1− ε)a1

)
≤ ne−ε2a/2

and

Pr
(
X ̸⪯ (1+ ε)b1

)
≤ ne−ε2b/3.

A proof can be found in Joel Tropp’s monograph “An Introduction to Matrix Con-
centration Inequalities” [Tropp]. The proof is conceptually similar to the proof of the
Chernoff bound for scalar-valued random variables, making use of a matrix-valued version
of the moment generating function. However, to justify all the steps of the proof one needs
inequalities from matrix analysis that are beyond the scope of this course.

While omitting the proof of the Chernoff bound, we offer here some interpretations.

1. When n = 1 we recover the usual Chernoff bound by setting a = b = E[X ]. This is
because a 1×1 matrix is automatically symmetric, and the Loewner order on 1×1
matrices is just the standard ordering of the real numbers.

2. If we allow n> 1 but we restrict X1, . . . ,XN to be diagonal matrices, then the Loewner
order is just the entrywise partial ordering, where A⪰ B if and only if each diagonal
entry of A is greater than or equal to the corresponding diagonal entry of B. We can
apply the Chernoff bound to the ith diagonal entry to deduce

Pr
(
Xii≤ (1−ε)E[Xii]

)
≤ e−ε2a/2 and Pr

(
Xii≥ (1+ε)E[Xii]

)
≤ e−ε2b/3.

The matrix Chernoff bound (for the special case of diagonal matrices) follows by
taking the union bound over all n diagonal entries. Thus, in some sense, the matrix
Chernoff bound generalizes the Chernoff-bound-plus-union-bound combination.

3. Let ⪰ew denote the entry-wise ordering on matrices, where A ⪰ew B if and only
if Ai j ≥ Bi j for all (i, j) ∈ [n]2. Generalizing the reasoning above about the case
of diagonal matrices, we can deduce the following simple matrix concentration
inequality. If X1, . . . ,XN are independent random matrices satisfying 0⪯ew Xi ⪯ew
11⊤, and their sum X = X1 + · · ·+XN satisfies a11⊤ ⪯ew E[X ]⪯ew b11⊤, then

Pr
(
X ̸⪰ew (1−ε)E[X ]

)
≤ n2e−ε2a/2 and Pr

(
X ̸⪯ew (1+ε)E[X ]

)
≤ n2e−ε2b/3.

Compared to the matrix Chernoff bound there are two differences. The minor
difference is the factor n2 rather than n on the right side. The major difference is the
use of the entrywise ordering ⪰ew rather than the Loewner ordering ⪰. Inequalities
in the Loewner ordering tend to be stronger (hence more useful) because the relation
A ⪰ B asserts infinitely many inequalities ⟨x,Ax⟩ ≥ ⟨x,Bx⟩, one for each vector
x ∈ Rn, whereas the relation A⪰ew B asserts only n2 inequalities Ai j ≥ Bi j.
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7.3.2 Singular values of Gaussian random matrices
Matrices of independent Gaussian random variables are frequently used in randomized
algorithms for linear algebraic problems. The following tail bound concerning their
singular values is highly useful for analyzing such algorithms.

Theorem 7.15 Suppose d ≤ n. If A is an m× n matrix with independent entries
each drawn from the distribution N (0, 1

n), then for all ε > 0, with probability at least
1−2e−ε2n/2 the singular values of A satisfy

1+ ε +
√

m/n≥ σ1(A)≥ ·· · ≥ σm(A)≥ 1− ε−
√

m/n.

Again, the proof of the theorem is beyond the scope of these notes; see [DavidsonSzarek]
for a thorough treatment. Here, we limit ourselves to making a few remarks sketching how
to prove a weaker version of the result.

• The conclusion of the theorem asserts that all the eigenvalues of AA⊤ are between
(1−ε−

√
m/n)2 and (1+ε+

√
m/n)2. Note that, when reinterpreted as a statement

about eigenvalues of AA⊤, Theorem 7.15 almost follows from the matrix Chernoff
bound. If ai denote the ith column of A, then the identity AA⊤ = ∑

n
i=1 aia⊤i expresses

AA⊤ as a sum of independent random matrices, each of them symmetric and positive
semidefinite. Since the matrix entries ai j are independent N (0, 1

n) random variables,
the expectation of aia⊤i is 1

n1. So, AA⊤ is a sum of n i.i.d. random symmetric positive
semidefinite matrices, and E[AA⊤] = 1. If each summand aia⊤i were bounded above
by 1 in the Loewner ordering, we could apply the matrix Chernoff bound to conclude
that (1− ε)1⪯ AA⊤ ⪯ (1+ ε)1 with high probability.

• Unfortunately, it is not the case that aia⊤i ⪯ 1 with probability 1. Instead, we have
the inequality aia⊤i ⪯ ∥ai∥2

21, which follows from the Cauchy-Schwartz inequality:

∀x ∈ Rn
〈

x,aia⊤i x
〉
=
(
⟨ai,x⟩

)2 ≤ ∥ai∥2
2∥x∥2

2 = ∥ai∥2
2 ⟨x,1x⟩ .

• Observe that

E
[
∥ai∥2

2
]
=

n

∑
i=1

E[a2
i j] = n ·

(
1
n

)
= 1.

Recall from Problem Set 4 that Pr
(
∥ai∥2

2 > 1+δ
)

is exponentially small in n.

• So, at the cost of an exponentially small failure probability, we can condition on
the event that ∥ai∥2

2 ≤ 1+ δ for all i. Since the n columns of the matrix A are
independent random vectors and the conditioning event for column i depends only
on the random vector ai, the vectors ai remain conditionally independent when we
condition on the event E =

{
∀i ∥ai∥2

2 ≤ 1+δ
}
.

• Conditional on event E, all of the random matrices 1
1+δ

aia⊤i are independent and
are sandwiched between 0 and 1 in the Loewner order, so we can apply the matrix
Chernoff bound to their sum, AAT , to conclude that the conditional probabilities
(given E) of the events AAT ⪯ (1−δ )E[AAT |E] and AAT ⪰ (1+δ )E[AAT |E] are
exponentially small in n.
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• Since E is such a low-probability event, and the distribution of each random column
vector ai is so light-tailed, one can show that

(1−o(1))1⪯ E[AAT |E]⪯ E[AAT ] = 1

where the o(1) term tends to zero (exponentially fast) as n→ ∞.

• A version of Theorem 7.15 with a weaker exponential tail bound (e.g., a worse
constant in the exponent) can be derived by combining the steps of reasoning above.

7.4 Algorithms Based on Random Projections
In the design of algorithms and data structures for linear-algebraic problems, random
matrices play a role analogous to random hash functions in the design of discrete algorithms.
A hash function maps a large set of keys to a much smaller set of buckets. Although
collisions (two keys mapping to the same bucket) are inevitable, they are rare enough
that any small set of keys are probably hashed to distinct buckets. Similarly, a random
rectangular matrix (with more columns than rows) defines a linear transformation from
a high-dimensional vector space to a lower-dimensional space. Again, collisions are
inevitable but if the random matrix is sampled from a suitable distribution — for example,
if the matrix entries are independent Gaussians — then any specific low-dimensional
subspace of the domain has a high probability of being mapped nearly isometrically to a
subspace of the range, meaning that the mapping nearly preserves the distance between
every pair of vectors. The following definition and lemma make this observation precise.

Lemma 7.16 Let A ∈ Rm×n be a random matrix with independent entries each drawn
from the Gaussian distribution N (0, 1

m). Consider any ε > 0 and any linear subspace
W ⊆Rn of dimension d≤ ε2m. With probability at least 1−2e−ε2m/2, left-multiplication
by A preserves the length of every vector in W to within a factor between 1−2ε and
1+ 2ε . In other words, A satisfies the following property with probability at least
1−2e−ε2n/2:

∀w ∈W (1−2ε)∥w∥2 ≤ ∥Aw∥2 ≤ (1+2ε)∥w∥2. (7.7)

Proof. Let B denote an n×d matrix whose first d columns constitute an orthonormal basis
of W . We have

max{∥Aw∥2 : w ∈W,∥w∥2 = 1}=max{∥ABx∥2 : x ∈ Rd, ∥x∥2 = 1}= σ1(AB)

min{∥Aw∥2 : w ∈W,∥w∥2 = 1}=min{∥ABx∥2 : x ∈ Rd, ∥x∥2 = 1}= σd(AB)

Hence, Inequality (7.7) is equivalent to the assertion that 1+2ε ≥ σ1(AB)≥ σd(AB)≥
1− 2ε . To prove these inequalities, we will show that the matrix AB has independent
Gaussian entries and then apply Theorem 7.15.

Let Q be an n× n orthogonal matrix whose first d columns constitute the matrix B.
If a1,a2, . . . ,am are the rows of A, then they are independent random vectors sampled
from the distribution N (0, 1

n1), which is a rotation-invariant distribution. Since Q is an
orthogonal matrix, it follows that the row vectors a1Q,a2Q, . . . ,amQ are also independent
random samples from N (0, 1

n1), i.e. the matrices A and AQ are identically distributed.
Since AB consists of the first d columns of AQ, it follows that AB is a m× d matrix of
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independent entries drawn fromN (0, 1
m). By assumption, d ≤ ε2m so

√
dm≤ ε . Applying

Theorem 7.15 to the matrix (AB)⊤ allows us to conclude that with probability at least
1−2e−ε2m/2, 1+2ε ≥ σ1(AB)≥ σd(AB)≥ 1−2ε , as desired. ■

7.4.1 Dimensionality Reduction and the Johnson-Lindenstrauss Lemma
Suppose you have a dataset consisting of vectors x1,x2, . . . ,xN in Rn. For example, this
could be a collection of photos, each represented as a vector. The representation of a photo
could be a vector of raw pixel values or, more likely, the output of an image processing
algorithm. We are primarily interested in the case when N and n are both quite large.
We will be implicitly assuming that the encoding of data as vectors has the property that
similarity of data items translates to proximity, in the L2 norm, between their corresponding
vectors.

We are interested in projecting the data into a lower dimension, m, such that all
distances between pairs of points are approximately preserved. This greatly reduces the
computational cost of working with the data (e.g., searching for points near a specified
query point) and the communication cost of sending information about the data points over
a network.

In this section we will analyze a very simple dimensionality reduction algorithm
due to Johnson and Lindenstrauss. The idea is simply to project the data from Rn to
Rm using a linear transformation represented by a matrix with independent, identically
distributed Gaussian entries. For now we will leave the dimension of the target space, m,
as an indeterminate. Later we will see that for the purpose of preserving distances up to
multiplicative error ε , it is appropriate to set m = O

(
logN

ε2

)
.

Lemma 7.17 — Johnson-Lindenstrauss Lemma. For any x1,x2, . . . ,xN ∈ Rn and any
0 < ε,δ < 1, if m > 16ln(N/δ )/ε2 and A is a m×n random matrix with independent
entries drawn from the distribution N (0, 1

m), then with probability at least 1− δ 2 the
inequality

(1− ε)∥xi−x j∥2 ≤ ∥Axi−Ax j∥2 ≤ (1+ ε)∥xi−x j∥2

holds for all 1≤ i, j ≤ N.

Proof. Assume without loss of generality that all of the vectors x1, . . . ,xN are distinct. For
any given pair xi,x j, the vector y = xi− x j spans a one-dimensional subspace W ⊆ Rn.
We may apply Lemma 7.16, equating the parameter ε in the statement of that lemma with
ε/2 here. The dimension of W is less than (ε/2)2m so the hypotheses of the lemma are
satisfied. Consequently, the probability that A distorts the length of y by a factor lying
outside the interval [1− ε,1+ ε] is less than

2e−ε2m/8 = 2e−2ln(N/δ ) =
2δ 2

N2 <
δ 2(N
2

) .
Taking the union bound, i.e. summing over all pairs xi,x j, establishes the lemma’s conclu-
sion. ■



132 Chapter 7. Probability in Vector Spaces

7.4.2 Sparse Recovery

We have seen that a random projection from Rn to RO(log(n)/ε2) approximately preserves
the distance between every two elements of a finite set of n vectors. In this section we will
see that it also approximately preserves the distance between every two sparse vectors,
i.e. those with few non-zero components. Putting this fact to use, we will show how to
efficiently recover a sparse vector x given the vector Ax, where A is a Gaussian random
matrix.

Definition 7.18 A vector x ∈ Rn is s-sparse if at least n− s coordinates of x are equal
to zero. A matrix A satisfies the s-restricted isometry property with constant εs if the
inequalities

(1− εs)∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1+ εs)∥x∥2
2 (7.8)

are satisfied for every s-sparse vector x.

Proposition 7.19 For every s≥ 1 and 0< εs,δ < 1, if n≥ s and m> 50
ε2

s
[s ln(n)+ ln(2/δ )] ,

then a matrix A∈Rm×n with independent random entries sampled fromN (0, 1
m) satisfies

the s-restricted isometry property with constant εs, with probability at least 1−δ .

Proof. The inequalities
(

1− 2εs
5

)2
> 1−εs and

(
1+ 2εs

5

)2
< 1+εs are satisfied whenever

0 < εs < 1. Hence, if we let ε = εs/5, then the inequalities (1− 2ε)∥w∥2 ≤ ∥Aw∥2 ≤
(1+2ε)∥w∥2 for a vector w are sufficient to imply (1−εs)∥w∥2

2 ≤ ∥Aw∥2
2 ≤ (1+εs)∥w∥2

2.
For any subset J ⊆ [n] let WJ be the s-dimensional subspace of Rn consisting of vectors

x satisfying xi = 0 for all i ̸∈ J. The s-sparse vectors in Rn are precisely the union of the
subspaces WJ as J ranges over the s-element subsets of [n]. By assumption, s≤ ε2m, so
Lemma 7.16 ensures that for any fixed J, the probability that Inequality (7.8) is violated
by some x ∈WJ is at most 2e−ε2m/2 = 2e−ε2

s m/50. Taking the union bound over s-element
sets J, we find that A satisfies the s-restricted isometry property with constant εs, with
probability at least 1−2

(n
s

)
e−ε2

s m/50. This probability is greater than 1−δ provided that
m > 50

ε2
s
[s ln(n)+ ln(2/δ )]. ■

The main application of matrices with the restricted isometry property is to solve an
inverse problem called sparse recovery where the aim is to identify a sparse vector x ∈ Rn

given the value of b = Ax ∈ Rm. When m < n this is an underdetermined linear system,
meaning there are infinitely many vectors y solving the equation Ay = b. The set of all such
solutions forms a (n−m)-dimensional affine subspace of Rn, but we will see that there is
a unique s-sparse solution provided that A satisfies the 3s-restricted isometry property with
ε < 1

3 . Furthermore, we’ll see that there is an efficient algorithm to find the sparse vector x
satisfying Ax = b.

Definition 7.20 A vector z ∈ Rn is mostly s-sparse if there is an index set J ⊆ [n] with
|J| ≤ s such that

∑
i∈J
|zi| ≥∑

i̸∈J
|zi|.

By definition, a matrix with the s-restricted isometry property approximately preserves
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the 2-norm of every s-sparse vector. Our next lemma shows that the length of every mostly
s-sparse vector is also approximately preserved, albeit with a worse approximation factor,
if we make the stronger assumptions that the matrix satisfies the (3s)-restricted isometry
property and that ε < 1

3 . (The upper bound on ε is used to ensure that the constant factor
on the right side of Inequality (7.9) below is strictly positive.)

Lemma 7.21 Suppose A is a matrix that satisfies the (3s)-restricted isometry property
with constant ε > 0. If z is mostly s-sparse then

∥Az∥2 ≥
1
2

(√
1− ε−

√
1+ε

2

)
∥z∥2. (7.9)

Proof. Without loss of generality assume that the coordinates of z are ordered such that
|z1| ≥ |z2| ≥ · · · ≥ |zn|. Also assume without loss of generality that n = (2m+ 1)s for
some positive integer m. (Otherwise, pad the vector z with zeros and increase the number
of columns of A from n to (2m+1)s, while continuing to satisfy the restricted isometry
property.)

Break the coordinate range [n] = [(2m+1)s] into m+1 blocks J0,J1, . . . ,Jm such that
J0 consists of the first s coordinates, J1 consists of the next 2s coordinates, J2 consists of
the next 2s coordinates after that, and so on. In other words,

Jℓ = {i | i > 0, (2ℓ−1)s < i≤ (2ℓ+1)s}.

Let zℓ be a vector obtained from z by preserving the coordinates in block Jℓ and setting all
other coordinates to zero. In other words,

(zℓ)i =

{
zi if (2ℓ−1)s < i≤ (2ℓ+1)s
0 otherwise.

Since z is mostly s-sparse, and we are assuming the coordinates are sorted so that |z1| ≥
|z2| ≥ · · · ≥ |zn|, we have

∥z0∥1 ≥ ∥z1 + z2 + · · ·+ zm∥1. (7.10)

Another useful observation stemming from the way coordinates are ordered is that 2s ·
∥zi+1∥∞ ≤ ∥zi∥1, because the absolute value of every coordinate of zi+1 is less than or
equal to the absolute value of every coordinate of zi. Combining this observation with the
inequality ∥zi+1∥2 ≤

√
2s∥zi+1∥∞, we obtain

∥zi+1∥2 ≤
1√
2s
∥zi∥1.
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Now, we can bound ∥Az∥2 from below as follows.

∥Az∥2 = ∥A(z0 + z1)+Az2 +Az3 + · · ·+Azm∥2

≥ ∥A(z0 + z1)∥2−
(
∥Az2∥2 +∥Az3∥2 + · · ·+∥Azm∥2

)
≥
√

1− ε ∥z0 + z1∥2−
√

1+ ε
(
∥z2∥2 +∥z3∥2 + · · ·+∥zm∥2

)
(7.11)

≥
√

1− ε∥z0∥2−
√

1+ ε

2s

(
∥z1∥1 +∥z2∥1 + · · ·+∥zm−1∥1

)
=
√

1− ε∥z0∥2−
√

1+ ε

2s
∥z1 + z2 + · · ·+ zm−1∥1

≥
√

1− ε∥z0∥2−
√

1+ ε

2s
∥z0∥1. (7.12)

In line (7.11) we have used the inequalities
√

1− ε∥z0+z1∥2≤∥A(z0+z1)∥2 and
√

1+ ε∥zi∥2≥
∥Azi∥2, both of which are justified by the (3s)-restricted isometry property with constant
ε .

Let σ be a vector in {−1,0,1}n with the same sign pattern and sparsity pattern as z0,
meaning that

σi =


1 if z0i > 0
0 if z0i = 0
−1 if z01 < 0.

Then ⟨σ ,z0⟩= ∥z0∥1, so the Cauchy-Schwartz inequality implies

∥z0∥1 ≤ ∥σ∥2 ∥z0∥2 =
√

s∥z0∥2.

Substituting this bound into inequality (7.12) above, we find that

∥Az∥2 ≥

(
√

1− ε−
√

1+ ε

2

)
∥z0∥2. (7.13)

To conclude the proof of the lemma we need to show ∥z0∥2 ≥ 1
2∥z∥2. Let t = 1

s∥z0∥1 =
1
s (|z1|+ |z2|+ · · ·+ |zs|) and observe t ≥ |zs|. Every component of the vector w= 1

t (z1 + z2 + · · ·+ zm)
belongs to the interval [−1,1], because |zi| ≤ |zs| ≤ t for i > s. Hence,

∥w∥2
2 =

n

∑
i=1

w2
i ≤

n

∑
i=1
|wi|= ∥w∥1

∥z− z0∥2
2 = t2∥w∥2

2 ≤ t2∥w∥1 = t∥z1 + · · ·+ zm∥1 ≤ t∥z0∥1 =
1
s
∥z0∥2

1 ≤ ∥z0∥2
2.

(7.14)

By the triangle inequality, ∥z∥2 ≤ ∥z0∥2 + ∥z− z0∥2. Combined with Inequality (7.14),
this implies ∥z∥2 ≤ 2∥z0∥2 and completes the proof of the lemma. ■

We will use Lemma 7.21 to analyze the following algorithm for sparse recovery: of
all the vectors x that satisfy Ax = b, output one with minimum L1 norm. The L1 norm is
a convex function, so the problem can be solved efficiently using a convex minimization
algorithm, such as gradient descent.
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Proposition 7.22 Suppose A is a matrix that satisfies the (3s)-restricted isometry prop-
erty with constant ε < 1

3 , x0 is an s-sparse vector, and b = Ax0. Among the solutions of
the equation Ax = b, the vector x0 is the unique one with minimum L1 norm.

Proof. Suppose x1 is a solution of minimum L1 norm to the equation Ax = b. We must
prove that x1 = x0. Let z = x1− x0, and observe that Az = Ax1−Ax0 = b− b = 0. Let
J = {i | x0i ̸= 0} and observe |J| ≤ s. We have

∥x1∥1 =
n

∑
i=1
|x1i|=

n

∑
i=1
|x0i + zi|= ∑

i∈J
|x0i + zi|+∑

i̸∈J
|zi|

≥∑
i∈J
|x0i|−∑

i∈J
|zi|+∑

i̸∈J
|zi|= ∥x0∥1−∑

i∈J
|zi|+∑

i̸∈J
|zi|.

Since ∥x1∥1 ≤ ∥x0∥1 by our choice of ∥x1∥, it follows that ∑i∈J |zi| ≥ ∑i̸∈J |zi|, i.e. z is
mostly s-sparse. By Lemma 7.21,

0 = ∥Az∥2 ≥
1
2

(
√

1− ε−
√

1+ ε

2

)
∥z∥2.

Our assumption ε < 1
3 implies 1− ε > 1+ε

2 , so the factor 1
2

(√
1− ε−

√
1+ε

2

)
on the

right side is strictly positive. It follows that ∥z∥2 = 0, so 0 = z = x1−x0, as desired. ■
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