30	Apr	Random	Projections	· · · · · · · · · · · · · · · · · · ·	
Ren	inde	Mostix CV	reroff		
				relep, symmet	nic, random
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		$=\sum_{\bar{i}=1}^{N}X_{\bar{i}}$	0,1:	TEX]	561
			$= (1-\epsilon)a1$	1) since	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			((FE) 61	T) < Ne	$e^2b/3$
· · · · · · · · · · · · · · · · · · ·		. .			

I tempretation 1. n=1 Exactly the usual Chemist bol.

2. n=1 and X1,..., Xn all diagonal matrices

The marks Chemist bound is encoding

using ordnery Chemist on each

altogonal entry followed by union bound

over all n diagonal entries.

3. We could mostered define an entropy wise ordering A Eew B

if aij > bij Vi,j.

Matria Chernoff wiret. Eew follows using Chernoff - plus - whom - bound

(with factor in on RHS because union bound over in entires votter than in)

Gaussian Singular Value Inequality

If $A \in \mathbb{R}^m$ $(m \leq n)$ and entries a_{13} are indep

samples from $N(0, \frac{1}{n})$ then $\forall \epsilon > 0$ with probability at least $1-2e^{-\frac{2}{\epsilon}n/2}$ $1+\epsilon+\sqrt{\frac{m}{n}} \geqslant \rho(A) \geqslant \ldots \geqslant \rho(A) \geqslant 1-\epsilon-\sqrt{\frac{m}{n}}$.

Specialized to n=1:

Says same thing as Problem 2c on PSet 4, scaled down by In.

Recall 7, --, on are the Rigrals of AAT.

AT = \(\sigma \) \(\sigma \)

Applications Randem matrices analogues of functions a hash Hach $\frac{1}{2}$ $\frac{1}{2}$ M>>> (1) Leys Value unavoidable (-ll/sions are $r = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times$ but un predictable Pr(h(x)=h(y)) $\left\{\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right\} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \end{array}\right) \left(\begin{array}{$ A P 15 on linear Kanh matrix toom for mation \mathbb{R}^{n} Must have positive d'enenshad nullspace collisions") but one hopes (hence That any "Small Set of test is mapped into vectors probably without distation! \mathbb{R}^{m}

(5 4850/5850 term Lemma, (Gaussian Hashing Lemma") Suppose A EIR has independent M(O, m) entries. If WSR is any (fixed, independent of A) subspace of dimension d Em then with probability $= 1 - 2e^{-\epsilon^2 m/2}$ $\forall \omega \in \mathbb{W}$ $(1-2\varepsilon)\|\mathbf{w}\|_{2} \leq \|\mathbf{A}\mathbf{w}\|_{2} \leq (1+2\varepsilon)\|\mathbf{w}\|_{2}$ Proof. B= a matrix, mxd, whose ore an orthonormal lasis in the state of th A W. $\mathcal{W} = \mathcal{W} = \mathcal{W} = \mathcal{W}$ XERDS $\forall \omega \in \mathbb{N}$ $(1-2\varepsilon)\|w\|_2 \leq \|\beta w\|_2 \leq (1+2\varepsilon)\|w\|_2$ VXEIR (1-20) / X / 5 / ABX / 5 (1+20) / X / 5 / 5 / Lee 11821/2.

The second trequality says
$C_{1}(AB) \leq 1+2\epsilon$
$\sigma_{J}(AB) = -2\epsilon$
Plani 5how AB Was indep
Gaussian entres.
Let Q be an orthogonal nin
B. C.
AB = First of Columns of AQ
Al and A are ident.
distab. so entres of AQ
are independen $N(o, m)$
AB = mxd matrix with indep N(0, m) entries.

Gaussian SV tree opplied to (AB)

Says with prob > 1-2e-2m/2 G(AB) < 1+2+ JJ < 1+2E J(AB) = (-E - Jd > 1-2E) Recal di Ezm, VI E E Dinensinality Reduction of FINAR POINT SETS (Johnson - Lindonstrauss)

FX, XNER

and AER random

waking with N(0, in) entired

m > 6 ln(N/S)they w. ρ = (-5^2) all parvoise distances preserved within It & Factor. $\leq \left(\left(1 + 2 \right) \right) \left\| X_i - X_j \right\|$