Announcements. Regrade Deadline Davie 3 is graded. Sun 3/9 2) PSet 1 is graded. 3) Solution Set 1 on Convas. (4) Quit 4 on Wed, 2/26, will cover 2/12,2/19, 2/24. RECAP. A family of North Functions #= 3hiX - BZ

is 2-universal ("pairmise independent") it Y = y \(\tau \) (hb), h(y)) \(\mathbb{B}^2 \) is uniformly distributed. Ex. X=B=F=20,1,...p-1 (mod p)} p prime. $h_{a,b}(x) = ax + b \pmod{p}$ Why is $\mathcal{H} = \{ h_{a,b} \mid a,b \in \mathbb{F}_{q} \}$ 2-univ.? For any fixed x ty the point (h(x), h(y)) can take any value

because h(x) can be made to take any value by varying b, and h(y) - h(x) = ay+b-(ax+b) = a'(y-x)

can be made to take any value by varying on $O \cdot (y - y)$ Look at mod $4 \cdot (y - x)$ Mod p (p-1) (y-x) mod p. If cry two of three coincide it meens] j</ in (0, ..., p-13) sit. $j'(y-x) \equiv L'(y-x) \pmod{p}$ (j-k), /y-x) is divisible by p. both factors strictly between & and P. (pprine) contradiction. Inner Product Hashing.

If $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{F}^d$ $\chi = (\chi_1, \ldots, \chi_d) \in \mathbb{F}^d$ Defi let $(a, x) = \sum_{i=1}^{d} a_i x_i$ (mod p) $h_{\vec{a}, \mathbf{b}}(\vec{x}) = (\vec{a}, \vec{x}) + \mathbf{b}$ $\Lambda_{\overline{a},b}: \mathcal{X} \to \mathcal{B}$ $\mathcal{A} = \left\{ \begin{array}{c} \lambda \\ \lambda \\ \mathcal{R}, \delta \end{array} \right.$ $\vec{\alpha} \in \vec{P}$ $\vec{\rho}$ Space complexity of representing he Hd: O(d) space to stare del values in to is small enough that its blancy representation.

Fits in O(1) memory. complexity of evaluating

P is 2-universally a varioust of the argument already presented. Consider 7 + 3 = #P WLOG assume x, 7 y. For any fixed list of coefficients

az, ..., ad we have p ways to chose a, and b. By varying b can make h(x) take any value in H_p . By varying a, can make hely)—helx) take any value in F, h(y) - h(x) = (a, y-x) ranges over Constant ペノンションスプラ all of the are fixed. as a varies.

Strav	ming.		of them		\mathcal{A}_{ij}		Wellen -
							Wellent-
$\left(\mathcal{E}_{1}\delta^{2}\right)$	- PA		lsonth				
					nces / si	Yeav	M5
]			1-5		
	the		gorithr		inswer	150	correct
		With a			relative		error,
					ithn		
di	stivet	2/ew	vents				
	npreci	se V	Ursion		=5]		
5 6 6 5	ppree		iments	have		57	dentien
· · · · · · · · · · · · · · · · · · ·		0	pote	a di	elements	$\begin{cases} 1 & 1 \\ 1 & 2 \end{cases} \subseteq $	[26]
		· · · · · · · · · · · · · · · · · · ·	02 2	prìo		2^{k}	
	Sample			1 a b			nitormly
· · · · · · · · · · · · · · · · · · ·	oit Mia)		ndom				
for			2 ·		·		
	055	serve	\sim	Fro	m da	te	Stream
	Con	mute	か(× つ	·	$\{h(x_i),$		7
	wyd	(4K)	って	Win		, - ₇ ($N(\infty)$

After dosering the stream: output 2/1. h (x) h(x) IF there are a distinct values among X,, ---, Xn then you expect (h(x), -- h(xn)} to be I distinct numbers spread uniformly in the interval [0, p]. If they were exactly evenly spaced then I would be not I (Maybe St.) $(A) \quad Pr\left(\frac{1}{2+1} > 6Q\right) \leq \frac{1}{6}$

 $(B) \quad Pr\left(\frac{1}{2+1} < \frac{1}{6}\right) \leqslant \frac{1}{6}$ So then $P_{\ell}\left(\frac{d}{e} \leq \frac{f}{2+1} \leq G_{\ell}\right) \geq \frac{d}{3}$...i.e., the algorithm is (=5, S=1/3)-AC $\frac{\text{Prof } f(A)}{Z+1} > 60$ $\begin{array}{c} \leftarrow 7 \\ 2+1 \\ \leftarrow \end{array}$ Each individual hash value h(x;) 15 unif distrib over \$0, __,p_1} $=) Pr(h(x)) < GQ) = \frac{1}{GQ}$ distinct identifiers in There are an a the Aream => [# identifiers that book to < fd] $\leq \left(\frac{1}{6Q}\right) \cdot Q \leq \frac{1}{6Q}$ (linearity of expectation) P(3 an identifier hashing to < Ed) < = (Markov's mequality)

Proof of (B), Assume WLOG that L, --, The are the a Street elements in the Stream,

Random var. Ables $\int 1 + h(x_i) \leq k$ Event (B): $\frac{2}{2+1} < \frac{3}{6} \Leftrightarrow \frac{2}{2} \Rightarrow \frac{6}{1}$ S_{ef} $= \left(\frac{6\rho}{4}\right)^{\alpha}$ $Z > \frac{6c}{6} - 1 \iff \chi = 0$ \mathbb{Z}_{k}

FACTI For a Bernoulli 19,13- valued random variable Var (X) = E(X). (1-E(X)) Var(Xik) 5 E(Xik) $\sum_{i} V_{av}(X_{ik}) \leq \mathbb{E} \left[\sum_{i \neq i} X_{ik} \right]$ pairwise Var (/k) emma.

porruit Mependeur and

Y=X,+--+Xn,

Var(Y) = \(\frac{\Sigma}{i=1}\) Var(\(\frac{\Sigma}{i}\))

First.
$$Var(Y) = E(Y) - (E(Y))$$

$$E(Y) = \frac{2}{2\pi} \cdot E(X)$$

$$(E(Y))^2 = \frac{2}{2\pi} \cdot \frac{2}{2\pi} \cdot E(X) \cdot E(X)$$

$$Y^2 = \frac{2}{2\pi} \cdot \frac{2}{2\pi} \cdot E(X) \cdot E(X)$$

$$Var(Y) = \frac{2}{2\pi} \cdot \frac{2}{2\pi} \cdot E(X) \cdot E(X) - E(X) \cdot E(X)$$

$$= 0 \quad \text{when} \quad X:X; \quad \text{Independent.}$$

$$= \frac{2}{2\pi} \cdot E(X) - (E(X))^2$$

$$= \frac{2}{2\pi} \cdot Var(X).$$

