
a Course in
 Cryptography

rafael pass
abhi shelat

c© 2010 Pass/shelat

All rights reserved Printed online

11 11 11 11 11 15 14 13 12 11 10 9

First edition: June 2007

Second edition: September 2008

Third edition: January 2010

Contents

Contents i

Algorithms & Protocols v

List of Major Definitions vi

Preface vii

Numbering and Notation ix

1 Introduction 1
1.1 Classical Cryptography: Hidden Writing 1

1.2 Modern Cryptography: Provable Security 6

1.3 Shannon’s Treatment of Provable Secrecy 10

1.4 Overview of the Course 19

2 Computational Hardness 21
2.1 Efficient Computation and Efficient Adversaries . 21

2.2 One-Way Functions 26

2.3 Multiplication, Primes, and Factoring 29

2.4 Hardness Amplification 34

2.5 Collections of One-Way Functions 41

2.6 Basic Computational Number Theory 42

2.7 Factoring-based Collection of OWF 51

2.8 Discrete Logarithm-based Collection 51

2.9 RSA Collection . 53

2.10 One-way Permutations 55

2.11 Trapdoor Permutations 56

2.12 Rabin collection . 57

i

ii CONTENTS

2.13 A Universal One Way Function 63

3 Indistinguishability & Pseudo-Randomness 67
3.1 Computational Indistinguishability 68

3.2 Pseudo-randomness 74

3.3 Pseudo-random generators 77

3.4 Hard-Core Bits from Any OWF 83

3.5 Secure Encryption 91

3.6 An Encryption Scheme with Short Keys 92

3.7 Multi-message Secure Encryption 93

3.8 Pseudorandom Functions 94

3.9 Construction of Multi-message Secure Encryption 99

3.10 Public Key Encryption 101

3.11 El-Gamal Public Key Encryption scheme 105

3.12 A Note on Complexity Assumptions 107

4 Knowledge 109
4.1 When Does a Message Convey Knowledge 109

4.2 A Knowledge-Based Notion of Secure Encryption 110

4.3 Zero-Knowledge Interactions 113

4.4 Interactive Protocols 114

4.5 Interactive Proofs 116

4.6 Zero-Knowledge Proofs 120

4.7 Zero-knowledge proofs for NP 124

4.8 Proof of knowledge 130

4.9 Applications of Zero-knowledge 130

5 Authentication 133
5.1 Message Authentication 133

5.2 Message Authentication Codes 134

5.3 Digital Signature Schemes 135

5.4 A One-Time Signature Scheme for {0, 1}n 136

5.5 Collision-Resistant Hash Functions 139

5.6 A One-Time Digital Signature Scheme for {0, 1}∗ 144

5.7 *Signing Many Messages 145

5.8 Constructing Efficient Digital Signature 148

5.9 Zero-knowledge Authentication 149

6 Computing on Secret Inputs 151

CONTENTS iii

6.1 Secret Sharing . 151

6.2 Yao Circuit Evaluation 154

6.3 Secure Computation 164

7 Composability 167
7.1 Composition of Encryption Schemes 167

7.2 Composition of Zero-knowledge Proofs* 175

7.3 Composition Beyond Zero-Knowledge Proofs . . 178

8 *More on Randomness and Pseudorandomness 179
8.1 A Negative Result for Learning 179

8.2 Derandomization 180

8.3 Imperfect Randomness and Extractors 181

Bibliography 185

A Background Concepts 187

B Basic Complexity Classes 191

Algorithms & Protocols

2.3 A′(z): Breaking the factoring assumption 33

2.4 A′(z0): Breaking the factoring assumption 37

2.4 A0(f , y) where y ∈ {0, 1}n 38

2.6 ExtendedEuclid(a, b) such that a > b > 0 43

2.6 ModularExponentiation(a, x, N) 45

2.6 Miller-Rabin Primality Test 49

2.6 SamplePrime(n) . 50

2.10 Adversary A′(N, e, y) 55

2.12 Factoring Adversary A′(N) 62

2.13 A Universal One-way Function funiversal(y) 64

3.2 A′(1n, t1, . . . , ti): A next-bit predictor 76

3.4 DiscreteLog(g, p, y) using A 84

3.4 B(y) . 88

3.4 B(y) for the General case 89

3.6 Encryption Scheme for n-bit message 92

3.9 Many-message Encryption Scheme 99

3.10 1-Bit Secure Public Key Encryption 104

3.11 El-Gamal Secure Public Key Encryption 106

4.5 Protocol for Graph Non-Isomorphism 118

4.5 Protocol for Graph Isomorphism 119

4.6 Simulator for Graph Isomorphism 123

4.7 Zero-Knowledge for Graph 3-Coloring 127

4.7 Simulator for Graph 3-Coloring 128

5.2 MAC Scheme . 134

5.4 One-Time Digital Signature Scheme 137

5.5 Collision Resistant Hash Function 142

5.6 One-time Digital Signature for {0, 1}∗ 144

6.1 Shamir Secret Sharing Protocol 154

v

6.2 A Special Encryption Scheme 157

6.2 Oblivious Transfer Protocol 160

6.2 Honest-but-Curious Secure Computation 162

7.1 π′ : Many-message CCA2-secure Encryption . . . 169

7.2 ZK Protocol that is not Concurrently Secure . . . 176

List of Major Definitions

1.1 Private-key Encryption 3

1.3 Shannon secrecy . 11

1.3 Perfect Secrecy . 11

2.1 Efficient Private-key Encryption 24

2.2 Worst-case One-way Function 26

2.5 Collection of OWFs 41

2.10 One-way permutation 55

2.11 Trapdoor Permutations 56

3.1 Computational Indistinguishability 69

3.2 Pseudo-random Ensembles 74

3.3 Pseudo-random Generator 77

3.3 Hard-core Predicate 78

3.5 Secure Encryption 91

3.7 Multi-message Secure Encryption 93

3.8 Oracle Indistinguishability 96

3.8 Pseudo-random Function 96

3.10 Public Key Encryption Scheme 102

3.10 Secure Public Key Encryption 102

4.2 Zero-Knowledge Encryption 111

4.5 Interactive Proof . 116

4.5 Interactive Proof with Efficient Provers 119

4.7 Commitment . 126

5.3 Security of Digital Signatures 136

6.2 Two-party Honest-but-Curious Secure Protocol . 155

vi

Preface

We would like to thank the students of CS 687 (Stephen Chong,
Michael Clarkson, Michael George, Lucja Kot, Vikram Krish-
naprasad, Huijia Lin, Jed Liu, Ashwin Machanavajjhala, Tudor
Marian, Thanh Nguyen, Ariel Rabkin, Tom Roeder, Wei-lung
Tseng, Muthuramakrishnan Venkitasubramaniam and Parvathi-
nathan Venkitasubramaniam) for scribing the original lecture
notes which served as a starting point for these notes. In particu-
lar, we are very grateful to Muthu for compiling these original
sets of notes.

Rafael Pass

Ithaca, NY

abhi shelat

Charlottesville, VA
August 2007

vii

Numbering and Notation

Numbering

Our definitions, theorems, lemmas, etc. are numbered as X.y
where X is the page number on which the object has been defined
and y is a counter. This method should help you cross-reference
important mathematical statements in the book.

Notation

We use N to denote the set of natural numbers, Z to denote
the set of integers, and Zp to denote the set of integers modulo
p. The notation [1, k] denotes the set {1, . . . , k}. We often use
a = b mod n to denote modular congruency, i.e. a ≡ b (mod n).

Algorithms

Let A denote an algorithm. We write A(·) to denote an algo-
rithm with one input and A(·, ·) for two inputs. The output
of a (randomized) algorithm A(·) on input x is described by a
probability distribution which we denote by A(x). An algorithm
is deterministic if the probability distribution is concentrated on a
single element.

Experiments

We denote by x ← S the experiment of sampling an element x
from a probability distribution S. If F is a finite set, then x ← F
denotes the experiment of sampling uniformly from the set F. We
use semicolon to describe the ordered sequences of event that

ix

x chapter 0. numbering and notation

make up an experiment, e.g.,

x ← S; (y, z)← A(x)

Probabilities

If p(., .) denotes a predicate, then

Pr[x ← S; (y, z)← A(x) : p(y, z)]

is the probability that the predicate p(y, z) is true after the or-
dered sequence of events (x ← S; (y, z)← A(x)). The notation

{x ← S; (y, z)← A(x) : (y, z)}

denotes the probability distribution over {y, z} generated by
the experiment (x ← S; (y, z) ← A(x)). Following standard
notation,

Pr[A | B]

denotes the probability of event A conditioned on the event B.
When the Pr[B] = 0, then the conditional probability is not
defined. In this course, we slightly abuse notation in this case,
and define

Pr[A | B] = Pr[A] when Pr[B] = 0.

Big-O Notation

We denote by O(g(n)) the set of functions

{ f (n) : ∃c > 0, n0 such that ∀n > n0, 0 ≤ f (n) ≤ cg(n)} .

Chapter 1

Introduction

The word cryptography stems from the two Greek words kryptós
and gráfein meaning “hidden” and “to write” respectively. In-
deed, the most basic cryptographic problem, which dates back
millenia, considers the task of using “hidden writing” to secure,
or conceal communication between two parties.

1.1 Classical Cryptography: Hidden Writing

Consider two parties, Alice and Bob. Alice wants to privately
send messages (called plaintexts) to Bob over an insecure channel.
By an insecure channel, we here refer to an “open” and tappable
channel; in particular, Alice and Bob would like their privacy to
be maintained even in face of an adversary Eve (for eavesdropper)
who listens to all messages sent on the channel. How can this be
achieved?

A possible solution Before starting their communication, Alice
and Bob agree on a “secret code” that they will later use to
communicate. A secret code consists of a key, an algorithm Enc
to encrypt (scramble) plaintext messages into ciphertexts and an
algorithm Dec to decrypt (or descramble) ciphertexts into plaintext
messages. Both the encryption and decryption algorithms require
the key to perform their task.

Alice can now use the key to encrypt a message, and then
send the ciphertext to Bob. Bob, upon receiving a ciphertext,

1

2 chapter 1. introduction

uses the key to decrypt the ciphertext and retrieve the original
message.

Alice Bob

Eve

Gen
c = Enck(m) m = Deck(c)k k

c

?

①
②

③

④

Figure 2.1: Illustration of the steps involved in private-key en-
cryption. First, a key k must be generated by the Gen algorithm
and privately given to Alice and Bob. In the picture, this is illus-
trated with a green “land-line.” Later, Alice encodes the message
m into a ciphertext c and sends it over the insecure channel—in
this case, over the airwaves. Bob receives the encoded message
and decodes it using the key k to recover the original message m.
The eavesdropper Eve does not learn anything about m except
perhaps its length.

1.1.1 Private-Key Encryption

To formalize the above task, we must consider an additional
algorithm, Gen, called the key-generation algorithm; this algorithm
is executed by Alice and Bob to generate the key k which they
use to encrypt and decrypt messages.

A first question that needs to be addressed is what informa-
tion needs to be “public”—i.e., known to everyone—and what
needs to be “private”—i.e., kept secret. In historic approaches,
i.e. security by obscurity, all three algorithms, (Gen,Enc,Dec), and
the generated key k were kept private; the idea was that the
less information we give to the adversary, the harder it is to
break the scheme. A design principle formulated by Kerchoff

1.1. Classical Cryptography: Hidden Writing 3

in 1884—known as Kerchoff’s principle—instead stipulates that
the only thing that one should assume to be private is the key
k; everything else including (Gen,Enc,Dec) should be assumed
to be public. Why should we do this? Designs of encryption
algorithms are often eventually leaked, and when this happens
the effects to privacy could be disastrous. Suddenly the scheme
might be completely broken; this might even be the case if just a
part of the algorithm’s description is leaked. The more conser-
vative approach advocated by Kerchoff instead guarantees that
security is preserved even if everything but the key is known
to the adversary. Furthermore, if a publicly known encryption
scheme still has not been broken, this gives us more confidence
in its “true” security (rather than if only the few people that de-
signed it were unable to break it). As we will see later, Kerchoff’s
principle will be the first step to formally defining the security of
encryption schemes.

Note that an immediate consequence of Kerchoff’s principle is
that all of the algorithms (Gen,Enc,Dec) can not be deterministic;
if this were so, then Eve would be able to compute everything
that Alice and Bob could compute and would thus be able to
decrypt anything that Bob can decrypt. In particular, to prevent
this we must require the key generation algorithm, Gen, to be
randomized.

.Definition 3.2 (Private-key Encryption). The triplet of algorithms
(Gen,Enc,Dec) is called a private-key encryption scheme over the
message spaceM and the keyspace K if the following holds:

1. Gen (called the key generation algorithm) is a randomized
algorithm that returns a key k such that k ∈ K. We denote
by k← Gen the process of generating a key k.

2. Enc (called the encryption algorithm) is a potentially random-
ized algorithm that on input a key k ∈ K and a message
m ∈ M, outputs a ciphertext c. We denote by c← Enck(m)
the output of Enc on input key k and message m.

3. Dec (called the decryption algorithm) is a deterministic algo-
rithm that on input a key k and a ciphertext c outputs a
message m ∈ M∪⊥.

4 chapter 1. introduction

4. For all m ∈ M,

Pr[k← Gen : Deck(Enck(m)) = m] = 1

To simplify notation we also say that (M,K,Gen,Enc,Dec) is a
private-key encryption scheme if (Gen,Enc,Dec) is a private-key
encryption scheme over the messages spaceM and the keyspace
K. To simplify further, we sometimes say that (M,Gen,Enc,Dec)
is a private-key encryption scheme if there exists some key space
K such that (M,K,Gen,Enc,Dec) is a private-key encryption
scheme.

Note that the above definition of a private-key encryption
scheme does not specify any secrecy (or privacy) properties; the
only non-trivial requirement is that the decryption algorithm Dec
uniquely recovers the messages encrypted using Enc (if these
algorithms are run on input with the same key k ∈ K). Later,
we will return to the task of defining secrecy. However, first, let
us provide some historical examples of private-key encryption
schemes and colloquially discuss their “security” without any
particular definition of secrecy in mind.

1.1.2 Some Historical Ciphers

The Caesar Cipher (named after Julius Ceasar who used it to
communicate with his generals) is one of the simplest and well-
known private-key encryption schemes. The encryption method
consist of replacing each letter in the message with one that is a
fixed number of places down the alphabet. More precisely,

.Definition 4.3 The Ceasar Cipher is defined as follows:

M = {A, B, . . . , Z}∗
K = {0, 1, 2, . . . , 25}

Gen = k where k r← K.
Enckm1m2. . .mn = c1c2. . .cn where ci = mi + k mod 26

Deckc1c2. . .cn = m1m2. . .mn where mi = ci − k mod 26

In other words, encryption is a cyclic shift of k on each letter in
the message and the decryption is a cyclic shift of −k. We leave
it for the reader to verify the following proposition.

1.1. Classical Cryptography: Hidden Writing 5

.Proposition 5.4 Caesar Cipher is a private-key encryption scheme.

At first glance, messages encrypted using the Ceasar Cipher
look “scrambled” (unless k is known). However, to break the
scheme we just need to try all 26 different values of k (which is
easily done) and see if the resulting plaintext is “readable”. If
the message is relatively long, the scheme is easily broken. To
prevent this simple brute-force attack, let us modify the scheme.

In the improved Substitution Cipher we replace letters in the
message based on an arbitrary permutation over the alphabet
(and not just cyclic shifts as in the Caesar Cipher).

.Definition 5.5 The Subsitution Cipher is defined as follows:

M = {A, B, . . . , Z}∗
K = the set of permutations of {A, B, . . . , Z}

Gen = k where k r← K.
Enck(m1. . .mn) = c1. . .cn where ci = k(mi)
Deck(c1c2. . .cn) = m1m2. . .mn where mi = k−1(ci)

.Proposition 5.6 The Subsitution Cipher is a private-key encryption
scheme.

To attack the substitution cipher we can no longer perform the
brute-force attack because there are now 26! possible keys. How-
ever, if the encrypted message is sufficiently long, the key can
still be recovered by performing a careful frequency analysis of
the alphabet in the English language.

So what do we do next? Try to patch the scheme again?
Indeed, cryptography historically progressed according to the
following “crypto-cycle”:

1. A, the “artist”, invents an encryption scheme.

2. A claims (or even mathematically proves) that known attacks
do not work.

3. The encryption scheme gets employed widely (often in
critical situations).

4. The scheme eventually gets broken by improved attacks.

6 chapter 1. introduction

5. Restart, usually with a patch to prevent the previous attack.

Thus, historically, the main job of a cryptographer was crypto-
analysis—namely, trying to break an encryption scheme. Cryp-
toanalysis is still an important field of research; however, the
philosophy of modern theoretical cryptography is instead “if
we can do the cryptography part right, there is no need for
cryptanalysis”.

1.2 Modern Cryptography: Provable Security

Modern Cryptography is the transition from cryptography as
an art to cryptography as a principle-driven science. Instead of
inventing ingenious ad-hoc schemes, modern cryptography relies
on the following paradigms:

— Providing mathematical definitions of security.

— Providing precise mathematical assumptions (e.g. “factoring is
hard”, where hard is formally defined). These can be viewed
as axioms.

— Providing proofs of security, i.e., proving that, if some particu-
lar scheme can be broken, then it contradicts an assumption
(or axiom). In other words, if the assumptions were true,
the scheme cannot be broken.

This is the approach that we develop in this course.
As we shall see, despite its conservative nature, we will suc-

ceed in obtaining solutions to paradoxical problems that reach
far beyond the original problem of secure communication.

1.2.1 Beyond Secure Communication

In the original motivating problem of secure communication, we
had two honest parties, Alice and Bob and a malicious eaves-
dropper Eve. Suppose, Alice and Bob in fact do not trust each
other but wish to perform some joint computation. For instance,
Alice and Bob each have a (private) list and wish to find the
intersection of the two list without revealing anything else about

1.2. Modern Cryptography: Provable Security 7

the contents of their lists. Such a situation arises, for example,
when two large financial institutions which to determine their
“common risk exposure,” but wish to do so without revealing
anything else about their investments. One good solution would
be to have a trusted center that does the computation and reveals
only the answer to both parties. But, would either bank trust
the “trusted” center with their sensitive information? Using tech-
niques from modern cryptography, a solution can be provided
without a trusted party. In fact, the above problem is a special
case of what is known as secure two-party computation.

Secure two-party computation - informal definition: A secure
two-party computation allows two parties A and B with private
inputs a and b respectively, to compute a function f (a, b) that op-
erates on joint inputs a, b while guaranteeing the same correctness
and privacy as if a trusted party had performed the computation
for them, even if either A or B try to deviate from the proscribed
computation in malicious ways.

Under certain number theoretic assumptions (such as “fac-
toring is hard”), there exists a protocol for secure two-party
computation.

The above problem can be generalized also to situations with
multiple distrustful parties. For instance, consider the task of
electronic elections: a set of n parties which to perform an election
in which it is guaranteed that all votes are correctly counted, but
each vote should at the same time remain private. Using a so
called multi-party computation protocol, this task can be achieved.

A toy example: The match-making game

To illustrate the notion of secure-two party computation we
provide a “toy-example” of a secure computation using physical
cards. Alice and Bob want to find out if they are meant for
each other. Each of them have two choices: either they love the
other person or they do not. Now, they wish to perform some
interaction that allows them to determine whether there is a
match (i.e., if they both love each other) or not—and nothing
more. For instance, if Bob loves Alice, but Alice does not love
him back, Bob does not want to reveal to Alice that he loves

8 chapter 1. introduction

her (revealing this could change his future chances of making
Alice love him). Stating it formally, if love and no-love were the
inputs and match and no-match were the outputs, the function
they want to compute is:

f (love, love) = match

f (love, no-love) = no-match

f (no-love, love) = no-match

f (no-love, no-love) = no-match

Note that the function f is simply an and gate.

The protocol: Assume that Alice and Bob have access to five
cards, three identical hearts(♥) and two identical clubs(♣). Alice
and Bob each get one heart and one club and the remaining heart
is put on the table face-down.

Next Alice and Bob also place their cards on the table, also
turned over. Alice places her two cards on the left of the heart
which is already on the table, and Bob places his two cards on
the right of the heart. The order in which Alice and Bob place
their two cards depends on their input as follows. If Alice loves,
then Alice places her cards as ♣♥; otherwise she places them as
♥♣. Bob on the other hand places his card in the opposite order:
if he loves, he places ♥♣, and otherwise places ♣♥. These orders
are illustrated in Fig. 1.

When all cards have been placed on the table, the cards are
piled up. Alice and Bob then each take turns to privately cut the
pile of cards once each so that the other person does not see how
the cut is made. Finally, all cards are revealed. If there are three
hearts in a row then there is a match and no-match otherwise.

Analyzing the protocol: We proceed to analyze the above pro-
tocol. Given inputs for Alice and Bob, the configuration of cards
on the table before the cuts is described in Fig. 2. Only the first
case—i.e., (love, love)—results in three hearts in a row. Further-
more this property is not changed by the cyclic shift induced by
the cuts made by Alice and Bob. We conclude that the protocols
correctly computes the desired function.

1.2. Modern Cryptography: Provable Security 9

♥♣
♥♣♥ ♥♣
♣♥

Alice Bob
love love

no-love

inputs inputs

no-love

Figure 9.1: Illustration of the Match game with Cards

♣♥♥♥♣

♥♣♥♣♥

love, love

no-love, love ♥♣♥♥♣
love, no-love

no-love, no-love

♣♥♥♣♥ cyclic shifts}
Figure 9.2: The possible outcomes of the Match Protocol. In case
of a mismatch, all three outcomes are cyclic shifts of one-another.

In the remaining three cases (when the protocol outputs
no-match), all the above configurations are cyclic shifts of one
another. If one of Alice and Bob is honest—and indeed per-
forms a random cut—the final card configuration is identically
distributed no matter which of the three initial cases we started
from. Thus, even if one of Alice and Bob tries to deviate in the
protocol (by not performing a random cut), the privacy of the
other party is still maintained.

Zero-knowledge proofs

Zero knowledge proofs is a special case of a secure computation.
Informally, in a Zero Knowledge Proof there are two parties,
Alice and Bob. Alice wants to convince Bob that some statement

10 chapter 1. introduction

is true; for instance, Alice wants to convince Bob that a number
N is a product of two primes p, q. A trivial solution would be for
Alice to send p and q to Bob. Bob can then check that p and q are
primes (we will see later in the course how this can be done) and
next multiply the numbers to check if their product is N. But this
solution reveals p and q. Is this necessary? It turns out that the
answer is no. Using a zero-knowledge proof Alice can convince
Bob of this statement without revealing the factors p and q.

1.3 Shannon’s Treatment of Provable Secrecy

Modern (provable) cryptography started when Claude Shannon
formalized the notion of private-key encryption. Thus, let us re-
turn to our original problem of securing communication between
Alice and Bob.

1.3.1 Shannon Secrecy

As a first attempt, we might consider the following notion of
security:

The adversary cannot learn (all or part of) the key
from the ciphertext.

The problem, however, is that such a notion does not make any
guarantees about what the adversary can learn about the plaintext
message. Another approach might be:

The adversary cannot learn (all, part of, any letter of,
any function of, or any partial information about) the
plaintext.

This seems like quite a strong notion. In fact, it is too strong
because the adversary may already possess some partial infor-
mation about the plaintext that is acceptable to reveal. Informed
by these attempts, we take as our intuitive definition of security:

Given some a priori information, the adversary cannot
learn any additional information about the plaintext
by observing the ciphertext.

1.3. Shannon’s Treatment of Provable Secrecy 11

Such a notion of secrecy was formalized by Claude Shannon in
1949 [sha49] in his seminal paper that started the modern study
of cryptography.

.Definition 11.1 (Shannon secrecy). (M,K,Gen,Enc,Dec) is said
to be a private-key encryption scheme that is Shannon-secret with
respect to the distibution D over the message space M if for all
m′ ∈ M and for all c,

Pr
[
k← Gen; m← D : m = m′ |Enck(m) = c

]
= Pr

[
m← D : m = m′

]
.

An encryption scheme is said to be Shannon secret if it is Shannon
secret with respect to all distributions D overM.

The probability is taken with respect to the random output of
Gen, the choice of m and the random coins used by algorithm
Enc. The quantity on the left represents the adversary’s a poste-
riori distribution on plaintexts after observing a ciphertext; the
quantity on the right, the a priori distribution. Since these distri-
butions are required to be equal, this definition requires that the
adversary does not gain any additional information by observing
the ciphertext.

1.3.2 Perfect Secrecy

To gain confidence that our definition is the right one, we also pro-
vide an alternative approach to defining security of encryption
schemes. The notion of perfect secrecy requires that the distri-
bution of ciphertexts for any two messages are identical. This
formalizes our intuition that the ciphertexts carry no information
about the plaintext.

.Definition 11.2 (Perfect Secrecy). A tuple (M,K,Gen,Enc,Dec)
is said to be a private-key encryption scheme that is perfectly
secret if for all m1 and m2 inM, and for all c,

Pr[k← Gen : Enck(m1) = c] = Pr[k← Gen : Enck(m2) = c].

12 chapter 1. introduction

Notice that perfect secrecy seems like a simpler notion. There is
no mention of “a-priori” information, and therefore no need to
specify a distribution over the message space. Similarly, there is
no conditioning on the ciphertext. The definition simply requires
that for every pair of messages, the probabilities that either mes-
sage maps to a given ciphertext c must be equal. Perfect security
is syntactically simpler than Shannon security, and thus easier to
work with. Fortunately, as the following theorem demonstrates,
Shannon Secrecy and Perfect Secrecy are equivalent notions.

.Theorem 12.3 A private-key encryption scheme is perfectly secret if
and only if it is Shannon secret.

Proof. We prove each implication separately. To simplify the
notation, we introduce the following abbreviations. Let Prk [· · ·]
denote Pr [k← Gen; · · ·], Prm [· · ·] denote Pr [m← D : · · ·], and
Prk,m [· · ·] denote Pr [k← Gen; m← D : · · ·].

Perfect secrecy implies Shannon secrecy. The intuition is that
if, for any two pairs of messages, the probability that either of
messages encrypts to a given ciphertext must be equal, then it
is also true for the pair m and m′ in the definition of Shannon
secrecy. Thus, the ciphertext does not “leak” any information,
and the a-priori and a-posteriori information about the message
must be equal.

Suppose the scheme (M,K,Gen,Enc,Dec) is perfectly secret.
Consider any distribution D overM, any message m′ ∈ M, and
any ciphertext c. We show that

Pr
k,m

[
m = m′ | Enck(m) = c

]
= Pr

m

[
m = m′

]
.

By the definition of conditional probabilities, the left hand side
of the above equation can be rewritten as

Prk,m [m = m′ ∩ Enck(m) = c]
Prk,m [Enck(m) = c]

which can be re-written as

Prk,m [m = m′ ∩ Enck(m′) = c]
Prk,m [Enck(m) = c]

1.3. Shannon’s Treatment of Provable Secrecy 13

and expanded to

Prm [m = m′]Prk [Enck(m′) = c]
Prk,m [Enck(m) = c]

The central idea behind the proof is to show that

Pr
k,m

[Enck(m) = c] = Pr
k

[
Enck(m′) = c

]
which establishes the result. To begin, rewrite the left-hand side:

Pr
k,m

[Enck(m) = c] = ∑
m′′∈M

Pr
m

[
m = m′′

]
Pr
k

[
Enck(m′′) = c

]
By perfect secrecy, the last term can be replaced to get:

∑
m′′∈M

Pr
m

[
m = m′′

]
Pr
k

[
Enck(m′) = c

]
This last term can now be moved out of the summation and
simplified as:

Pr
k

[
Enck(m′) = c

]
∑

m′′∈M
Pr
m

[
m = m′′

]
= Pr

k

[
Enck(m′) = c

]
.

Shannon secrecy implies perfect secrecy. In this case, the in-
tuition is Shannon secrecy holds for all distributions D; thus,
it must also hold for the special cases when D only chooses
between two given messages.

Suppose the scheme (M,K,Gen,Enc,Dec) is Shannon-secret.
Consider m1, m2 ∈ M, and any ciphertext c. Let D be the uniform
distribution over {m1, m2}. We show that

Pr
k
[Enck(m1) = c] = Pr

k
[Enck(m2) = c] .

The definition of D implies that Prm [m = m1] = Prm [m = m2] =
1
2 . It therefore follows by Shannon secrecy that

Pr
k,m

[m = m1 | Enck(m) = c] = Pr
k,m

[m = m2 | Enck(m) = c]

14 chapter 1. introduction

By the definition of conditional probability,

Pr
k,m

[m = m1 | Enck(m) = c] =
Prk,m [m = m1 ∩ Enck(m) = c]

Prk,m [Enck(m) = c]

=
Prm [m = m1]Prk [Enck(m1) = c]

Prk,m [Enck(m) = c]

=
1
2 · Prk [Enck(m1) = c]
Prk,m [Enck(m) = c]

Analogously,

Pr
k,m

[m = m2 | Enck(m) = c] =
1
2 · Prk [Enck(m2) = c]
Prk,m [Enck(m) = c]

.

Cancelling and rearranging terms, we conclude that

Pr
k
[Enck(m1) = c] = Pr

k
[Enck(m2) = c] .

�

1.3.3 The One-Time Pad

Given our definition of security, we now consider whether perf-
ectly-secure encryption schemes exist. Both of the encryption
schemes we have analyzed so far (i.e., the Caesar and Substitution
ciphers) are secure as long as we only consider messages of length
1. However, when considering messages of length 2 (or more)
the schemes are no longer secure—in fact, it is easy to see that
encryptions of the strings AA and AB have disjoint distributions,
thus violating perfect secrecy (prove this).

Nevertheless, this suggests that we might obtain perfect se-
crecy by somehow adapting these schemes to operate on each
element of a message independently. This is the intuition behind
the one-time pad encryption scheme, invented by Gilbert Vernam
in 1917 and Joseph Mauborgne in 1919.

1.3. Shannon’s Treatment of Provable Secrecy 15

.Definition 15.4 The One-Time Pad encryption scheme is described by
the following 5-tuple (M,K,Gen,Enc,Dec):

M = {0, 1}n

K = {0, 1}n

Gen = k = k1k2. . .kn ← {0, 1}n

Enck(m1m2. . .mn) = c1c2. . .cn where ci = mi ⊕ ki
Deck(c1c2. . .cn) = m1m2. . .mn where mi = ci ⊕ ki

The ⊕ operator represents the binary xor operation.

.Proposition 15.5 The One-Time Pad is a perfectly secure private-key
encryption scheme.

Proof. It is straight-forward to verify that the One Time Pad
is a private-key encryption scheme. We turn to show that the
One-Time Pad is perfectly secret and begin by showing the the
following claims.

.Claim 15.6 For any c, m ∈ {0, 1}n,

Pr [k← {0, 1}n : Enck(m) = c] = 2−k

.Claim 15.7 For any c /∈ {0, 1}n, m ∈ {0, 1}n,

Pr [k← {0, 1}n : Enck(m) = c] = 0

Claim 15.6 follows from the fact that for any m, c ∈ {0, 1}n,
there is only one k such that Enck(m) = m ⊕ k = c, namely
k = m ⊕ c. Claim 15.7 follows from the fact that for every
k ∈ {0, 1}n, Enck(m) = m⊕ k ∈ {0, 1}n.

From the claims we conclude that for any m1, m2 ∈ {0, 1}n

and every c, it holds that

Pr [k← {0, 1}n :Enck(m1) = c] = Pr [k← {0, 1}n :Enck(m2) = c]

which concludes the proof. �
So perfect secrecy is obtainable. But at what cost? When Alice

and Bob meet to generate a key, they must generate one that is as
long as all the messages they will send until the next time they
meet. Unfortunately, this is not a consequence of the design of
the One-Time Pad, but rather of perfect secrecy, as demonstrated
by Shannon’s famous theorem.

16 chapter 1. introduction

1.3.4 Shannon’s Theorem

.Theorem 16.8 (Shannon) If scheme (M,K,Gen,Enc,Dec) is a per-
fectly secret private-key encryption scheme, then |K| ≥ |M|.

Proof. Assume there exists a perfectly secret private-key encryp-
tion scheme (M,K,Gen,Enc,Dec) such that |K| < |M|. Take
any m1 ∈ M, k ∈ K, and let c ← Enck(m1). Let Dec(c) denote
the set {m | ∃k ∈ K such that m = Deck(c)} of all possible de-
cryptions of c under all possible keys. Since the algorithm Dec is
deterministic, this set has size at most |K|. But since |M| > |K|,
there exists some message m2 not in Dec(c). By the definition of
a private encryption scheme it follows that

Pr [k← K : Enck(m2) = c] = 0

But since
Pr [k← K : Enck(m1) = c] > 0

we conclude that

Pr [k← K : Enck(m1) = c] 6= Pr [k← K : Enck(m2) = c]

which contradicts the hypothesis that (M,K,Gen,Enc,Dec) is a
perfectly secret private-key scheme. �

Note that the proof of Shannon’s theorem in fact describes
an attack on every private-key encryption scheme for which
|M| > |K|. It follows that for any such encryption scheme there
exists m1, m2 ∈ M and a constant ε > 0 such that

Pr [k← K;Enck(m1) = c : m1 ∈ Dec(c)] = 1

but
Pr [k← K;Enck(m1) = c : m2 ∈ Dec(c)] ≤ 1− ε

The first equation follows directly from the definition of private-
key encryption, whereas the second equation follows from the
fact that (by the proof of Shannon’s theorem) there exists some
key k for which Enck(m1) = c, but m2 /∈ Dec(c). Consider, now, a
scenario where Alice uniformly picks a message m from {m1, m2}
and sends the encryption of m to Bob. We claim that Eve, having

1.3. Shannon’s Treatment of Provable Secrecy 17

seen the encryption c of m can guess whether m = m1 or m = m2
with probability higher than 1/2. Eve, upon receiving c simply
checks if m2 ∈ Dec(c). If m2 /∈ Dec(c), Eve guesses that m = m1,
otherwise she makes a random guess.

How well does this attack work? If Alice sent the message
m = m2 then m2 ∈ Dec(c) and Eve will guess correctly with
probability 1/2. If, on the other hand, Alice sent m = m1, then
with probability ε, m2 /∈ Dec(c) and Eve will guess correctly
with probability 1, whereas with probability 1− ε Eve will make
a random guess, and thus will be correct with probability 1/2. We
conclude that Eve’s success probability is

Pr[m = m2] (1/2) + Pr[m = m1] (ε · 1 + (1− ε) · (1/2))

=
1
2
+

ε

4

Thus we have exhibited a concise attack for Eve which allows her
to guess which message Alice sends with probability better than
1/2.

A possible critique against this attack is that if ε is very
small (e.g., 2−100), then the effectiveness of this attack is limited.
However, the following stonger version of Shannon’s theorem
shows that even if the key is only one bit shorter than the message,
then ε = 1/2 and so the attack succeeds with probability 5/8.

.Theorem 17.9 Let (M,K,Gen,Enc,Dec) be a private-key encryption
scheme where M = {0, 1}n and K = {0, 1}n−1. Then, there exist
messages m0, m1 ∈ M such that

Pr [k← K; Enck(m1) = c : m2 ∈ Dec(c)] ≤ 1
2

Proof. Given c ← Enck(m) for some key k ∈ K and message
m ∈ M, consider the set Dec(c). Since Dec is deterministic it
follows that |Dec(c)| ≤ |K| = 2n−1. Thus, for all m1 ∈ M and
k ∈ K,

Pr
[
m′ ← {0, 1}n; c← Enck(m1) : m′ ∈ Dec(c)

]
≤ 2n−1

2n =
1
2

18 chapter 1. introduction

Since the above probability is bounded by 1/2 for every key k ∈ K,
this must also hold for a random k← Gen.

Pr
[
m′ ← {0, 1}n; k← Gen; c← Enck(m1) : m′ ∈ Dec(c)

]
≤ 1

2
(17.2)

Additionally, since the bound holds for a random message m′,
there must exist some particular message m2 that minimizes the
probability. In other words, for every message m1 ∈ M, there
exists some message m2 ∈ M such that

Pr [k← Gen; c← Enck(m1) : m2 ∈ Dec(c)] ≤ 1
2

�
Thus, by Theorem 17.9, we conclude that if the key length is only
one bit shorter than the message length, there exist messages m1
and m2 such that Eve’s success probability is 1/2 + 1/8 = 5/8

.Remark 18.10 Note that the theorem is stronger than stated. In fact,
we showed that for every m1 ∈ M, there exists some string m2 that
satisfies the desired condition. We also mention that if we content
ourselves with getting a bound of ε = 1/4, the above proof actually
shows that for every m1 ∈ M, it holds that for at least one fourth of
the messages m2 ∈ M,

Pr [k← K;Enck(m1) = c : m2 ∈ Dec(c)] ≤ 1
4

;

otherwise we would contradict equation (17.2).

This is clearly not acceptable in most applications of an en-
cryption scheme. So, does this mean that to get any “reasonable”
amount of security Alice and Bob must share a long key?

Note that although Eve’s attack only takes a few lines of code
to describe, its running-time is high. In fact, to perform her
attack—which amounts to checking whether m2 ∈ Dec(c)—Eve
must try all possible keys k ∈ K to check whether c possibly
could decrypt to m2. If, for instance, K = {0, 1}n, this requires
her to perform 2n (i.e., exponentially many) different decryptions.
Thus, although the attack can be simply described, it is not
“feasible” by any efficient computing device. This motivates us

1.4. Overview of the Course 19

to consider only “feasible” adversaries—namely adversaries that
are computationally bounded. Indeed, as we shall see later in
Chapter 3.5, with respect to such adversaries, the implications of
Shannon’s Theorem can be overcome.

1.4 Overview of the Course

In this course we will focus on some of the key concepts and
techniques in modern cryptography. The course will be structured
around the following notions:

Computational Hardness and One-way Functions. As illus-
trated above, to circumvent Shannon’s lower bound we
have to restrict our attention to computationally-bounded
adversaries. The first part of the course deals with no-
tions of resource-bounded (and in particular time-bounded)
computation, computational hardness, and the notion of
one-way functions. One-way functions—i.e., functions that
are “easy” to compute, but “hard” to invert by efficient
algorithms—are at the heart of modern cryptographic pro-
tocols.

Indistinguishability. The notion of indistinguishability formal-
izes what it means for a computationally-bounded adver-
sary to be unable to “tell apart” two distributions. This
notion is central to modern definitions of security for en-
cryption schemes, but also for formally defining notions
such as pseudo-random generation, commitment schemes,
zero-knowledge protocols, etc.

Knowledge. A central desideratum in the design of crypto-
graphic protocols is to ensure that the protocol execution
does not leak more “knowledge” than what is necessary. In this
part of the course, we investigate “knowledge-based” (or
rather zero knowledge-based) definitions of security.

Authentication. Notions such as digital signatures and messages
authentication codes are digital analogues of traditional writ-
ten signatures. We explore different notions of authen-
tication and show how cryptographic techniques can be

20 chapter 1. introduction

used to obtain new types of authentication mechanism not
achievable by traditional written signatures.

Computing on Secret Inputs. Finally, we consider protocols
which allow mutually distrustful parties to perform arbi-
trary computation on their respective (potentially secret)
inputs. This includes secret-sharing protocols and secure
two-party (or multi-party) computation protocols. We have
described the later earlier in this chapter; secret-sharing
protocols are methods which allow a set of n parties to re-
ceive “shares” of a secret with the property that any “small”
subset of shares leaks no information about the secret, but
once an appropriate number of shares are collected the
whole secret can be recovered.

Composability. It turns out that cryptographic schemes that
are secure when executed in isolation can be completely
compromised if many instances of the scheme are simulta-
neously executed (as is unavoidable when executing cryp-
tographic protocols in modern networks). The question of
composability deals with issues of this type.

Chapter 2

Computational Hardness

2.1 Efficient Computation and Efficient
Adversaries

We start by formalizing what it means for an algorithm to com-
pute a function.

.Definition 21.1 (Algorithm) An algorithm is a deterministic Tur-
ing machine whose input and output are strings over alphabet Σ =
{0, 1}.

.Definition 21.2 (Running-time) An algorithm A is said to run in
time T(n) if for all x ∈ {0, 1}∗, A(x) halts within T(|x|) steps. A
runs in polynomial time if there exists a constant c such that A runs
in time T(n) = nc.

.Definition 21.3 (Deterministic Computation) An algorithm A is
said to compute a function f : {0, 1}∗ → {0, 1}∗ if for all x ∈ {0, 1}∗,
A, on input x, outputs f (x).

We say that an algorithm is efficient if it runs in polynomial
time. One may argue about the choice of polynomial-time as a
cutoff for efficiency, and indeed if the polynomial involved is
large, computation may not be efficient in practice. There are,
however, strong arguments to use the polynomial-time definition
of efficiency:

21

22 chapter 2. computational hardness

1. This definition is independent of the representation of the
algorithm (whether it is given as a Turing machine, a C
program, etc.) because converting from one representation
to another only affects the running time by a polynomial
factor.

2. This definition is also closed under composition which may
simplify reasoning in certain proofs.

3. Our experience suggests that polynomial-time algorithms
turn out to be efficient; i.e. polynomial almost always
means “cubic time or better.”

4. Our experience indicates that “natural” functions that are
not known to be computable in polynomial-time require
much more time to compute, so the separation we propose
seems well-founded.

Note, our treatment of computation is an asymptotic one. In
practice, concrete running time needs to be considered carefully,
as do other hidden factors such as the size of the description
of A. Thus, when porting theory to practice, one needs to set
parameters carefully.

2.1.1 Some computationally “hard” problems

Many commonly encountered functions are computable by ef-
ficient algorithms. However, there are also functions which are
known or believed to be hard.

Halting: The famous Halting problem is an example of an uncom-
putable problem: Given a description of a Turing machine
M, determine whether or not M halts when run on the
empty input.

Time-hierarchy: The Time Hierarchy Theorem from Complex-
ity theory states that there exist languages that are de-
cideable in time O(t(n)) but cannot be decided in time
o(t(n)/ log t(n)). A corollary of this theorem is that there
are functions f : {0, 1}∗ → {0, 1} that are computable in
exponential time but not computable in polynomial time.

2.1. Efficient Computation and Efficient Adversaries 23

Satisfiability: The notorious SAT problem is to determine if a
given Boolean formula has a satisfying assignment. SAT
is conjectured not to be solvable in polynomial-time—this
is the famous conjecture that P 6= NP. See Appendix B for
definitions of P and NP.

2.1.2 Randomized Computation

A natural extension of deterministic computation is to allow
an algorithm to have access to a source of random coin tosses.
Allowing this extra freedom is certainly plausible (as it is con-
ceivable to generate such random coins in practice), and it is
believed to enable more efficient algorithms for computing cer-
tain tasks. Moreover, it will be necessary for the security of the
schemes that we present later. For example, as we discussed in
chapter one, Kerckhoff’s principle states that all algorithms in
a scheme should be public. Thus, if the private key generation
algorithm Gen did not use random coins in its computation, then
Eve would be able to compute the same key that Alice and Bob
compute. Thus, to allow for this extra resource, we extend the
above definitions of computation as follows.

.Definition 23.4 (Randomized (PPT) Algorithm) A randomized
algorithm, also called a probabilistic polynomial-time Turing machine
and abbreviated as PPT, is a Turing machine equipped with an extra ran-
dom tape. Each bit of the random tape is uniformly and independently
chosen.

Equivalently, a randomized algorithm is a Turing Machine that
has access to a coin-tossing oracle that outputs a truly random
bit on demand.

To define efficiency we must clarify the concept of running
time for a randomized algorithm. A subtlety arises because
the run time of a randomized algorithm may depend on the
particular random tape chosen for an execution. We take a
conservative approach and define the running time as the upper
bound over all possible random sequences.

.Definition 23.5 (Running time) A randomized Turing machine A
runs in time T(n) if for all x ∈ {0, 1}∗, and for every random tape,

24 chapter 2. computational hardness

A(x) halts within T(|x|) steps. A runs in polynomial time (or is an
efficient randomized algorithm) if there exists a constant c such that
A runs in time T(n) = nc.

Finally, we must also extend our notion of computation to ran-
domized algorithms. In particular, once an algorithm has a
random tape, its output becomes a distribution over some set. In
the case of deterministic computation, the output is a singleton
set, and this is what we require here as well.

.Definition 24.6 A randomized algorithm A computes a function
f : {0, 1}∗ → {0, 1}∗ if for all x ∈ {0, 1}∗, A on input x, outputs
f (x) with probability 1. The probability is taken over the random tape
of A.

Notice that with randomized algorithms, we do not tolerate
algorithms that on rare occasion make errors. Formally, this
requirement may be too strong in practice because some of the
algorithms that we use in practice (e.g., primality testing) do err
with small negligible probability. In the rest of the book, however,
we ignore this rare case and assume that a randomized algorithm
always works correctly.

On a side note, it is worthwhile to note that a polynomial-time
randomized algorithm A that computes a function with proba-
bility 1

2 +
1

poly(n) can be used to obtain another polynomial-time
randomized machine A′ that computes the function with prob-
ability 1− 2−n. (A′ simply takes multiple runs of A and finally
outputs the most frequent output of A. The Chernoff bound (see
Appendix A) can then be used to analyze the probability with
which such a “majority” rule works.)

Polynomial-time randomized algorithms will be the principal
model of efficient computation considered in this course. We
will refer to this class of algorithms as probabilistic polynomial-time
Turing machine (p.p.t.) or efficient randomized algorithm interchange-
ably.

Given the above notation we can define the notion of an
efficient encryption scheme:

2.1. Efficient Computation and Efficient Adversaries 25

.Definition 24.7 (Efficient Private-key Encryption). A triplet of al-
gorithms (Gen,Enc,Dec) is called an efficient private-key encryption
scheme if the following holds:

1. k← Gen(1n) is a p.p.t. such that for every n ∈N, it samples
a key k.

2. c ← Enck(m) is a p.p.t. that given k and m ∈ {0, 1}n pro-
duces a ciphertext c.

3. m ← Deck(c) is a p.p.t. that given a ciphertext c and key k
produces a message m ∈ {0, 1}n ∪⊥.

4. For all n ∈N, m ∈ {0, 1}n,

Pr [k← Gen(1n) : Deck(Enck(m)) = m]] = 1

Notice that the Gen algorithm is given the special input 1n—called
the security parameter—which represents the string consisting
of n copies of 1, e.g. 14 = 1111. This security parameter is used
to instantiate the “security” of the scheme; larger parameters
correspond to more secure schemes. The security parameter also
establishes the running time of Gen, and therefore the maximum
size of k, and thus the running times of Enc and Dec as well.
Stating that these three algorithms are “polynomial-time” is
always with respect to the size of their respective inputs.

In the rest of this book, when discussing encryption schemes
we always refer to efficient encryption schemes. As a departure
from our notation in the first chapter, here we no longer refer to
a message space M or a key space K because we assume that
both are bit strings. In particular, on security parameter 1n, our
definition requires a scheme to handle n-bit messages. It is also
possible, and perhaps simpler, to define an encryption scheme
that only works on a single-bit message space M = {0, 1} for
every security parameter.

2.1.3 Efficient Adversaries

When modeling adversaries, we use a more relaxed notion of
efficient computation. In particular, instead of requiring the
adversary to be a machine with constant-sized description, we

26 chapter 2. computational hardness

allow the size of the adversary’s program to increase (polyno-
mially) with the input length, i.e., we allow the adversary to
be non-uniform. As before, we still allow the adversary to use
random coins and require that the adversary’s running time is
bounded by a polynomial. The primary motivation for using
non-uniformity to model the adversary is to simplify definitions
and proofs.

.Definition 26.8 (Non-Uniform PPT) A non-uniform probabilistic
polynomial-time machine (abbreviated n.u. p.p.t.) A is a sequence
of probabilistic machines A = {A1, A2, . . .} for which there exists a
polynomial d such that the description size of |Ai| < d(i) and the
running time of Ai is also less than d(i). We write A(x) to denote the
distribution obtained by running A|x|(x).

Alternatively, a non-uniform p.p.t. machine can also be de-
fined as a uniform p.p.t. machine A that receives an advice string
for each input length. In the rest of this text, any adversarial
algorithm A will implicitly be a non-uniform PPT.

2.2 One-Way Functions

At a high level, there are two basic desiderata for any encryption
scheme:

— it must be feasible to generate c given m and k, but

— it must be hard to recover m and k given only c.

This suggests that we require functions that are easy to com-
pute but hard to invert—one-way functions. Indeed, these func-
tions turn out to be the most basic building block in cryptography.
There are several ways that the notion of one-wayness can be
defined formally. We start with a definition that formalizes our
intuition in the simplest way.

.Definition 26.1 (Worst-case One-way Function). A function f :
{0, 1}∗ → {0, 1}∗ is worst-case one-way if:

2.2. One-Way Functions 27

1. Easy to compute. There is a p.p.t. C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2. Hard to Invert there is no adversary A such that

∀x Pr[A(f (x)) ∈ f−1(f (x))] = 1

It can be shown that assuming NP /∈ BPP, one-way functions
according to the above definition must exist.1 In fact, these two
assumptions are equivalent (show this!). Note, however, that
this definition allows for certain pathological functions to be
considered as one-way—e.g., those where inverting the function
for most x values is easy, but every machine fails to invert f (x)
for infinitely many x’s. It is an open question whether such
functions can still be used for good encryption schemes. This
observation motivates us to refine our requirements. We want
functions where for a randomly chosen x, the probability that
we are able to invert the function is very small. With this new
definition in mind, we begin by formalizing the notion of very
small.

.Definition 27.2 (Negligible function) A function ε(n) is negligi-
ble if for every c, there exists some n0 such that for all n > n0,
ε(n) ≤ 1

nc .

Intuitively, a negligible function is asymptotically smaller than
the inverse of any fixed polynomial. Examples of negligible
functions include 2−n and n− log log n. We say that a function
t(n) is non-negligible if there exists some constant c such that
for infinitely many points {n0, n1, . . .}, t(ni) > nc

i . This notion
becomes important in proofs that work by contradiction.

We can now present a more satisfactory definition of a one-
way function.

.Definition 27.3 (Strong One-Way Function) A function mapping
strings to strings f : {0, 1}∗ → {0, 1}∗ is a strong one-way function
if it satisfies the following two conditions:

1. Easy to compute. (Same as per worst-case one-way functions)
1See Appendix B for definitions of NP and BPP.

28 chapter 2. computational hardness

2. Hard to invert. Any efficient attempt to invert f on random
input succeeds with only negligible probability. Formally, for any
adversary A, there exists a negligible function ε such that for
any input length n ∈N,

Pr [x ← {0, 1}n; y← f (x) : f (A(1n, y)) = y] ≤ ε(n).

Notice the algorithm A receives the additional input of 1n;
this is to allow A to run for time polynomial in |x|, even if the
function f should be substantially length-shrinking. In essence,
we are ruling out pathological cases where functions might be
considered one-way because writing down the output of the
inversion algorithm violates its time bound.

As before, we must keep in mind that the above definition is
asymptotic. To define one-way functions with concrete security,
we would instead use explicit parameters that can be instantiated
as desired. In such a treatment, we say that a function is (t, s, ε)-
one-way if noA of size s with running time≤ t will succeed with
probability better than ε in inverting f on a randomly chosen
input.

Unfortunately, many natural candidates for one-way func-
tions will not meet the strong notion of a one-way function. In
order to capture the property of one-wayness that these examples
satisfy, we introduce the notion of a weak one-way function which
relaxes the condition on inverting the function. This relaxed
version only requires that all efficient attempts at inverting will
fail with some non-negligible probability.

.Definition 28.4 (Weak One-Way Function) A function mapping
strings to strings f : {0, 1}∗ → {0, 1}∗ is a weak one-way func-
tion if it satisfies the following two conditions.

1. Easy to compute. (Same as that for a strong one-way function.)

2. Hard to invert. There exists a polynomial function q : N→N

such that for any adversary A, for sufficiently large n ∈N,

Pr[x ← {0, 1}n; y← f (x) : f (A(1n, y)) = y] ≤ 1− 1
q(n)

2.3. Multiplication, Primes, and Factoring 29

Our eventual goal is to show that weak one-way functions can
be used to construct strong one-way functions. Before showing
this, let us consider some examples.

2.3 Multiplication, Primes, and Factoring

In this section, we consider examples of one-way functions. A
first candidate is the function fmult : N2 →N defined by

fmult(x, y) =
{

1 if x = 1∨ y = 1
x · y otherwise

Is this a one-way function? Clearly, by the multiplication algo-
rithm, fmult is easy to compute. But fmult is not always hard to
invert. If at least one of x and y is even, then their product will
be even as well. This happens with probability 3

4 if the input
(x, y) is picked uniformly at random from N2. So the following
attack A will succeed with probability 3

4 :

A(z) =
{

(2, z
2) if z even

(0, 0) otherwise.

Something is not quite right here, since fmult is conjectured to be
hard to invert on some, but not all, inputs2 . The strong definition
of a one-way function is too restrictive to capture this notion, so
we now determine whether the function satisfies the weak notion
of one-wayness. In order to do so, we must first introduce an
assumption and some basic facts from number theory.

2.3.1 The Factoring Assumption

Denote the (finite) set of primes that are smaller than 2n as

Πn = {q | q < 2n and q is prime}

Consider the following assumption, which we shall assume for
the remainder of this course:

2Notice that by the way we have defined fmult, (1, xy) will never be a
pre-image of xy. That is why some instances might be hard to invert.

30 chapter 2. computational hardness

.Assumption 30.1 (Factoring) For every adversary A, there exists a
negligible function ε such that

Pr[p← Πn; q← Πn; N ← pq : A(N) ∈ {p, q}] < ε(n)

The factoring assumption is a very important, well-studied
conjecture. The best provable algorithm for factorization runs
in time 2O((n log n)1/2), and the best heuristic algorithm runs in
time 2O(n1/3 log2/3 n). Factoring composites that are a product of
two primes is hard in a concrete way as well: In May 2005, the
research team of F. Bahr, M. Boehm, J. Franke, and T. Klein-
jung were able to factor a 663-bit challenge number (of the form
described above). In particular, they started in 2003 and com-
pleted in May 2005 and estimate to have used the equivalent of
55 years of computing time of a single 2.2 GHz Opteron CPU.
See [bbfk05] for details. In January 2010, Kleinjung and 12 col-
leagues [kaf

+
10] announced the factorization of the RSA-768

challenge modulus. They describe the amount of work required
for this task as follows:

We spent half a year on 80 processors on polynomial
selection. This was about 3% of the main task, the
sieving, which was done on many hundreds of ma-
chines and took almost two years. On a single core
2.2 GHz AMD Opteron processor with 2 GB RAM per
core, sieving would have taken about fifteen hundred
years.

They go on to mention that factoring a 1024-bit modulus “would
be about a thousand times harder.”

2.3.2 There are many primes

The problem of characterizing the set of prime numbers has been
considered since antiquity. Euclid, in Book IX, Proposition 20,
noted that there are an infinite number of primes. However,
merely having an infinite number of them is not reassuring, since
perhaps they are distributed in such a haphazard way as to make
finding them extremely difficult. An empirical way to approach

2.3. Multiplication, Primes, and Factoring 31

the problem is to define the function

π(x) = number of primes ≤ x

and graph it for reasonable values of x as we have done in Fig. 2

below.

0 1000 2000 4000 8000
0

500

1,000

n/ log(n)

π(n)2n/ log(n)

n

1

Figure 31.2: Graph of π(n) for the first thousand primes

By inspecting this curve, at age 15, Gauss conjectured that
π(x) ≈ x/ log x. Since then, many people have answered the
question with increasing precision; notable are Chebyshev’s theo-
rem (upon which our argument below is based), and the famous
Prime Number Theorem which establishes that π(N) approaches

N
ln N as N grows to infinity. Here, we will prove a much simpler
theorem which only lower-bounds π(x):

.Theorem 31.3 (Chebyshev) For x > 1, π(x) > x
2 log x

Proof. Consider the integer

X =

(
2x
x

)
=

(2x)!
(x!)2 =

(
x + x

x

)(
x + (x− 1)
(x− 1)

)
· · ·
(

x + 1
1

)
Observe that X > 2x (since each term is greater than 2) and
that the largest prime dividing X is at most 2x (since the largest
numerator in the product is 2x). By these facts and unique
factorization, we can write

X = ∏
p<2x

pνp(X) > 2x

32 chapter 2. computational hardness

where the product is over primes p less than 2x and νp(X) de-
notes the integral power of p in the factorization of X. Taking
logs on both sides, we have

∑
p<2x

νp(X) log p > x

We now employ the following claim proven below.

.Claim 32.4 log 2x
log p > νp(X)

Substituting this claim, we have

∑
p<2x

(
log 2x
log p

)
log p = log 2x

(
∑

p<2x
1

)
> x

Notice that the second sum is precisely π(2x); thus

π(2x) >
x

log 2x
=

1
2
· 2x

log 2x

which establishes the theorem for even values. For odd values,
notice that

π(2x) = π(2x− 1) >
2x

2 log 2x
>

(2x− 1)
2 log(2x− 1)

since x/ log x is an increasing function for x ≥ 3.

Proof. [Proof Of Claim 32.4] Notice that

νp(X) = ∑
i>1

(
b2x/pic − 2bx/pic

)
< log 2x/ log p

The first equality follows because the product (2x)! = (2x)(2x−
1) . . . (1) includes a multiple of pi at most b2x/pic times in the
numerator of X; similarly the product x! · x! in the denominator
of X removes it exactly 2bx/pic times. The second line follows
because each term in the summation is at most 1 and after pi >
2x, all of the terms will be zero. �

�

2.3. Multiplication, Primes, and Factoring 33

An important corollary of Chebyshev’s theorem is that at
least a 1/2n-fraction of n-bit numbers are prime. As we shall see
in §2.6.5, primality testing can be done in polynomial time—i.e.,
we can efficiently check whether a number is prime or com-
posite. With these facts, we can show that, under the factoring
assumption, fmult is a weak one-way function.

.Theorem 33.5 If the factoring assumption is true, then fmult is a weak
one-way function.

Proof. As already mentioned, fmult(x, y) is clearly computable in
polynomial time; we just need to show that it is hard to invert.

Consider a certain input length 2n (i.e, |x| = |y| = n). Intu-
itively, by Chebyshev’s theorem, with probability 1/4n2 a random
input pair x, y will consists of two primes; in this case, by the fac-
toring assumption, the function should be hard to invert (except
with negligible probability).

We proceed to a formal proof. Let q(n) = 8n2; we show that
non-uniform p.p.t. cannot invert fmult with probability greater
than 1− 1

q(n) for sufficiently large input lengths. Assume, for
contradiction, that there exists a non-uniform p.p.t. A that inverts
fmult with probability at least 1− 1

q(n) for infinitely many n ∈N.
That is, the probability that A, when given input z = xy for
randomly chosen n-bit strings, x and y, produces either x or y is:

Pr
[
x, y← {0, 1}n, z = xy : A(12n, z) ∈ {x, y}

]
≥ 1− 1

8n2 (33.2)

We construct a non-uniform p.p.t machine A′ which uses A to
break the factoring assumption. The description of A′ follows:

algorithm 33.6: A′(z): Breaking the factoring assumption

1: Sample x, y← {0, 1}n

2: if x and y are both prime then
3: z′ ← z
4: else
5: z′ ← xy
6: end if
7: w← A(1n, z′)
8: Return w if x and y are both prime.

34 chapter 2. computational hardness

Note that since primality testing can be done in polynomial
time, and since A is a non-uniform p.p.t., A′ is also a non-uniform
p.p.t. Suppose we now feed A′ the product of a pair of random
n-bit primes, z. In order to give A a uniformly distributed input
(i.e. the product of a pair of random n-bit numbers), A′ samples a
pair (x, y) uniformly, and replaces the product xy with the input
z if both x and y are prime. By Chebychev’s Theorem (31.3),
A′ fails to pass z to A with probability at most 1− 1

4n2 . From
Eq. (33.2), A fails to factor its input with probability at most
1/8n2. Using the union bound, we conclude that A′ fails with
probability at most(

1− 1
4n2

)
+

1
8n2 ≤ 1− 1

8n2

for large n. In other words, A′ factors z with probability at least
1

8n2 for infinitely many n. In other words, there does not exist
a negligible function that bounds the success probability of A′,
which contradicts the factoring assumption. �

Note that in the above proof we relied on the fact that primal-
ity testing can be done in polynomial time. This was done only
for ease of exposition, as it is unnecessary. Consider a machine
A′′ that proceeds just as A′, but always lets z = z′ and always
outputs w. Such a machine succeeds in factoring with at least
the same if not greater probability. But A′′ never needs to check
if x and y are prime.

2.4 Hardness Amplification

We have shown that a natural function such as multiplication
satisfies the notion of a weak one-way function if certain assump-
tions hold. In this section, we show an efficient way to transform
any weak one-way function to a strong one. In this sense, the
existence of weak one-way functions is equivalent to the existence
of (strong) one-way functions. The main insight is that running a
weak one-way function f on enough random inputs xi produces
a list of elements yi which contains at least one member that is
hard to invert.

2.4. Hardness Amplification 35

.Theorem 35.1 For any weak one-way function f : {0, 1}∗→{0, 1}∗,
there exists a polynomial m(·) such that function

f ′(x1, x2, . . . , xm(n)) = (f (x1), f (x2), . . . , f (xm(n))).

from f ′ : ({0, 1}n)m(n) → ({0, 1}∗)m(n) is strongly one-way.

We prove this theorem by contradiction. We assume that f ′ is
not strongly one-way and so there is an algorithm A′ that inverts
it with non-negligible probability. From this, we construct an
algorithm A that inverts f with high probability. The pattern for
such an argument is common in cryptographic proofs; we call
it a security reduction because it essentially reduces the problem
of “breaking” f (for example, the weak one-way function in the
theorem above) into the problem of breaking f ′. Therefore, if
there is some way to attack f ′, then that same method can be
used (via the reduction) to break the original primitive f that we
assume to be secure.

The complete proof of Thm. 35.1 appears in §2.4.3 below.
To introduce that proof, we first present two smaller examples.
First, to gain familiarity with security reductions, we show a
simple example of how to argue that if f is a strong one-way
function, then g(x, y) = (f (x), f (y)) is also a strong one-way
function. Next, we prove the hardness amplification theorem
for the function fmult because it is significantly simpler than the
proof for the general case, and yet offers insight to the proof of
Theorem 35.1.

2.4.1 A Simple Security Reduction

.Theorem 35.2 If f is a strong one-way function, then g(x, y) =
(f (x), f (y)) is a strong one-way function.

Proof. Suppose for the sake of reaching contradiction that g is
not a strong one-way function. Thus, there exists a non-uniform
p.p.t. A′ and a polynomial p such that for infinitely many n,

Pr
[
(x, y)← {0, 1}2n; z← g(x, y) : A′(12n, z) ∈ g−1(z)

]
≥ 1

p(2n)

36 chapter 2. computational hardness

We now construct another non-uniform p.p.t. A that uses A′ in
order to invert f on input u. In order to do this, A will choose a
random y, compute v← f (y) and then submit the pair (u, v) to
A′. Notice that this pair (u, v) is identically distributed as the pair
(x, y) in the equation above. Therefore, with probability 1

p(2n) ,
the algorithm A′ returns an inverse (a, b). Now the algorithm A
can test whether f (a) = u, and if so, output a. Formally,

Pr
[

x ← {0, 1}n; u← f (x) : A(1n, u) ∈ f−1(u)
]

= Pr
[

x, y← {0, 1}2n;
u← f (x); v← f (y) : A′(12n, (u, v)) ∈ g−1(u, v)

]
= Pr

[
(x, y)← {0, 1}2n; z← g(x, y) : A′(12n, z) ∈ g−1(z)

]
≥ 1

p(2n)

�

2.4.2 Analyzing the function fmult

.Theorem 36.3 Assume the factoring assumption and let mn = 4n3.
Then f ′ : ({0, 1}2n)mn → ({0, 1}2n)mn is strongly one-way:

f ′((x1, y1), . . . , (xmn , ymn)) = (fmult(x1, y1), . . . , fmult(xmn , ymn))

Proof. Recall that by Chebyschev’s Theorem, a pair of random
n-bit numbers are both prime with probability at least 1/4n2. So,
if we choose mn = 4n3 pairs, the probability that none of them is
a prime pair is at most

(
1− 1

4n2

)4n3

=

(
1− 1

4n2

)4n2n

≤ e−n (36.2)

Thus, intuitively, by the factoring assumption f ′ is strongly one-
way. More formally, suppose that f ′ is not a strong one-way
function. Let n′ = 2n · m(n) = 8n4, and let the notation (~x,~y)
represent (x1, y2), . . . , (xm(n), ym(n)). Thus, there exists a non-
uniform p.p.t. machine A and a polynomial p such that for

2.4. Hardness Amplification 37

infinitely many n′,

Pr
[
(~x,~y)← {0, 1}n′ : A(1n′ , f ′(~x,~y)) ∈ f ′−1(~x,~y)

]
≥ 1

p(n′)
(36.3)

We construct a non-uniform p.p.t. A′ which uses A to break the
factoring assumption.

algorithm 37.4: A′(z0): Breaking the factoring assumption

1: Sample ~x,~y← {0, 1}n′

2: Compute ~z← f ′(~x,~y)
3: if some pair (xi, yi) are both prime then
4: replace zi with z0 (only once even if there are many such

pairs)
5: Compute (x′1, y′1), . . . , (x′m(n), y′m(n))← A(1n′ ,~z)
6: Output x′i
7: end if
8: Else, fail.

Note that since primality testing can be done in polynomial time,
and since A is a non-uniform p.p.t., A′ is also a non-uniform p.p.t.
Also note that A′(z0) feeds A the uniform input distribution by
uniformly sampling (~x,~y) and replacing some product xiyi with
z0 only if both xi and yi are prime. From (36.3), A′ fails to factor
its inputs with probability at most 1− 1/p(n′); from (36.2), A′

fails to substitute in z0 with probability at most e−n By the union
bound, we conclude that A′ fails to factor z0 with probability at
most

1− 1
p(n′)

+ e−n ≤ 1− 1
2p(n′)

for large n. In other words, A′ factors z0 with probability at least
1/2p(n′) for infinitely many n′. This contradicts the factoring
assumption. �

We note that just as in the proof of Theorem 33.5 the above
proof can be modified to not make use of the fact that primality
testing can be done in polynomial time. We leave this as an
exercise to the reader.

2.4.3 ?Proof of Theorem 35.1

38 chapter 2. computational hardness

Proof. Since f is weakly one-way, let q : N→N be a polynomial
such that for any non-uniform p.p.t. algorithm A and any input
length n ∈N,

Pr [x ← {0, 1}n; y← f (x) : f (A(1n, y)) = y] ≤ 1− 1
q(n)

.

We want to set m such that
(

1− 1
q(n)

)m
tends to 0 for large n.

Since (
1− 1

q(n)

)nq(n)

≈
(

1
e

)n

we pick m = 2nq(n). Let ~x represent ~x = (x1, . . . , xm) where each
xi ∈ {0, 1}n.
Suppose that f ′ as defined in the theorem statement is not a
strongly one-way function. Thus, there exists a non-uniform
p.p.t. algorithm A′ and p′ : N → N be a polynomial such that
for infinitely many input lengths n ∈ N, A′ inverts f ′ with
probability p′(nm):

Pr
[
~x ← {0, 1}nm;~y = f ′(~x) : f ′(A′(~y)) = ~y

]
>

1
p′(nm)

Since m is polynomial in n, then the function p(n) = p′(nm) =
p′(2n2q(n)) is also a polynomial. Rewriting the above probability,
we have

Pr
[
~x ← {0, 1}nm;~y = f ′(~x) : f ′(A′(~y)) = ~y

]
>

1
p(n)

(38.1)

A first idea for using A to invert f on the input y would be to
feed A the input (y, y, . . . , y). But, it is possible that A always fails
on inputs of such format (these strings form a very small fraction
of all strings of length mn); so this plan will not work. A slightly
better approach would be to feed A the string (y, y2, . . . , ym)
where yj 6=1 = f (xj) and xj ← {0, 1}n. Again, this may not work
since A could potentially invert only a small fraction of y1’s (but,
say, all y2, . . . ym’s). As we show below, letting yi = y, where
i ← [m] is a random “position” will, however, work. More
precisely, define the algorithm A0 which will attempt to use A′
to invert f as per the figure below.

algorithm 38.5: A0(f , y) where y ∈ {0, 1}n

2.4. Hardness Amplification 39

1: Pick a random i← [1, m].
2: For all j 6= i, pick a random xj ← {0, 1}n, and let yj = f (xj).
3: Let yi ← y.
4: Let (z1, z2, . . . , zm)← A′(y1, y2, . . . , ym).
5: If f (zi) = y, then output zi; otherwise, fail and output ⊥.

To improve our chances of inverting f , we will run A0 several
times using independently chosen random coins. Define the
algorithm A : {0, 1}n → {0, 1}n ∪ ⊥ to run A0 with its input
2nm2 p(n) times and output the first non-⊥ result it receives. If
all runs of A0 result in ⊥, then A also outputs ⊥.

In order to analyze the success of A, let us define a set of
“good” elements Gn such that x ∈ Gn if A0 can successfully invert
f (x) with non-negligible probability:

Gn =

{
x ∈ {0, 1}n

∣∣∣ Pr [A0(f (x)) 6= ⊥] ≥ 1
2m2 p(n)

}
Otherwise, call x “bad.” Note that the probability that A fails to
invert f (x) on a good x is small:

Pr [A(f (x)) fails | x ∈ Gn] ≤
(

1− 1
2m2 p(n)

)2m2np(n)

≈ e−n.

We claim that there are many good elements; there are enough
for A to invert f with sufficient probability to contradict the
weakly one-way assumption on f . In particular, we claim there
are at least 2n

(
1− 1

2q(n)

)
good elements in {0, 1}n. If this holds,

then

Pr [A(f (x)) fails]
= Pr [A(f (x)) fails | x ∈ Gn] · Pr [x ∈ Gn]

+ Pr [A(f (x)) fails | x 6∈ Gn] · Pr [x 6∈ Gn]

≤ Pr [A(f (x)) fails | x ∈ Gn] + Pr [x 6∈ Gn]

≤
(

1− 1
2m2 p(n)

)2m2np(n)

+
1

2q(n)

≈ e−n +
1

2q(n)

<
1

q(n)
.

40 chapter 2. computational hardness

This contradicts the assumption that f is q(n)-weak.

It remains to be shown that there are at least 2n
(

1− 1
2q(n)

)
good elements in {0, 1}n. Suppose for the sake of reaching a
contradiction, that |Gn| < 2n

(
1

2q(n)

)
. We will contradict Eq.(38.1)

which states that A′ succeeds in inverting f ′(x) on a random
input x with probability 1

p(n) . To do so, we establish an upper
bound on the probability by splitting it into two quantities:

Pr
[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) succeeds

]
= Pr

[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) 6= ⊥∧ some xi 6∈ Gn

]
+ Pr

[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) 6= ⊥∧ all xi ∈ Gn

]

For each j ∈ [1, n], we have

Pr
[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) 6= ⊥∧ xj 6∈ Gn

]
≤ Pr

[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) succeeds | xj 6∈ Gn

]
≤ m · Pr

[
A0(f (xj)) succeeds | xj is bad

]
≤ m

2m2 p(n)
=

1
2mp(n)

So taking a union bound, we have

Pr
[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) succeeds∧ some xi 6∈ Gn

]
≤∑

j
Pr
[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) succeeds∧ xj 6∈ Gn

]
≤ m

2mp(n)
=

1
2p(n)

.

Also,

Pr
[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) succeeds and all xi ∈ Gn

]
≤ Pr [xi ← {0, 1}n : all xi ∈ Gn]

<

(
1− 1

2q(n)

)m

=

(
1− 1

2q(n)

)2nq(n)

≈ e−n

2.5. Collections of One-Way Functions 41

Hence

Pr
[
xi ← {0, 1}n; yi = f ′(xi) : A′(~y) succeeds

]
<

1
2p(n)

+ e−n

<
1

p(n)

which contradicts (38.1). �

2.5 Collections of One-Way Functions

In the last two sections, we have come to suitable definitions
for strong and weak one-way functions. These two definitions
are concise and elegant, and can nonetheless be used to con-
struct generic schemes and protocols. However, the definitions
are more suited for research in complexity-theoretic aspects of
cryptography.

Practical considerations motivate us to introduce a more flexi-
ble definition that combines the practicality of a weak OWF with
the security of a strong OWF. In particular, instead of requiring
the function to be one-way on a randomly chosen string, we de-
fine a domain and a domain sampler for hard-to-invert instances.
Because the inspiration behind this definition comes from “can-
didate one-way functions,” we also introduce the concept of a
collection of functions; one function per input size.

.Definition 41.1 (Collection of OWFs). A collection of one-way func-
tions is a family F = { fi : Di → Ri}i∈I satisfying the following
conditions:

1. It is easy to sample a function, i.e. there exists a p.p.t. Gen
such that Gen(1n) outputs some i ∈ I.

2. It is easy to sample a given domain, i.e. there exists a p.p.t.
that on input i returns a uniformly random element of Di

3. It is easy to evaluate, i.e. there exists a p.p.t. that on input
i, x ∈ Di computes fi(x).

4. It is hard to invert, i.e. for any p.p.t. A there exists a negligi-
ble function ε such that

Pr [i← Gen; x ← Di; y← fi(x) : f (A(1n, i, y)) = y] ≤ ε(n)

42 chapter 2. computational hardness

Despite our various relaxations, the existence of a collection
of one-way functions is equivalent to the existence of a strong
one-way function.

.Theorem 42.2 There exists a collection of one-way functions if and
only if there exists a single strong one-way function.

Proof idea: If we have a single one-way function f , then we can
choose our index set ot be the singleton set I = {0}, choose
D0 = N, and f0 = f .

The difficult direction is to construct a single one-way func-
tion given a collection F . The trick is to define g(r1, r2) to be
i, fi(x) where i is generated using r1 as the random bits and x is
sampled from Di using r2 as the random bits. The fact that g is a
strong one-way function is left as an excercise. �

2.6 Basic Computational Number Theory

Before we can study candidate collections of one-way functions,
it serves us to review some basic algorithms and concepts in
number theory and group theory.

2.6.1 Modular Arithmetic

We state the following basic facts about modular arithmetic:

.Fact 42.1 For N > 0 and a, b ∈ Z,

1. (a mod N) + (b mod N) mod N ≡ (a + b) mod N

2. (a mod N)(b mod N) mod N ≡ ab mod N

We often use = instead of ≡ to denote modular congruency.

2.6.2 Euclid’s algorithm

Euclid’s algorithm appears in text around 300B.C. Given two
numbers a and b such that a ≥ b, Euclid’s algorithm computes the
greatest common divisor of a and b, denoted gcd(a, b). It is not at
all obvious how this value can be efficiently computed, without
say, the factorization of both numbers. Euclid’s insight was to

2.6. Basic Computational Number Theory 43

notice that any divisor of a and b is also a divisor of b and a− b.
The subtraction is easy to compute and the resulting pair (b, a− b)
is a smaller instance of original gcd problem. The algorithm has
since been updated to use a mod b in place of a− b to improve
efficiency. The version of the algorithm that we present here also
computes values x, y such that ax + by = gcd(a, b).

algorithm 43.2: ExtendedEuclid(a, b) such that a > b > 0
1: if a mod b = 0 then
2: Return (0, 1)
3: else
4: (x, y)← ExtendedEuclid(b, a mod b)
5: Return (y, x− y(ba/bc))
6: end if

Note: by polynomial time we always mean polynomial in the
size of the input, that is poly(log a + log b)

Proof. On input a > b ≥ 0, we aim to prove that Algorithm 43.2
returns (x, y) such that ax + by = gcd(a, b) = d via induction.
First, let us argue that the procedure terminates in polynomial
time. (See [knu81] for a better analysis relating to the Fibonacci
numbers; for us the following suffices since each recursive call
involves only a constant number of divisions and subtraction
operations.)

.Claim 43.3 If a > b ≥ 0 and a < 2n, then ExtendedEuclid(a, b)
makes at most 2n recursive calls.

Proof. By inspection, if n ≤ 2, the procedure returns after at most
2 recursive calls. Assume the hypothesis holds for a < 2n. Now
consider an instance with a < 2n+1. We identify two cases.

1. If b < 2n, then the next recursive call on (b, a mod b) meets
the inductive hypothesis and makes at most 2n recursive
calls. Thus, the total number of recursive calls is less than
2n + 1 < 2(n + 1).

2. If b > 2n, than the first argument of the next recursive
call on (b, a mod b) is upper-bounded by 2n+1 since a > b.
Thus, the problem is no “smaller” on face. However, we

44 chapter 2. computational hardness

can show that the second argument will be small enough
to satisfy the prior case:

a mod b = a− ba/bc · b
< 2n+1 − b

< 2n+1 − 2n = 2n

Thus, after 2 recursive calls, the arguments satisfy the in-
ductive hypothesis resulting in 2 + 2n = 2(n + 1) recursive
calls.

�
Now for correctness, suppose that b divided a evenly (i.e.,

a mod b = 0). Then we have gcd(a, b) = b, and the algorithm
returns (0, 1) which is correct by inspection. By the inductive
hypothesis, assume that the recursive call returns (x, y) such that

bx + (a mod b)y = gcd(b, a mod b)

First, we claim that

.Claim 44.4 gcd(a, b) = gcd(b, a mod b)

Proof. Divide a by b and write the result as a = qb + r. Rearrange
to get r = a− qb.

Observe that if d is a divisor of a and b (i.e. a = a′d and
b = b′d for a′, b′ ∈ Z) then d is also a divisor of r since r =
(a′d)− q(b′d) = d(a′ − qb′). Similarly, if d is a divisor of b and r,
then d also divides a. Since this holds for all divisors of a and b
and all divisors of b and r, it follows that gcd(a, b) = gcd(b, r).

�
Thus, we can write

bx + (a mod b)y = d

and by adding 0 to the right, and regrouping, we get

d = bx− b(ba/bc)y + (a mod b)y + b(ba/bc)y
= b(x− (ba/bc)y) + ay

which shows that the return value (y, x− (ba/bc)y) is correct. �
The assumption that the inputs are such that a > b is without

loss of generality since otherwise the first recursive call swaps
the order of the inputs.

2.6. Basic Computational Number Theory 45

2.6.3 Exponentiation modulo N

Given a, x, N, we now demonstrate how to efficiently compute
ax mod N. Recall that by efficient, we require the computation
to take polynomial time in the size of the representation of
a, x, N. Since inputs are given in binary notation, this requires
our procedure to run in time poly(log(a), log(x), log(N)).

The key idea is to rewrite x in binary as

x = 2`x` + 2`−1x`−1 + · · ·+ 2x1 + x0

where xi ∈ {0, 1} so that

ax mod N = a2`x`+2`−1x`−1+···+21x1+x0 mod N

This expression can be further simplified as

ax mod N =
`

∏
i=0

xia2i
mod N

using the basic properties of modular arithmetic from Fact 42.1.

algorithm 45.5: ModularExponentiation(a, x, N)

1: r ← 1
2: while x > 0 do
3: if x is odd then
4: r ← r · a mod N
5: end if
6: x ← bx/2c
7: a← a2 mod N
8: end while
9: return r

.Theorem 45.6 On input (a, x, N) where a ∈ [1, N], Algorithm 45.5
computes ax mod N in time O(log(x) log2(N)).

Proof. Rewrite ax mod N as ∏i xia2i
mod N. Since multiplying

and squaring modulo N take time log2(N), each iteration of the
loop requires O(log2(N)) time. Because each iteration divides
x by two, the loop runs at most log x times which establishes a
running time of O(log(x) log2(N)). �

46 chapter 2. computational hardness

Later, after we have introduced Euler’s theorem, we present
a similar algorithm for modular exponentiation which removes
the restriction that x < N. In order to discuss this, we must
introduce the notion of Groups.

2.6.4 Groups

.Definition 46.7 A group G is a set of elements with a binary operator
⊕ : G× G → G that satisfies the following properties:

1. Closure: For all a, b ∈ G, a⊕ b ∈ G,

2. Identity: There is an element i in G such that for all a ∈ G,
i⊕ a = a⊕ i = a. This element i is called the identity element.

3. Associativity: For all a, b and c in G, (a⊕ b)⊕ c = a⊕ (b⊕ c).

4. Inverse: For all a ∈ G, there is an element b ∈ G such that
a⊕ b = b⊕ a = i where i is the identity.

Example: The Additive Group Mod N

We have already worked with the additive group modulo N,
which is denoted as (ZN ,+) where ZN = {0, 1, . . . , N − 1} and
+ is addition modulo N. It is straightforward to verify the four
properties for this set and operation.

Example: The Multiplicative Group Mod N

The multiplicative group modulo N > 0 is denoted (Z∗N ,×),
where Z∗N = {x ∈ [1, N − 1] | gcd(x, N) = 1} and × is multipli-
cation modulo N.

.Theorem 46.8 (Z∗N ,×) is a group

Proof. Observe that 1 is the identity in this group and that
(a ∗ b) ∗ c = a ∗ (b ∗ c) for a, b, c ∈ Z∗N . However, it remains to
verify that the group is closed and that each element has an
inverse. In order to do this, we must introduce the notion of a
prime integer.

.Definition 46.9 A prime is a positive integer p > 1 that is evenly
divisible by only 1 and p.

2.6. Basic Computational Number Theory 47

Closure Suppose, for the sake of reaching a contradiction, that
there exist two elements a, b ∈ Z∗N such that ab 6∈ Z∗N . This
implies that gcd(a, N) = 1, gcd(b, N) = 1, but that gcd(ab, N) =
d > 1. The latter condition implies that d has a non-trivial prime
factor that divides both ab and N. Thus, the prime factor must
also divide either a or b (verify as an exercise), which contradicts
the assumption that gcd(a, N) = 1 and gcd(b, N) = 1.

Inverse Consider an element a ∈ Z∗N . Since gcd(a, N) = 1, we
can use Euclid’s algorithm on (a, N) to compute values (x, y)
such that ax + Ny = 1. Notice, this directly produces a value x
such that ax = 1 mod N. Thus, every element a ∈ Z∗N has an
inverse which can be efficiently computed. �

The groups (ZN ,+) and (Z∗N ,×) are also abelian or commu-
tative groups in which a⊕ b = b⊕ a.

The number of unique elements in Z∗N (often referred to
as the order of the group) is denoted by the the Euler Totient
function Φ(N).

Φ(p) = p− 1 if p is prime
Φ(N) = (p− 1)(q− 1) if N = pq and p, q are primes

The first case follows because all elements less than p will be
relatively prime to p. The second case requires some simple
counting (show this by counting the number of multiples of p
and q that are less than N).

The structure of these multiplicative groups offer some special
properties which we exploit throughout this course. One of the
first properties is the following identity first proven by Euler in
1758 and published in 1763 [eul63].

.Theorem 47.10 (Euler) ∀a ∈ Z∗N , aΦ(N) = 1 mod N

Proof. Consider the set A = {ax | x ∈ Z∗N}. Since Z∗N is a
group, every element ax of A must also be in Z∗N and so it
follows that A ⊆ Z∗N . Now suppose that |A| < |Z∗N |. By the
pidgeonhole principle, this implies that there exist two group
element i, j ∈ Z∗N such that i 6= j but ai = aj. Since a ∈ Z∗N , there
exists an inverse a−1 such that aa−1 = 1. Multiplying on both

48 chapter 2. computational hardness

sides we have a−1ai = a−1aj =⇒ i = j which is a contradiction.
Thus, |A| = |Z∗N | which implies that A = Z∗N .

Because the group Z∗N is abelian (i.e., commutative), we can
take products and substitute the definition of A to get

∏
x∈Z∗N

x = ∏
y∈A

y = ∏
x∈Z∗N

ax

The product further simplifies as

∏
x∈Z∗N

x = aΦ(N) ∏
x∈Z∗N

x

Finally, since the closure property guarantees that ∏x∈Z∗N
x ∈ Z∗N

and since the inverse property guarantees that this element has
an inverse, we can multiply the inverse on both sides to obtain

1 = aΦ(N).

�

.Corollary 48.11 (Fermat’s Little Thm.) ∀a ∈ Z∗p, ap−1 ≡ 1 mod
p.

.Corollary 48.12 ax mod N = ax mod Φ(N) mod N.

Thus, given Φ(N), the operation ax mod N can be computed
efficiently in Z∗N for any x.

Example Compute 261241
mod 21 using only paper and pencil.

2.6.5 Primality Testing

An important task in generating the parameters of many cryp-
tographic schemes will be the identification of a suitably large
prime number. Eratosthenes (276–174BC), a librarian of Alex-
andria, is credited with devising an elementary sieving method
to enumerate all primes. However, his method is not practical
for choosing a large (i.e., 1000 digit) prime.

Instead, recall that Fermat’s Little Theorem establishes that
ap−1 = 1 mod p for any a ∈ Zp whenever p is prime. It turns

2.6. Basic Computational Number Theory 49

out that when p is not prime, then ap−1 is usually not equal to
1. The first fact and second phenomena form the basic idea
behind the a primality test: to test p, pick a random a ∈ Zp, and
check whether ap−1 = 1 mod p. Notice that efficient modular
exponentiation is critical for this test. Unfortunately, the second
phenomena is on rare occasion false. Despite there rarity (starting
with 561, 1105, 1729, . . ., there are only 255 such cases less than
108), there are an infinite number of counter examples collectively
known as the Carmichael numbers. Thus, for correctness, our
procedure must handle these rare cases. To do so, we add a
second check that verifies that none of the intermediate powers of a
encountered during the modular exponentiation computation of
an−1 are non-trivial square-roots of 1. This suggest the following
approach known as the Miller-Rabin primality test presented by
Miller [mil76] and Rabin [rab80].
For positive N, write N = u2j where u is odd. Define the set

LN =
{

α ∈ ZN | αN−1 = 1 and if αu2j+1
= 1 then αu2j

= 1
}

algorithm 49.13: Miller-Rabin Primality Test

1: Handle base case N = 2
2: for t times do
3: Pick a random α ∈ ZN
4: if α 6∈ LN then
5: Output “composite”
6: end if
7: end for
8: Output “prime”

Observe that testing whether α ∈ LN can be done by using a
repeated-squaring algorithm to compute modular exponentiation,
and adding internal checks to make sure that no non-trivial roots
of unity are discovered.

.Theorem 49.14 If N is composite, then the Miller-Rabin test outputs
“composite” with probability 1− 2−t. If N is prime, then the test outputs
“prime.”

The proof of this theorem follows from the following lemma:

50 chapter 2. computational hardness

.Lemma 50.15 If N is an odd prime, then |LN | = N − 1. If N > 2 is
composite, then |LN | < (N − 1)/2.

We will not prove this lemma here. See [clrs09] for a full
proof. The proof idea is as follows. If N is prime, then by
Fermat’s Little Theorem, the first condition will always hold, and
since 1 only has two square roots modulo N (namely, 1,−1), the
second condition holds as well. If N is composite, then either
there will be some α for which αN−1 is not equal to 1 or the
process of computing αN−1 reveals a square root of 1 which
is different from 1 or −1. More formally, the proof works by
first arguing that all of the α 6∈ LN form a proper subgroup of
Z∗N . Since the order of a subgroup must divide the order of the
group, the size of a proper subgroup must therefore be less than
(N − 1)/2.

We mention that a more complicated (and less efficient) de-
terministic polynomial-time algorithm for primality testing was
recently presented by Agrawal, Kayal, and Saxena [aks04].

2.6.6 Selecting a Random Prime

Our algorithm for finding a random n-bit prime repeatedly sam-
ples an n-bit number and then checks whether it is prime.

algorithm 50.16: SamplePrime(n)
1: repeat
2: x r← {0, 1}n

3: until Miller-Rabin(x) = “prime”
4: return x

Two mathematical facts allow this simple scheme to work. First,
there are many primes: By Theorem 31.3, the probability that a
uniformly sampled n-bit integer is prime exceeds (2n/n)/2n = 1

n .
Thus, the expected number of iterations of the loop in Algo-
rithm 50.16 is polynomial in n.

Second, it is easy to determine whether a number is prime.
Since the running time of the Miller-Rabin algorithm is also
polynomial in n, the expected running time to sample a random
prime using the simple guess-and-check approach is polynomial
in n.

2.7. Factoring-based Collection of OWF 51

.Lemma 51.17 Algorithm SamplePrime outputs a randomly selected
n-bit prime number in time poly(n).

2.7 Factoring-based Collection of OWF

Under the factoring assumption, we can prove the following
result, which establishes our first realistic collection of one-way
functions:

.Theorem 51.1 Let F = { fi : Di → Ri}i∈I where

I = N

Di = {(p, q) | p, q are prime and |p| = |q| = i
2
}

fi(p, q) = p · q

If the Factoring Assumption holds, then F is a collection of one-way
functions.

Proof. We can sample a random element of the index set N. It
is easy to evaluate fi because multiplication is efficiently com-
putable, and the factoring assumption states that inverting fi
is hard. Thus, all that remains is to present a method to effi-
ciently sample two random prime numbers. This follows from
Lemma 51.17 above. Thus all four conditions in the definition of
a one-way collection are satisfied. �

2.8 Discrete Logarithm-based Collection

Another often used collection is based on the discrete logarithm
problem in the group Z∗p for a prime p.

2.8.1 Discrete logarithm modulo p

An instance (p, g, y) of the discrete logarithm problem consists
of a prime p and two elements g, y ∈ Z∗p. The task is to find an
x such that gx = y mod p. In some special cases (e.g., g = 1 or
when p− 1 has many small prime factors), it is easy to either
declare that no solution exists or solve the problem. However,
when g is a generator of Z∗p, the problem is believed to be hard.

52 chapter 2. computational hardness

.Definition 52.1 (Generator of a Group) A element g of a multi-
plicative group G is a generator if the set {g, g2, g3, . . .} = G. We
denote the set of all generators of a group G by GenG.

.Assumption 52.2 (Discrete Log) If Gq is a group of prime order q,
then for every adversary A, there exists a negligible function ε such
that

Pr
[
q← Πn; g← GenGq ; x ← Zq : A(gx) = x

]
< ε(n)

Recall that Πn is the set of n-bit prime numbers. Note that it is
important that G is a group of prime-order. Thus, for example, the
normal multiplicative group Z∗p has order (p− 1) and therefore
does not satisfy the assumption.

Instead, one usually picks a prime of the form p = 2q + 1
(known as a Sophie Germain prime or a “safe prime”) and then
sets G to be the subgroup of squares in Z∗p. Notice that this
subgroup has order q which is prime. The practical method for
sampling safe primes is simple: first pick a prime q as usual,
and then check whether 2q + 1 is also prime. Unfortunately,
even though this procedure always terminates in practice, its
basic theoretical properties are unknown. It is unknown even (a)
whether there are an infinite number of Sophie Germain primes,
(b) and even so, whether this simple procedure for finding them
continues to quickly succeed as the size of q increases. Another
way to instantiate the assumption is to use the points on an
elliptic curve for which these issues do not arise.

.Theorem 52.3 Let DL = { fi : Di → Ri}i∈I where

I = {(q, g) | q ∈ Πk, g ∈ GenGq}
Di = {x | x ∈ Zq}
Ri = Gp

fp,g(x) = gx

If the Discrete Log Assumption holds, then DL is a collection of one-way
functions.

Proof. It is easy to sample the domain Di and to evaluate the
function fp,g(x). The discrete log assumption implies that fp,g is

2.9. RSA Collection 53

hard to invert. Thus, all that remains is to prove that I can be
sampled efficiently. Unfortunately, given only a prime p, it is not
known how to efficiently choose a generator g ∈ Genp. However,
it is possible to sample both a prime and a generator g at the same
time. One approach proposed by Bach and later adapted by Kalai
is to sample a k-bit integer x in factored form (i.e., sample the
integer and its factorization at the same time) such that p = x + 1
is prime. A special case of this approach is to pick safe primes
of the form p = 2q + 1 as mentioned above. Given such a pair
p, (q1, . . . , qk), one can use a central result from group theory to
test whether an element is a generator. For example, in the case
of safe primes, testing whether an element g ∈ Z∗p is a generator
consists of checking g 6= ±1 mod p and gq 6= 1 mod p. �

As we will see later, the collection DL is also a special collec-
tion of one-way functions in which each function is a permuta-
tion.

2.9 RSA Collection

Another popular assumption is the RSA Assumption. The RSA
Assumption implies the Factoring assumption; it is not known
whether the converse is true.

.Assumption 53.1 (RSA Assumption) Given a triple (N, e, y) such
that N = pq where p, q ∈ Πn, gcd(e, Φ(N)) = 1 and y ∈ Z∗N ,
the probability that any adversary A is able to produce x such that
xe = y mod N is a negligible function ε(n).

Pr

[
p, q r← Πn; N ← pq; e r← Z∗Φ(N);
y← Z∗N ; x ← A(N, e, y)

: xe = y mod N

]
< ε(n)

.Theorem 53.2 (RSA Collection) Let RSA = { fi : Di → Ri}i∈I
where

I = {(N, e) | N = p · q s.t. p, q ∈ Πn and e ∈ Z∗Φ(N)}
Di = {x | x ∈ Z∗N}
Ri = Z∗N

fN,e(x) = xe mod N

54 chapter 2. computational hardness

Under the RSA Assumption, RSA is a collection of one-way functions.

Proof. The set I is easy to sample: generate two primes p, q,
multiply then to generate N, and use the fact that Φ(N) =
(p− 1)(q− 1) to sample a random element from Z∗Φ(N). Likewise,
the set Di is also easy to sample and the function fN,e requires
only one modular exponentiation to evaluate. It only remains
to show that fN,e is difficult to invert. Notice, however, that this
does not directly follow from the our hardness assumption (as it
did in previous examples). The RSA assumption states that it
is difficult to compute the eth root of a random group element y.
On the other hand, our collection first picks the root and then
computes y ← xe mod N. One could imagine that picking an
element that is known to have an eth root makes it easier to find
such a root. We prove that this is not the case by showing that
the function fN,e(x) = xe mod N is a permutation of the elements
of Z∗N . Thus, the distributions {x, e r← Z∗N : (e, xe mod N)}
and {y, e r← Z∗N : (e, y)} are identical, and so an algorithm that
inverts fN,e would also succeed at breaking the RSA-assumption.

�

.Theorem 54.3 The function fN,e(x) = xe mod N is a permutation
of Z∗N when e ∈ Z∗Φ(N).

Proof. Since e is an element of the group Z∗Φ(N), let d be its inverse
(recall that every element in a group has an inverse), i.e. ed =
1 mod Φ(N). Consider the inverse map gN,e(x) = xd mod N.
Now for any x ∈ Z∗N ,

gN,e(fN,e(x)) = gN,e(xe mod N) = (xe mod N)d mod N

= xed mod N

= xcΦ(N)+1 mod N

for some constant c. Recall that Euler’s theorem establishes that
xΦ(N) = 1 mod N. Thus, the above can be simplified as

xcΦ(N) · x mod N = x mod N

Hence, RSA is a permutation. �
This phenomena suggests that we formalize a new, stronger

class of one-way functions.

2.10. One-way Permutations 55

2.10 One-way Permutations

.Definition 55.1 (One-way permutation). A collection F = { fi :
Di → Ri}i∈I is a collection of one-way permutations if F is a
collection of one-way functions and for all i ∈ I, we have that fi
is a permutation.

A natural question is whether this extra property comes at a
price—that is, how does the RSA-assumption that we must make
compare to a natural assumption such as factoring. Here, we can
immediately show that RSA is at least as strong an assumption
as Factoring.

.Theorem 55.2 The RSA assumption implies the Factoring assump-
tion.

Proof. We prove by contrapositive: if factoring is possible in
polynomial time, then we can break the RSA assumption in
polynomial time. Formally, assume there an algorithm A and
polynomial function p(n) so that A can factor N = pq with
probability 1/p(n), where p and q are random n-bits primes.
Then there exists an algorithm A′, which can invert fN,e with
probability 1/p(n), where N = pq, p, q ← {0, 1}n primes, and
e← Z∗Φ(N).

algorithm 55.3: Adversary A′(N, e, y)

1: Run (p, q)← A(N) to recover prime factors of N
2: If N 6= pq then abort
3: Compute Φ(N)← (p− 1)(q− 1)
4: Compute the inverse d of e in Z∗Φ(N) using Euclid

5: Output yd mod N

The algorithm feeds the factoring algorithm A with exactly
the same distribution of inputs as with the factoring assumption.
Hence in the first step A will return the correct prime factors with
probability 1/p(n). Provided that the factors are correct, then we
can compute the inverse of y in the same way as we construct the
inverse map of fN,e. And this always succeeds with probability
1. Thus overall, A′ succeeds in breaking the RSA-assumption
with probability 1/p(n). Moreover, the running time of A′ is

56 chapter 2. computational hardness

essentially the running time of A plus O(log3(n)). Thus, if A
succeeds in factoring in polynomial time, then A′ succeeds in
breaking the RSA-assumption in roughly the same time. �

Unfortunately, as mentioned above, it is not known whether
the converse it true—i.e., whether the factoring assumption also
implies the RSA-assumption.

2.11 Trapdoor Permutations

The proof that RSA is a permutation actually suggests another
special property of that collection: if the factorization of N is
unknown, then inverting fN,e is considered infeasiable; however
if the factorization of N is known, then it is no longer hard to
invert. In this sense, the factorization of N is a trapdoor which
enables fN,e to be inverted.

This spawns the idea of trapdoor permutations, first con-
ceived by Diffie and Hellman.

.Definition 56.1 (Trapdoor Permutations). A collection of trapdoor
permutations is a family F = { fi : Di → Ri}i∈I satisfying the
following properties:

1. ∀i ∈ I , fi is a permutation,

2. It is easy to sample a function: ∃ p.p.t. Gen s.t. (i, t) ←
Gen(1n), i ∈ I (t is trapdoor info),

3. It is easy to sample the domain: there exists a p.p.t. machine
that given input i ∈ I , samples uniformly in Di.

4. fi is easy to evaluate: there exists a p.p.t. machine that given
input i ∈ I , x ∈ Di, computes fi(x).

5. fi is hard to invert: for all p.p.t. A, there exists a negligible
function ε such that

Pr
[
(i, t)← Gen(1n); x ← Di;
y← f (x); z← A(1n, i, y) : fi(z) = y

]
≤ ε(k)

6. fi is easy to invert with trapdoor information: there exists a
p.p.t. machine that given input (i, t) from Gen and y ∈ Ri,
computes f−1(y).

2.12. Rabin collection 57

Now by slightly modifying the definition of the family RSA,
we can easily show that it is a collection of trapdoor permutations.

.Theorem 57.2 Let RSA be defined as per Theorem 53.2 with the ex-
ception that

[(N, e), d]← Gen(1n)

f−1
N,d(y) = yd mod N

where N = p · q, e ∈ Z∗Φ(N) and e · d = 1 mod Φ(N). Assuming
the RSA-assumption, the collection RSA is a collection of trapdoor
permutations.

The proof is an exercise.

2.12 Rabin collection

The RSA assumption essentially claims that it is difficult to com-
pute eth roots modulo a composite N that is a product of two
primes. A weaker assumption is that it is even hard to com-
pute square roots modulo N (without knowing the factors of
N). Note that computing square roots is not a special case of
RSA since gcd(2, φ(N)) 6= 1. This assumption leads to the Ra-
bin collection of trapdoor functions; interestingly, we will show
that this assumption is equivalent to the Factoring assumption
(whereas it is not known whether Factoring implies the RSA
assumption). To develop these ideas, we first present a general
theory of square roots modulo a prime p, and then extend it to
square roots modulo a composite N.

Square roots modulo p

Taking square roots over the integers is a well-studied and effi-
cient operation. As we now show, taking square roots modulo a
prime number is also easy.

Define the set QRp = {x2 mod p|x ∈ Z∗p}. These numbers
are called the quadratic residues for p and they form a subgroup
of Z∗p that contains roughly half of its the elements.

.Lemma 57.1 If p > 2 is prime, then QRp is a group of size p−1
2 .

58 chapter 2. computational hardness

Proof. Since 12 = (−1)2 = 1, QRp contains the identity. Since the
product of squares is also a square, QRp is closed. Associativity
carries over from Zp. Finally, if a = x2 ∈ QRp, then a−1 = (x−1)2

is also a square, and so QRp contains inverses.
To analyze the size of QRp, observe that if x2 = a, then

(p − x)2 = a and that because p is odd, (p − x) 6= x. On the
other hand, if x2 = y2, then (x + y)(x− y) = 0 mod p. Because
p is a prime, either (x + y) = 0 mod p or (x − y) = 0 mod p.
Thus, for every a ∈ QRP there are exactly two distinct values for
x ∈ Zp such that x2 = a. It follows that |QRp| = (p− 1)/2. �

For every prime p, the square root operation can be per-
formed efficiently. We show how to compute square roots for the
special case of primes that are of the form 4k + 3. The remaining
cases are left as an exercise.

.Theorem 58.2 If p = 3 + 4k and y ∈ QRp, then (±yk+1)2 = y.

Proof. Since y ∈ QRp, let y = a2 mod p. Thus,

(yk+1)2 = a2(k+1)2 = a4k+4 = ap+1 = a2 = y mod p

�

Exercise Show how to compute square roots if p = 1 mod 4.

Toward our goal of understanding square roots modulo a
composite N = p · q, we now introduce a new tool.

Chinese Remainder Theorem

Let N = pq and suppose y ∈ ZN . Consider the numbers a1 ≡
y mod p and a2 ≡ y mod q. The Chinese remainder theorem
states that y can be uniquely recovered from the pair a1, a2 and
vice versa.

.Theorem 58.3 (Chinese Remainder) Let p1, p2, . . . , pk be pairwise
relatively prime integers, i.e. gcd(pi, pj) = 1 for 1 ≤ i < j ≤ k and
N = ∏k

i pi. The map CN(y) : Zn 7→ Zp1 × · · · ×Zpk defined as

CN(y) 7→ (y mod p1, y mod p2, . . . , y mod pk)

is one-to-one and onto.

2.12. Rabin collection 59

Proof. For each i, set ni = N/pi ∈ Z. By our hypothesis, for
each i ∈ [1, k], it follows that gcd(pi, ni) = 1 and hence there
exists bi ∈ Zpi such that nibi = 1 mod pi. Let ci = bini. Notice
that ci = 1 mod pi = 0 mod pj for j 6= i . Set y = ∑i ciai mod N.
Then y = ai mod pi for each i.

Further, if y′ = ai mod pi for each i then y′ = y mod pi for
each i and since the pis are pairwise relatively prime, it follows
that y ≡ y′ mod N, proving uniqueness. �

Example Suppose p = 7 and q = 11. Since 7 and 11 are rela-
tively prime, we have that

11 · 2 ≡ 1 mod 7
7 · 8 ≡ 1 mod 11

and therefore b1 = 2 and b2 = 8. Thus, we have

C(y) 7→ (y mod 7, y mod 11)

C−1(a1, a2) 7→ a1 · 22 + a2 · 56 mod 77

Notice that computing the coefficients b1 and b2 requires two
calls to Euclid’s algorithm, and computing f−1 requires only two
modular multplications and an addition. Thus, computing the
map in either direction can be done efficiently given the factors
p1, . . . , pk.

Square roots modulo N

We are now ready to study the problem of computing square
roots in ZN when N = pq. As before, we define the set QRN =
{x2 mod n : x ∈ Z∗N}. Then we claim:

.Theorem 59.4 Let N = pq and for any x ∈ Z∗N , let (y, z)← CN(x).
Then x ∈ QRN ⇔ y ∈ QRp and zinQRq.

Proof. ⇒ Since y ∈ QRp and z ∈ QRq, then there exists a ∈ Z∗p
such that y ≡ a2 mod p and ∃b ∈ Z∗q such that z ≡ b2 mod q. By
the Chinese Remainder Theorem, there exists s← C−1

N (a, b). We

60 chapter 2. computational hardness

show that s is one square root of x in Z∗n:

s2 mod p ≡ a2 mod p ≡ y mod p

s2 mod q ≡ b2 mod q ≡ z mod q

Therefore s2 is congruent to x modulo N and hence s is x’s square
root, and x ∈ QRN .

For the other direction of the proof, if x ∈ QRN , then ∃a ∈ Z∗N
such that x ≡ a2 mod n. Therefore

x mod p ≡ a2 mod p ≡ (a mod p)2 mod p⇒ y ∈ QRp

x mod q ≡ a2 mod q ≡ (a mod q)2 mod q⇒ z ∈ QRq

�
Furthermore, we can characterize the size of the group QRN .

.Theorem 60.5 The mapping x→ x2 mod N is 4 to 1.

Proof. From Thm. 59.4, if x ∈ QRN , then y ≡ x mod p ∈ QRp
and z ≡ x mod q ∈ QRq.

Earlier, we proved that |QRp| = |Z∗p|/2 and the mapping
x → x2, x ∈ Z∗p is 2 to 1. So we have unique square roots a1, a2
for y and b1, b2 for z. Take any two of them ai, bj, by Chinese
remainder theorem ∃s ∈ Z∗N , such that s ≡ ai mod p and s ≡
bj mod q. And by the same argument in the proof of Thm. 59.4,
s is a square root of x in Z∗N . There are in total 4 combinations of
ai and bj, thus we have 4 such s that are x’s square roots. �

.Corollary 60.6 |QRN | = |Z∗N |/4

Remark that given p and q, it is easy to compute the square
roots for elements in Z∗N . The proof above shows that the square
root of x ∈ Z∗N can be combined from square roots of x mod p
and x mod q in Z∗p and Z∗q respectively. And from previous
sections, we have shown that square root operation is efficient in
Z∗p. So given p and q, we can simply calculate the square roots
of x mod p and x mod q, and combine the result to get square
roots of x. However, without p and q, it is not known whether
square roots modulo N can be efficiently computed.

2.12. Rabin collection 61

Example Continuing our example from above with N = 7 ·
11 = 77, consider 71 ∈ Z∗N . Thus, we have (1, 5) ← C(42).
Taking square roots mod 7 and 11, we have (1, 4), and now using
C−1, we arrive at 15 ← C−1(0, 3). Notice, however, that (6, 4),
(1, 7), and (6, 7) are also roots. These pairs map to 48,29, and 62

respectively.

2.12.1 The Rabin Collection

.Theorem 61.7 Let R = { fi : Di → Ri}i∈I where

I = {N : N = p · q, where p, q ∈ Πn}
Di = Z∗N
Ri = QRN

fN(x) = x2 mod N

If the Factoring Assumption holds, then R is a collection of one-way
functions.

Relationship for Factoring

The interesting fact is that the Rabin Collection relies only on
the Factoring assumption, whereas the RSA collection requires
a stronger assumption to the best of our knowledge. In other
words, we can show:

.Theorem 61.8 Rabin is a OWF iff factoring assumption holds.

Proof. ⇒ We first show that if factoring is hard then Rabin is a
OWF. We prove this by contrapositive: if Rabin can be inverted
then factoring can be done efficiently. Formally, if there exists
an adversary A and polynomial function p(n) such that A can
invert fN with probability 1/p(n) for sufficiently large n, that is
if

Pr
[

p, q← Πn, N ← pq, x ← Z∗N ,
y← fN(x), z← A(N, y) : z2 = y mod N

]
> 1/p(k)

then there exists A′ that can factor the product of two random
n-bits primes with probability 1/2p(n):

Pr
[
p, q← Πn, N ← pq : A′(N) ∈ {p, q}

]
> 1/2p(k)

62 chapter 2. computational hardness

We construct A′(N) as follows:

algorithm 62.9: Factoring Adversary A′(N)

1: Sample x ← Z∗N
2: Compute y← x2 mod N
3: Run z← A(y, N)
4: If z2 6= y mod N then abort.
5: Else output gcd(x− z, N).

First, because the input to A′ is the product of two random
k-bits primes and A′ randomly samples x from Z∗n, the inputs
(y, N) to A in step 3 have exactly the same distribution as those
from the Rabin collection. Thus algorithm A will return a correct
square root of x with probability 1/p(k). And because A does
not know x and it outputs one of the four square roots with equal
probability, then with probability 1/2p(k), z 6≡ x and z 6≡ −x.
Since x and z are both square roots of y, we have

x2 ≡ z2 mod n ⇒ (x− z)(x + z) ≡ 0 mod n

When z 6≡ x and z 6≡ −x, it can only be that they are congruent
modulo p and q. Then the gcd(x− z, N) would be p or q with
probability 1/2p(k). Thus adversary A′ factors N.

Only if direction: We want to show if Rabin is hard then
factoring is also hard. Similar to the proof of that RSA is OWP
implies factoring is hard, we show by contrapositive, that is, if
there exists an adversary A that factors N = pq with probability
1/r(k) for some polynomial r, where p and q are random k-bits
primes, then by using the Chinese Remainder Theorem, it is
straightforward to compute square roots modulo N with 1/p(k).

The construction of A′(N, y) is also similar to that in RSA
case: first feed A with N, which returns p, q. Check whether
N = pq, if not then abort, else compute square root of y mod p
and y mod q in Z∗p and Z∗q respectively. Pick one pair of square
roots a, b and compute s = ac + bd. Output s.

Since A receives N with the same distribution as in the fac-
toring assumption, A will succeed in factoring with probability
1/r(k) and from the correct p, q we can compute the square root
of u with probability 1. Overall A′ succeeds with probability
1/r(k). �

2.13. A Universal One Way Function 63

Rabin Collection of Trapdoor Permutations

Technically, Rabin is not a permutation, but by making some
small adjustments, we can construct a collection of trapoor per-
mutations as well:

.Theorem 63.10 Let R = { fi : Di → Ri}i∈I where

I = {N|N = pq, where p, q ∈ Πn, p = q = 3 mod 4}
Di = QRN

Ri = QRN

Gen(1n) : Samples a pair (N, (p, q)) s.t. N ∈ I

fN(x) = x2 mod N

f−1
p,q (y) = x such that x2 = y mod N and x ∈ QRN

If the Factoring Assumption holds, then R is a collection of trapdoor
permutations.

As we’ll show in future homeworks, each square in QN has
four square roots, but only one of the roots is also a square. This
makes Rabin a (trapdoor) permutation.

2.13 A Universal One Way Function

As we have mentioned in previous sections, it is not known
whether one-way functions exist. Although we have presented
specific assumptions which have lead to specific constructions,
a much weaker assumption is to assume only that some one-
way function exists (without knowing exactly which one). The
following theorem gives a single constructible function that is
one-way if this weaker assumption is true.

.Theorem 63.1 If there exists a one-way function, then the following
polynomial-time computable function funiversal is also a one-way func-
tion.

Proof. We will construct function funiversal and show that it is
weakly one-way. We can then apply the hardness amplification
construction from §2.3 to get a strong one-way function.

64 chapter 2. computational hardness

The idea behind the construction is that funiversal incorporates
the computation of all efficient functions in such a way that
inverting funiversal allows us to invert all other functions. This
ambitious goal can be approached by intrepreting the input y to
funiversal as a machine-input pair y = 〈M, x〉, and then defining
the output of funiversal(y) to be M(x). The problem with this
approach is that funiversal will not be computable in polynomial
time, since M may not even terminate on input x. We can
overcome this problem by only running M(x) for a number of
steps related to |y|.

algorithm 64.2: A Universal One-way Function funiversal(y)

Interpret y as 〈M, x〉 where |M| = log(|y|)
Run M on input x for |y|3 steps
if M terminates then

Output M(x)
else

Output ⊥
end if

In words, this function interprets the first log |y| bits of the
input y as a machine M, and the remaining bits are considered
input x. We assume a standard way to encode Turing machines
with appropriate padding. We claim that this function is weakly
one-way. Clearly funiversal is computable in time O(|y|3), and
thus it satisfies the “easy” criterion for being one-way. To show
that it satisfies the “hard” criterion, we must assume that there
exists some function g that is strongly one-way. By the following
lemma, we can assume that g runs in O(|y|2) time.

.Lemma 64.3 If there exists a strongly one-way function g, then there
exists a strongly one-way function g′ that is computable in time O(n2).

Proof. Suppose g runs in time at most nc for some c > 2. (If not,
then the lemma already holds.) Let g′(〈a, b〉) = 〈a, g(b)〉, where
|a| = nc − n and |b| = n. Then if we let m = |〈a, b〉| = nc, the
function g′ is computable in time

|a|︸︷︷︸
copying a

+ |b|c︸︷︷︸
computing g

+O(m2)︸ ︷︷ ︸
parsing

< 2m + O(m2) = O(m2)

2.13. A Universal One Way Function 65

Moreover, g′ is still one-way, since any adversary that inverts g′

can easily be used to invert g. �
Now, if funiversal is not weakly one-way, then there exists a

machine A such that for every polynomial q and for infinitely
many input lengths n,

Pr
[
y← {0, 1}n;A(f (y)) ∈ f−1(f (y))

]
> 1− 1/q(n)

In particular, this holds for q(n) = n3. Denote the event that A
inverts as Invert.

Let Mg be the smallest machine which computes function g.
Since Mg is a uniform algorithm it has some constant description
size |Mg|. Thus, on a random n-bit input y = 〈M, x〉, the proba-
bility that machine M = Mg (with appropriate padding of 0) is
2− log n = 1/n. In other words

Pr
[
y r← {0, 1}n : y = 〈Mg, x〉

]
≥ 1

n

Denote this event as event PickG. We can now combine the above
two equations to conclude that A inverts an instance of g with
noticeable probability. By the Union Bound, either A fails to
invert or the instance fails to be g with probability at most

Pr[!Invert ∨ !PickG] ≤ (1/n3) + (1− 1/n) <
n3 − 1

n3

Therefore, A must invert a hard instance of g with probability

Pr[Invert and PickG] ≥ 1
n3

which contradicts the assumption that g is strongly one-way;
therefore funiversal must be weakly one-way. �

This theorem gives us a function that we can safely assume
is one-way (because that assumption is equivalent to the as-
sumption that one-way functions exist). However, it is extremely
impractical to compute. First, it is difficult to compute because
it involves interpreting random turing machines. Second, it will
require very large key lengths before the hardness kicks in. A
very open problem is to find a “nicer” universal one way function
(e.g. it would be very nice if fmult is universal).

Chapter 3

Indistinguishability &
Pseudo-Randomness

Recall that one main drawback of the One-time pad encryption
scheme—and its simple encryption operation Enck(m) = m⊕ k—
is that the key k needs to be as long as the message m. A natural
approach for making the scheme more efficient would be to start
off with a short random key k and then try to use some pseudo-
random generator g to expand it into a longer “random-looking”
key k′ = g(k), and finally use k′ as the key in the One-time pad.

Can this be done? We start by noting that there can not exist
pseudo-random generators g that on input k generate a perfectly
random string k′, as this would contradict Shannon’s theorem
(show this). However, remember that Shannon’s lower bound
relied on the premise that the adversary Eve is computationally
unbounded. Thus, if we restrict our attention to efficient adver-
saries, it might be possible to devise pseudo-random generators
that output strings which are “sufficiently” random-looking for
our encryption application.

To approach this problem, we must first understand what
it means for a string to be “sufficiently random-looking” to a
polynomial time adversary. Possible answers include:

— Roughly as many 0 as 1.

— Roughly as many 00 as 11

— Each particular bit is roughly unbiased.

67

68 chapter 3. indistinguishability & pseudo-randomness

— Each sequence of bits occurs with roughly the same proba-
bility.

— Given any prefix, it is hard to guess the next bit.

— Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical
tests—and many more such test exist in the literature. For specific
simulations, it may be enough to use strings that pass some
specific statistical tests. However, for cryptography, we require
the use of strings that pass all (efficient) statistical tests. At first,
it seems quite overwhelming to test a candidate pseudo-random
generator against all efficient tests. To do so requires some more
abstract concepts which we now introduce.

3.1 Computational Indistinguishability

We introduce the notion of computational indistinguishability to for-
malize what it means for two probability distributions to “appear”
the same from the perspective of a computationally bounded test.
This notion is one of the cornerstones of modern cryptography.
To begin our discussion, we present two games that illustrate
important ideas in the notion of indistinguishability.

Game 1 Flip the page and spend no more than two seconds
looking at Fig. 1 that appears on the next page. Do the two boxes
contain the same arrangement of circles?

Now suppose you repeat the experiment but spend 10 sec-
onds instead of two. Imagine spending 10 minutes instead of 10

seconds. If you are only given a short amount of time, the two
boxes appear indistinguishable from one another. As you take
more and more time to analyze the images, you are able to tease
apart subtle differences between the left and right. Generalizing,
even if two probability distrubutions are completely disjoint, it
may be that an observer who is only given limited processing
time cannot distinguish between the two distributions.

Game 2 A second issue concerns the size of a problem instance.
Consider the following sequence of games parameterized by the

3.1. Computational Indistinguishability 69

Figure 69.1: Are the two boxes the same or different?

value n in Fig. 2. The point of the game is to determine if the
number of overlapping boxes is even or odd. An example of each
case is given on the extreme left. The parameter n indicates the
number of boxes in the puzzle. Notice that small instances of
the puzzle are easy to solve, and thus “odd” instances are easily
distinguishable from “even” ones. However, by considering a
sequence of puzzles, as n increases, a human’s ability to solve
the puzzle correctly rapidly approaches 1/2—i.e., no better than
guessing.

As our treatment is asymptotic, the actual formalization of
this notion considers sequences—called ensembles—of probability
distributions (or growing output length).

.Definition 69.3 (Ensembles of Probability Distributions) A se-
quence {Xn}n∈N is called an ensemble if for each n ∈ N, Xn is a
probability distribution over {0, 1}∗.

Normally, ensembles are indexed by the natural numbers
n ∈N. Thus, for the rest of this book, unless otherwise specified,
we use {Xn}n to represent such an ensemble.

.Definition 69.4 (Computational Indistinguishability). Let {Xn}n
and {Yn}n be ensembles where Xn, Yn are distributions over

70 chapter 3. indistinguishability & pseudo-randomness

evens odds
of boxes that overlap
another box is even

of ... is odd

(a) Description of Game (b) n = 9: Even or Odd?

(c) n = 22: Even or Odd? (d) n > 80: Even or Odd?

Figure 70.2: A game parameterized by n

{0, 1}`(n) for some polynomial `(·). We say that {Xn}n and
{Yn}n are computationally indistinguishable (abbr. {Xn}n ≈ {Yn}n)
if for all non-uniform p.p.t. D (called the “distinguisher”), there
exists a negligible function ε(·) such that ∀n ∈N

∣∣∣Pr [t← Xn, D(t) = 1]− Pr [t← Yn, D(t) = 1]
∣∣∣ < ε(n).

In other words, two (ensembles of) probability distributions are
computationally indistinguishable if no efficient distinguisher D
can tell them apart better than with a negligible advantage.

To simplify notation, we say that D distinguishes the distribu-
tions Xn and Yn with probability ε if

∣∣∣Pr [t← Xn, D(t) = 1]− Pr [t← Yn, D(t) = 1]
∣∣∣ > ε.

Additionally, we say D distinguishes the ensembles {Xn}n and
{Yn}n with probability µ(·) if ∀n ∈ N, D distinguishes Xn and
Yn with probability µ(n).

3.1. Computational Indistinguishability 71

3.1.1 Properties of Computational Indistinguishability

We highlight some important (and natural) properties of the
notion of indistinguishability. This properties will be used over
and over again in the remainder of the course.

Closure Under Efficient Opertations

The first property formalizes the statement “If two distributions
look the same, then they look the same no matter how you pro-
cess them” (as long as the processing is efficient). More formally,
if two distributions are indistinguishable, then they remain indis-
tinguishable even after one applies a p.p.t. computable operation
to them.

.Lemma 71.5 (Closure Under Efficient Operations) If the pair of
ensembles {Xn}n ≈ {Yn}n, then for any n.u.p.p.t M, {M(Xn)}n ≈
{M(Yn)}n.

Proof. Suppose there exists a non-uniform p.p.t. D and non-
negligible function µ(n) such that D distinguishes {M(Xn)}n
from {M(Yn)}n with probability µ(n). That is,

|Pr[t← M(Xn) : D(t) = 1]− Pr[t← M(Yn) : D(t) = 1]| > µ(n)

It then follows that

|Pr[t← Xn : D(M(t)) = 1]−Pr[t← Yn : D(M(t)) = 1]| > µ(n).

In that case, the non-uniform p.p.t. machine D′(·) = D(M(·))
also distinguishes {Xn}n, {Yn}n with probability µ(n), which
contradicts that the assumption that {Xn}n ≈ {Yn}n. �

Transitivity - The Hybrid Lemma

We next show that the notion of computational indistinguishabil-
ity is transitive; namely, if {An}n ≈ {Bn}n and {Bn}n ≈ {Cn}n,
then {An}n ≈ {Cn}n. In fact, we prove a generalization of this
statement which considers m = poly(n) distributions.

.Lemma 71.6 (Hybrid Lemma) Let X1, X2, . . . , Xm be a sequence of
probability distributions. Assume that the machine D distinguishes X1

72 chapter 3. indistinguishability & pseudo-randomness

and Xm with probability ε. Then there exists some i ∈ [1, . . . , m− 1]
s.t. D distinguishes Xi and Xi+1 with probability ε

m .

Proof. Assume D distinguishes X1, Xm with probability ε. That
is,

|Pr
[
t← X1 : D(t) = 1

]
− Pr [t← Xm : D(t) = 1] | > ε

Let gi = Pr
[
t← Xi : D(t) = 1

]
. Thus, |g1 − gm| > ε. This im-

plies,

|g1 − g2|+ |g2 − g3|+ · · ·+ |gm−1 − gm|
≥ |g1 − g2 + g2 − g3 + · · ·+ gm−1 − gm|
= |g1 − gm| > ε.

Therefore, there must exist i such that |gi − gi+1| > ε
m . �

.Remark 72.7 (A geometric interpretation) Note that the probabil-
ity with which D outputs 1 induces a metric space over probability
distributions over strings t. Given this view the hybrid lemma is just a
restatement of the triangle inequality over this metric spaces; in other
words, if the distance between two consecutive probability distributions
is small, then the distance between the extremal distributions is also
small.

Note that because we lose a factor of m when we have a sequence
of m distributions, the hybrid lemma can only be used to deduce
transitivity when m is polynomially-related to the security pa-
rameter n. (In fact, it is easy to construct a “long” sequence of
probability distributions in which each adjacent pair of distribu-
tions are indistinguishable, but where the extremal distributions
are distinguishable.)

Example

Let {Xn}n, {Yn}n and {Zn}n be pairwise indistinguishable prob-
ability ensembles, where Xn, Yn, and Zn are distributions over
{0, 1}n. Assume further that we can efficiently sample from
all three ensembles. Consider the n.u. p.p.t. machine M(t)
that samples y ← Yn where n = |t| and outputs t ⊕ y. Since

3.1. Computational Indistinguishability 73

{Xn}n ≈c {Zn}n, closure under efficient operations directly im-
plies that

{x ← Xn; y← Yn : x⊕ y}n ≈c {y← Yn; z← Zn : z⊕ y}n

Distinguishing versus Predicting

The notion of computational indistinguishability requires that
no efficient distinguisher can tell apart two distributions with
more than a negligible advantage. As a consequence of this
property, no efficient machine can predict which distribution a
sample comes from with probability 1

2 +
1

poly(n) ; any such predic-
tor would be a valid distinguisher (show this!). As the following
useful lemma shows, the converse also holds: if it is not possible
to predict which distribution a sample comes from with proba-
bility significantly better than 1

2 , then the distributions must be
indistinguishable.

.Lemma 73.8 (The Prediction Lemma) Let {X0
n}n and {X1

n}n be
two ensembles where X0

n and X1
n are probability distributions over

{0, 1}`(n) for some polynomial `(·), and let D be a n.u. p.p.t. machine
that distinguishes between {X0

n}n and {X1
n}n with probability µ(·) for

infinitely many n ∈N. Then there exists a n.u. p.p.t. A such that

Pr
[
b← {0, 1}; t← Xb

n : A(t) = b
]
≥ 1

2
+

µ(n)
2

.

for infinitely many n ∈N.

Proof. Assume without loss of generality that D outputs 1 with
higher probability when receiving a sample from X1

n than when
receiving a sample from X0

n, i.e.,

Pr[t← X1
n : D(t) = 1]− Pr[t← X0

n : D(t) = 1] > µ(n) (73.2)

This is without loss of generality since otherwise, D can be
replaced with D′(·) = 1 − D(·); one of these distinguishers
works for infinitely many n ∈ N. We show that D is also a

74 chapter 3. indistinguishability & pseudo-randomness

“predictor”:

Pr
[
b← {0, 1}; t← Xb

n : D(t) = b
]

=
1
2

(
Pr
[
t← X1

n : D(t) = 1
]
+ Pr

[
t← X0

n : D(t) 6= 1
])

=
1
2

(
Pr
[
t← X1

n : D(t) = 1
]
+ 1− Pr

[
t← X0

n : D(t) = 1
])

=
1
2
+

1
2

(
Pr
[
t← X1

n : D(t) = 1
]
− Pr

[
t← X0

n : D(t) = 1
])

= >
1
2
+

µ(n)
2

�

3.2 Pseudo-randomness

Using the notion of computational indistinguishability, we next
turn to defining pseudo-random distributions.

3.2.1 Definition of Pseudo-random Distributions

Let Un denote the uniform distribution over {0, 1}n, i.e, Un =
{t← {0, 1}n : t}. We say that a distribution is pseudo-random if
it is indistinguishable from the uniform distribution.

.Definition 74.1 (Pseudo-random Ensembles). The probability
ensemble {Xn}n, where Xn is a probability distribution over
{0, 1}l(n) for some polynomial l(·), is said to be pseudorandom if
{Xn}n ≈ {Ul(n)}n.

Note that this definition effectively says that a pseudorandom
distribution needs to pass all efficiently computable statistical
tests that the uniform distribution would have passesd; otherwise
the statistical test would distinguish the distributions.

Thus, at first sight it might seem very hard to check or prove
that a distribution is pseudorandom. As it turns out, there
are complete statistical tests; such a test has the property that
if a distribution passes only that test, it will also pass all other
efficient tests. We proceed to present such a test.

3.2. Pseudo-randomness 75

3.2.2 A complete statistical test: The next-bit test

We say that a distribution passes the next-bit test if no efficient
adversary can, given any prefix of a sequence sampled from the
distribution, predict the next bit in the sequence with probability
significantely better than 1

2 (recall that this was one of the test
originally suggested in the introduction of this chapter).

.Definition 75.2 An ensemble {Xn}n where Xn is a probability dis-
tribution over {0, 1}`(n) for some polynomial l(n) is said to pass the
Next-Bit Test if for every non-uniform p.p.t. A, there exists a negligible
function ε(n) such that ∀n ∈N and ∀i ∈ [0, · · · , `(n)], it holds that

Pr [t← Xn : A(1n, t1t2 . . . ti) = ti+1] <
1
2
+ ε(n).

Here, ti denotes the i’th bit of t.

.Remark 75.3 Note that we provide A with the additional input 1n.
This is simply allow A to have size and running-time that is polynomial
in n and not simply in the (potentially) short prefix t0 . . . ti.

.Theorem 75.4 (Completeness of the Next-Bit Test) If a probabil-
ity ensemble {Xn}n passes the next-bit test then {Xn}n is pseudo-
random.

Proof. Assume for the sake of contradiction that there exists a
non-uniform p.p.t. distinguisher D, and a polynomial p(·) such
that for infinitely many n ∈ N, D distinguishes Xn and U`(n)

with probability 1
p(n) . We contruct a machine A that predicts

the next bit of Xn for every such n. Define a sequence of hybrid
distributions as follows.

Hi
n =

{
x ← Xn : u← U`(n) : x0x1 . . . xiui+1ui+2 . . . u`(n)

}
Note that H0

n = U`(n) and H`(n)
n = Xn. Thus, D distinguishes

between H0
n and H`(n)

n with probability 1
p(n) . It follows from

the hybrid lemma that there exists some i ∈ [0, `(n)] such that
D distinguishes between Hi

n and Hi+1
n with probability 1

p(n)`(n) .

Recall, that the only difference between Hi+1 and Hi is that in

76 chapter 3. indistinguishability & pseudo-randomness

Hi+1 the (i + 1)th bit is xi+1, whereas in Hi it is ui+1. Thus,
intuitively, D—given only the prefix x1 . . . xi—can tell apart xi+1
from a uniformly chosen bit. This in turn means that D also can
tell apart xi+1 from x̄i+1. More formally, consider the distribution
H̃i

n defined as follows:

H̃i
n =

{
x ← Xn : u← U`(n) : x0x1 . . . xi−1 x̄iui+1 . . . ul(m)

}
Note that Hi

n can be sampled by drawing from Hi+1
n with proba-

bility 1/2 and drawing from H̃i+1
n with probability 1/2. Substi-

tuting this identity into the last of term∣∣∣Pr
[
t← Hi+1

n : D(t) = 1
]
− Pr

[
t← Hi

n : D(t) = 1
]∣∣∣

yields∣∣∣∣ Pr
[
t← Hi+1

n : D(t) = 1
]
−(1

2 Pr[t← Hi+1
n : D(t) = 1] + 1

2 Pr[t← H̃i+1
n : D(t) = 1]

) ∣∣∣∣
which simplifies to

1
2

∣∣∣Pr
[
t← Hi+1

n : D(t) = 1
]
− Pr

[
t← H̃i+1

n : D(t) = 1
]∣∣∣

Combining this equation with the observation above that D
distinguishes Hi

n and Hi+1
n with probability 1

p(n)`(n) implies that

D distinguishes Hi+1
n and H̃i+1

n with probability 2
p(n)`(n) . By the

prediction lemma, there must therefore exist a machine A such
that

Pr
[
b← {0, 1}; t← Hi+1,b

n : D(t) = b
]
>

1
2
+

1
p(n)`(n)

where we let Hi+1,1
n denote Hi+1

n and Hi+1,0
n denote H̃i+1

n . (i.e., A
predicts whether a sample came from Hi+1

n or H̃i+1
n .) We can now

use A to construct a machine A′ predicts xi+1 (i.e., the (i + 1)th

bit in the pseudorandom sequence):

algorithm 76.5: A′(1n, t1, . . . , ti): A next-bit predictor

Pick `(n)− i random bits ui+1 . . . u`(n) ← U`(n)−1

Run g← A(t1 . . . tiui+1 . . . u`(n))

3.3. Pseudo-random generators 77

if g = 1 then
Output ui+1

else
Output ūi+1 = 1− ui+1

end if

Note that,

Pr
[
t← Xn : A′(1n, t1 . . . ti) = ti+1

]
= Pr

[
b← {0, 1}; t← Hi+1,b

n : A(t) = 1
]
>

1
2
+

1
p(n)`(n)

which concludes the proof Theorem 75.4. �

3.3 Pseudo-random generators

We now turn to definitions and constructions of pseudo-random
generators.

3.3.1 Definition of a Pseudo-random Generators

.Definition 77.1 (Pseudo-random Generator). A function G :
{0, 1}∗ → {0, 1}∗ is a Pseudo-random Generator (PRG) if the fol-
lowing holds.

1. (efficiency): G can be computed in p.p.t.

2. (expansion): |G(x)| > |x|
3. The ensemble {x ← Un : G(x)}n is pseudo-random.

3.3.2 An Initial Construction

To provide some intuition for our construction, we start by con-
sidering a simplified construction (originally suggested by Adi
Shamir). The basic idea is to iterate a one-way permutation and
then output, in reverse order, all the intermediary values. More
precisely, let f be a one-way permutation, and define the genera-
tor G(s) = f n(s) ‖ f n−1(s) ‖ . . . ‖ f (s) ‖ s. We use the ‖ symbol
here to represent string concatentation.

The idea behind the scheme is that given some prefix of the
output of the generator, computing the next block is equivalent

78 chapter 3. indistinguishability & pseudo-randomness

G(s) = fn(s) fn−1(s) fn−2(s) f(s) s...

Figure 78.2: Shamir’s proposed PRG

to inverting the one-way permutation f . Indeed, this scheme
results in a sequence of unpredictable numbers, but not necessarily
unpredictable bits. In particular, a one-way permutation may
never “change” the first two bits of its input, and thus those
corresponding positions will always be predictable.

The reason we need f to be a permutation, and not a gen-
eral one-way function, is two-fold. First, we need the domain
and range to be the same number of bits. Second, and more
importantly, we require that the output of f k(x) be uniformly
distributed if x is uniformly distributed. This holds if f is a
permutation, but may not hold for a general one-way function.

As we shall see, this construction can be modified to generate
unpredictable bits as well. Doing so requires the new concept of
a hard-core bit.

3.3.3 Hard-core bits

Intuitively, a predicate h is hard-core for a OWF f if h(x) cannot
be predicted significantly better than with probability 1/2, even
given f (x). In other words, although a OWF might leak many
bits of its inverse, it does not leak the hard-core bits—in fact, it
essentially does not leak anything about the hard-core bits. Thus,
hard-core bits are computationally unpredictable.

.Definition 78.3 (Hard-core Predicate). A predicate h : {0, 1}∗ →
{0, 1} is a hard-core predicate for f (x) if h is efficiently com-
putable given x, and for all nonuniform p.p.t. adversaries A,
there exists a negligible ε so that ∀k ∈N

Pr
[

x ← {0, 1}k : A(1n, f (x)) = h(x)
]
≤ 1

2
+ ε(n)

Examples The least significant bit of the RSA one-way function
is known to be hardcore (under the RSA assumption). That

3.3. Pseudo-random generators 79

is, given N, e, and fRSA(x) = xe mod N, there is no efficient
algorithm that predicts LSB(x). A few other examples include:

• The function halfN(x) which is equal to 1 iff 0 ≤ x ≤ N
2 is

also hardcore for RSA, under the RSA assumption.

• The function halfp−1(x) is a hardcore predicate for expo-
nentiation to the power x mod p for a prime p under the
DL assumption. (See §3.4.1 for this proof.)

We now show how hard-core predicates can be used to con-
struct a PRG.

3.3.4 Constructions of a PRG

Our idea for constructing a pseudo-random generator builds on
Shamir’s construction above that outputs unpredictable numbers.
Instead of outputting all intermediary numbers, however, we only
output a “hard-core” bit of each of them. We start by providing
a construction of a PRG that only expands the seed by one bit,
and then give the full construction in Corollary 81.7.

.Theorem 79.4 Let f be a one-way permutation, and h a hard-core
predicate for f . Then G(s) = f (s) ‖ h(s) is a PRG.

Proof. Assume for contradiction that there exists a nonuniform
p.p.t. adversary A and a polynomial p(n) such that for infinitely
many n, there exists an i such that A predicts the ith bit with
probability 1

p(n) . Since the first n bits of G(s) are a permutation
of a uniform distribution (and thus also uniformly distributed),
A must predict bit n + 1 with advantage 1

p(n) . Formally,

Pr[A(f (s)) = h(s)] >
1
2
+

1
p(n)

This contradicts the assumption that b is hard-core for f . We
conclude that G is a PRG. �

80 chapter 3. indistinguishability & pseudo-randomness

3.3.5 Expansion of a PRG

The construction above from Thm. 79.4 only extends an n-bit
seed to n + 1 output bits. The following theorem shows how a
PRG that extends the seed by only 1 bit can be used to create a
PRG that extends an n-bit seed to poly(n) output bits.

.Lemma 80.5 Let G : {0, 1}n → {0, 1}n+1 be a PRG. For any polyno-
mial `, define G′ : {0, 1}n → {0, 1}`(n) as follows (see Fig. 6):

G′(s) = b1 . . . b`(n) where

X0 ← s
Xi+1 ‖ bi+1 ← G(Xi)

Then G′ is a PRG.

G(s)

s

b1X1

b0X0

G(X0)

b2X2

G(X1)

Figure 80.6: Illustration of the PRG G′ that expands a seed of
length n to `(n). The function G is a PRG that expands by only 1

bit.

Proof. Consider the following recursive definition of G′(s) =
Gm(s):

G0(x) = ε

Gi(x) = b||Gi−1(x′) where x′||b← G(x)

3.3. Pseudo-random generators 81

where ε denotes the empty string. Now, assume for contradic-
tion that there exists a distinguisher D and a polynomial p(·)
such that for infinitely many n, D distinguishes {Um(n)}n and
{G′(Un)}n with probability 1

p(n) .

Define the hybrid distributions Hi
n = Um(n)−i||Gi(Un), for

i = 1, . . . , m(n). Note that H0
n = Um(n) and Hm(n)

n = Gm(n)(Un).

Thus, D distinguishes H0
n and Hm(n)

n with probability 1
p(n) . By

the Hybrid Lemma, for each n, there exist some i such that D
distinguishes Hi

n and Hi+1
n with probability 1

m(n)p(n) . Recall that,

Hi
n = Um−i‖Gi(Un)

= Um−i−1‖U1‖Gi(Un)

Hi+1
n = Um−i−1‖Gi+1(Un)

= Um−i−1‖b‖Gi(x) where x‖b← G(Un)

Consider the n.u. p.p.t. M(y) which outputs from the following
experiment:

bprev ← Um−i−1
b← y1
bnext ← Gi(y2 . . . yn+1)
Output bprev‖b‖bnext

Algorithm M(y) is non-uniform because for each input length n,
it needs to know the appropriate i. Note that M(Un+1) = Hi

n and
M(G(Un)) = Hi+1

n . Since (by the PRG property of G) {Un+1}n ≈
{G(Un)}n, it follows by closure under efficient operations that
{Hi

n}n ≈ {Hi+1
n }n, which is a contradiction. �

By combining Theorem 79.4 and Lemma 80.5, we get the final
construction of a PRG.

.Corollary 81.7 Let f be a OWP and h a hard core bit for f . Then

G(x) = h(x) ‖ h(f (x)) ‖ h(f (2)(x)) ‖ . . . ‖ h(f `(n)(x))

is a PRG.

Proof. Let G′(x) = f (x) ‖ h(x). By Theorem 79.4 G′ is a PRG.
Applying Lemma 80.5 to G′ shows that G also is a PRG. See
Fig. 8. �

82 chapter 3. indistinguishability & pseudo-randomness

s f (s) f (2)(s) . . .

b0 b1 b2

h(s) h(f (s)) h(f (2)(s))

Figure 82.8: Illustration of a PRG based on a one-way permuta-
tion f and its hard-core bit h.

Note that the above PRG can be computed in an “on-line”
fashion. Namely, we only need to remember xi to compute the
continuation of the output. This makes it possible to compute
an arbitrary long pseudo-random sequence using only a short
seed of a fixed length. (In other words, we do not need to know
an upper-bound on the length of the output when starting to
generate the pseudo-random sequence.)

Furthermore, note that the PRG construction can be easily
adapted to work also with a collection of OWP, and not just a
OWP. If { fi} is a collection of OWP, simply consider G defined
as follows:

G(r1, r2) = hi(fi(x)) ‖ hi(f (2)i (x)) ‖ . . .

where r1 is used to sample i and r2 is used to sample x.

3.3.6 Concrete examples of PRGs

By using our concrete candidates of OWP (and their correspond-
ing hard-core bits), we get the following concrete instantiations
of PRGs.

Modular Exponentiation (Blum-Micali PRG)

• Use the seed to generate p, g, x where p is a prime of the
form 2q + 1 and q is also prime, g is a generator for Z∗p,
and x ∈ Z∗p.

• Output half p−1(x) ‖ half p−1(gx mod p) ‖ half p−1(ggx
mod

p) ‖ · · ·

3.4. Hard-Core Bits from Any OWF 83

RSA (RSA PRG)

• Use the seed to generate p, q, e where p, q are random n-
bit primes p, q, and e is a random element in Z∗N where
N = pq.

• Output LSB(x) ‖ LSB(xe mod N) ‖ LSB((xe)e mod N) ‖
· · · where LSB(x) is the least significant bit of x.

Rabin (Blum-Blum-Schub)

• Use seed to generate random k-bit primes p, q = 3 mod 4
and x ∈ QRn, where n = pq.

• Output LSB(x) ‖ LSB(x2 mod N) ‖ LSB((x2)2 mod N) ‖
. . . where LSB(x) is the least significant bit of x.

• This is efficient: given the state xi, only one modular multi-
plication is needed to get the next bit. C.f. linear congruen-
tial generators G(xi+1) = axi + b.

• We can efficiently compute the ith bit (i.e., LSB(x2)i) with-
out needing to keep state (x2)i−1, provided that the primes
p and q are known. This is because we can easily compute
Φ(pq).

In all the above PRGs, we can in fact output log n bits at each
iteration, while still remaining provably secure. Moreover, it is
conjectured that it is possible to output n

2 bits at each iteration
and still remain secure (but this has not been proven).

3.4 Hard-Core Bits from Any OWF

We have previously shown that if f is a one-way permutation
and h is a hard-core predicate for f , then the function

G(s) = f (s) ‖ h(s)

is a pseudo-random generator. One issue, however, is how to find
a hard-core predicate for a given one-way permutation. We have
illustrated examples for some of the well-known permutations.

84 chapter 3. indistinguishability & pseudo-randomness

Here, we show that every one-way function (permutation resp.)
can be transformed into another one-way function (permutation
resp.) which has a hard-core bit. Combined with our previous
results, this shows that a PRG can be constructed from any one-
way permutation.

As a warm-up, we show that halfp−1 is a hardcore predicate
for exponentiation mod p (assuming the DL assumption).

3.4.1 A Hard-core Bit from the Discrete Log problem

Recall that halfn(x) is equal to 1 if and only iff 0 ≤ x ≤ n
2 .

.Lemma 84.1 Under the DL assumption (52.2), the function halfp−1
is a hard-core predicate for the exponentiation function fp,g(x) = gx

mod p from the discrete-log collection DL.

Proof. First, note that it is easy to compute halfp−1() given x.
Suppose, for the sake of contradiction, that there exists a n.u.
p.p.t. algorithm A and a polynomial s(n) such that for infinitely
many n ∈N

Pr
[

fp,g ← DL(n); x ← Zp : A(1n, fp,g(x)) = half(p−1)(x)
]

>
1
2
+

1
s(n)

We show how to use the algorithm A to construct a new algo-
rithm B which solves the discrete logarithm problem for the same
n and therefore violates the discrete log assumption. To illustrate
the idea, let us first assume that A is always correct. Later we
remove this assumption. The algorithm B works as follows:

algorithm 84.2: DiscreteLog(g, p, y) using A

1: Set yk ← y and k = |p|
2: while k > 0 do
3: if yk is a square mod p then
4: xk ← 0
5: else
6: xk ← 1
7: yk ← yk/g mod p to make a square
8: end if

3.4. Hard-Core Bits from Any OWF 85

9: Compute the square root yk−1 ←
√

yk mod p
10: Run b← A(yk−1)
11: IF b = 0 THen yk−1 ← −yk−1
12: Decrement k
13: end while
14: return x

Recall from Thm. 58.2 and the related exercises on that page,
for every prime p, the modular square root operation can be
performed efficiently.

Now if g is a generator, and y is square y = g2x, notice
that y has two square roots: gx and gx+p/2. (Recall that gp/2 =
−1 mod p.) The first of these two roots has a smaller discrete
log than y, and the other has a larger one. If it is possible to
determine which of the two roots is the smaller root—say by
using the adversary A to determine whether the exponent of the
root is in the “top half” [1, p/2] or not—then we can iteratively
divide, take square-roots, and then choose the root with smaller
discrete log until we eventually end up at 1. This is in fact the
procedure given above.

Unfortunately, we are not guaranteed that A always outputs
the correct answer, but only that A is correct noticably more often
than not. In particular, A is correct with probability 1

2 + ε where
ε = s(n). To get around this problem, we can use self-reducibility
in the group Zp. In particular, we can choose ` random values
r1, . . . , r`, and randomize the values that we feed to A in line 8 of
Alg. 84.2. Since A must be noticably more correct than incorrect,
we can use a “majority vote” to get an answer that is correct with
high probability.

To formalize this intuition, we first demonstrate that the
procedure above can be used to solve the discrete log for instances
in which the discrete log is in the range [1, 2, . . . , ε/4 · p]. As we
will show later, such an algorithm suffices to solve the discrete
log problem, since we can guess and map any instance into this
range. Consider the following alternative test in place of line 8

of Alg. 84.2.
lo ← 0
for i = 1, 2, . . . , ` do

ri ← Zp

86 chapter 3. indistinguishability & pseudo-randomness

zi ← yk−1gri

bi ← A(zi)
Increment lo if (bi = 0 ∧ ri < p/2) or (bi = 1 ∧ ri ≥ p/2)

end for
Set b = 0 if lo > `/2 and 1 otherwise

Suppose the discrete log of yk is in the range [1, 2, . . . , s] where
s = ε/4 · p. It follows that either the discrete log of yk−1 falls
within the range [1, 2, . . . , s/2] or in the range [p/2, . . . p/2+ s/2].
In other words, the square root will either be slightly greater
than 0, or slightly greater than p/2. Let the event noinc represent
the case when the counter lo is not incremented in line 13. By
the Union Bound, we have that

Pr [noinc | low(yk−1)] ≤ Pr[A(zi) errs]
+ Pr[ri ∈ [p/2− s, p/2] ∪ [p− s, p− 1]]

The last term on the right hand side arises from the error of re-
randomizing. That is, when ri ∈ [p/2− s, p/2], then the discrete
log of zi will be greater than p/2. Therefore, even if A answers
correctly, the test on line 13 will not increment the counter lo.
Although this error in unavoidable, since ri is chosen randomly,
we have that

Pr[noinc | low(yk−1)] ≤
1
2
− ε + 2(ε/4) =

1
2
− ε

2

Conversely, the probability that lo is incremented is therefore
greater than 1/2 + ε/2. By setting the number of samples ` =
(1/ε)2, then by the corollary of the Chernoff bound given in
Lemma 189.8, value b will be correct correct with probability
very close to 1.

�
In the above proof, we rely on specific properties of the OWP

f . We proceed to show how the existence of OWPs implies the
exitence of OWPs with a hard-core bit.

3.4.2 A General Hard-core Predicate from Any OWF

Let 〈x, r〉 denote the inner product of x and r, i.e., ∑ xiri mod 2.
In other words, r decides which bits of x to take parity on.

3.4. Hard-Core Bits from Any OWF 87

.Theorem 87.3 Let f be a OWF (OWP) and define function g(x, r) =
(f (x), r) where |x| = |r|. Then g is a OWF (OWP) and h(x, r) =
〈x, r〉 is a hardcore predicate for f .

3.4.3 *Proof of Theorem 87.3

Proof. We show that if A, given g(x, r) can compute h(x, r) with
probability non-negligibly better than 1/2, then there exists a
p.p.t. adversary B that inverts f . More precisely, we use A to
construct a machine B that on input y = f (x) recovers x with
non-negligible probability, which contradicts the one-wayness
of f . The proof is fairly involved. To provide intuition, we first
consider two simplified cases.

Oversimplified case: assume A always computes h(x, r) cor-
rectly. (Note that this is oversimplified as we only know that
A computes h(x, r) with probability non-negligibly better than
1/2.) In this case the following simple procedure recovers x: B
on input y lets xi = A(y, ei) where ei = 00..010.. is an n bit string
with the only 1 being in position i, and outputs x1, x2, . . . , xn.
This clearly works, since by definition 〈x, ei〉 = xi and by our
assumption A(f (x), r) = 〈x, r〉.

Less simplified case: assume A computes h(x, r) with proba-
bility 3

4 + ε(n) where ε(n) = 1
poly(n) . In this case, the above

algorithm of simply querying A with y, ei no longer work for
two reasons:

1. A might not work for all y’s,

2. even if A predicts h(x, r) with high probabiliy for a given
y, but a random r, it might still fail on the particular r = ei.

To get around the first problem, we show that for a reasonable
fraction of x’s, A does work with high probability. We first define
the “good set” of instances

S =

{
x | Pr [r ← {0, 1}n : A(f (x), r) = h(x, r)] >

3
4
+

ε

2

}

88 chapter 3. indistinguishability & pseudo-randomness

Let us first argue that Pr [x ∈ S] ≥ ε
2 . Suppose, for the sake of

contradiction, that it is not. Then we have

Pr [x, r ← {0, 1}n : A(f (x), r) = h(x, r)]
≤ (Pr [x ∈ S] · 1)
+ (Pr [x /∈ S] · Pr [A(f (x), r) = h(x, r)|x /∈ S])

<
(ε

2

)
+

(
(1− ε/2) ·

(
3
4
+

ε

2

))
<

3
4
+ ε

which contradicts our assumption. The second term on the third
line of the derivation follows because by definition of S, when
x 6∈ S, then A succeeds with probability less than 3

4 + ε/2.
The second problem is more subtle. To get around it, we

“obfuscate” the queries y, ei and rely on the linearity of the inner
product operation. The following simple fact is useful.

.Fact 88.4 〈a, b⊕ c〉 = 〈a, b〉 ⊕ 〈a, c〉 mod 2

Proof.

〈a, b⊕ c〉 = Σai(bi + ci) = Σaibi + Σaici

= 〈a, b〉+ 〈a, c〉 mod 2

�
Now, rather than asking A to recover 〈x, ei〉, we instead pick

a random string r and ask A to recover 〈x, r〉 and 〈x, r + e1〉, and
compute the XOR of the answers. If A correctly answers both
queries, then the i’th bit of x can be recovered. More precisely,
B(y) proceeds as follows:

algorithm 88.5: B(y)
m← poly(1/ε)
for i = 1, 2, . . . , n do

for j = 1, 2, . . . , m do
Pick random r ← {0, 1}n

Set r′ ← ei ⊕ r
Compute a guess gi,j for xi as A(y, r)⊕A(y, r′)

end for

3.4. Hard-Core Bits from Any OWF 89

xi ← majority(gi,1, . . . , gi,m)
end for
Output x1, . . . , xn.

Note that for a “good” x (i.e., x ∈ S) it holds that:

• with probability at most 1
4 −

ε
2 , A(y, r) 6= h(x, r)

• with probability at most 1
4 −

ε
2 , A(y, r′) 6= h(x, r)

It follows by the union bound that with probability at least 1
2 + ε

both answers of A are correct. Since 〈y, r〉 ⊕ 〈y, r′〉 = 〈y, r⊕ r′〉 =
〈y, ei〉, each guess gi is correct with probability 1

2 + ε. Since
algorithm B attempts poly(1/ε) independent guesses and finally
take a majority vote, it follows using the Chernoff Bound that
every bit is xi computed by B is correct with high probability.
Thus, for a non-negligible fraction of x’s, B inverts f , which is a
contradiction.

The general case. We proceed to the most general case. Here,
we simply assume that A, given random y = f (x) and random r
computes h(x, r) with probability 1

2 + ε (where ε = 1
poly(n)). As

before, define the set of good cases as

S =

{
x|Pr [A(f (x), r) = h(x, r)] >

1
2
+

ε

2

}
It again follows that Pr [x ∈ S] ≥ ε

2 . To construct B, let us first as-
sume that B can call a subroutine C that on input f (x), produces
samples

(b1 = 〈x, r1〉, r1), . . . , (bm = 〈x, rm〉, rm)

where r1, . . . , rm are independent and random. Consider the
following procedure B(y):

algorithm 89.6: B(y) for the General case

m← poly(1/ε)
for i = 1, 2, . . . , n do
(b1, r1), . . . , (bm, rm)← C(y)
for j = 1, 2, . . . , m do

Let r′j = ei ⊕ rj

90 chapter 3. indistinguishability & pseudo-randomness

Compute gi,j = bj ⊕A(y, r′)
end for
Let xi ← majority(g1, . . . , gm)

end for
Output x1, . . . , xn.

Given an x ∈ S, it follows that each guess gi,j is correct with
probability 1

2 + ε
2 = 1

2 + ε′. We can now again apply the the
Chernoff bound to show that xi is wrong with probability ≤
2−ε′2m. Thus, as long as m >> 1

ε′2
, we can recover all xi. The only

problem is that B uses the magical subroutine C.
Thus, it remains to show how C can be implemented. As

an intermediate step, suppose that C were to produce samples
(b1, r1), . . . , (bn, rn) that were only pairwise independent (instead
of being completely independent). It follows by the Pairwise-
Independent Sampling inequality that each xi is wrong with
probability at most 1−4ε′2

4mε′2
≤ 1

mε′2
. By union bound, any of the

xi is wrong with probability at most n/mε′2 which is less than 1/2

when m ≥ 2n
ε′2

. Thus, if we could get 2n/ε′2 pairwise independent
samples, we would be done. So, where can we get them from?
A simple approach to generating these samples would be to pick
r1, . . . , rm at random and guess b1, . . . , bm randomly. However,
bi would be correct only with probability 2−m. A better idea
is to pick log(m) samples s1, . . . , slog(m) and guess b′1, . . . , b′log(m);
here the guess is correct with probability 1/m. Now, gener-
ate r1, r2, . . . , rm−1 as all possible sums (modulo 2) of subsets of
s1, . . . , slog(m), and b1, b2, . . . , bm as the corresponding subsets of
b′i . That is,

ri = ∑
j∈Ii

sj j ∈ I iff ij = 1

bi = ∑
j∈Ii

b′j

It is not hard to show that these ri are pairwise independent
samples (show this!). Yet with probability 1/m, all guesses for
b′1, . . . , b′log(m) are correct, which means that b1, . . . , bm−1 are also
correct.

Thus, for a fraction of ε′ of x′ it holds that with probability
1/m, the algorithm B inverts f with probability 1/2. That is, B

3.5. Secure Encryption 91

inverts f with probability

ε′

2m
=

ε′3

4n
=

(ε/2)3

4n

when m = 2n
ε2 . This contradicts the one-wayness of f .

3.5 Secure Encryption

We next use the notion of indistinguishability to provide a com-
putational definition of security of encryption schemes. As we
shall see, the notion of a PRG will be instrumental in the con-
struction of encryption schemes which permit the use of a short
key to encrypt a long message.

The intuition behind the definition of secure encryption is
simple: instead of requiring that encryptions of any two messages
are identically distributed (as in the definition of perfect secrecy),
the computational notion of secure encryption requires only that
encryptions of any two messages are indistinguishable.

.Definition 91.1 (Secure Encryption). The encryption scheme
(Gen,Enc,Dec) is said to be single-message secure if ∀ non uniform
p.p.t. D, there exists a negligible function ε(·) such that for
all n ∈ N, m0, m1 ∈ {0, 1}n, D distinguishes between the the
following distributions with probability at most ε(n):

• {k← Gen(1n) : Enck(m0)}

• {k← Gen(1n) : Enck(m1)}

The above definition is based on the indistinguishability of
the distribution of ciphertexts created by encrypting two different
messages. The above definition does not, however, explicitly cap-
ture any a priori information that an adversary might have. Later
in the course, we will see a definition which explicitly captures
any a priori information that the adversary might have and in fact
show that the indistinguishability definition is equivalent to it.

92 chapter 3. indistinguishability & pseudo-randomness

3.6 An Encryption Scheme with Short Keys

Recall that perfectly secure encryption schemes require a key that
is at least as long as the message to be encrypted. In this section
we show how a short key can be used to construct a secure
encryption scheme. The idea is to use a one-time pad encryption
scheme in which the pad is the output of a pseudo-random
generator (instead of being truly random). Since we know how
to take a small seed and construct a long pseudorandom sequence
using a PRG, we can encrypt long messages with a short key.

More precisely, consider the following encryption scheme.
Let G(s) be a length-doubling pseudo-random generator.

algorithm 92.1: Encryption Scheme for n-bit message

Gen(1n): k← Un/2

Enck(m): Output m⊕ G(k)

Deck(c): Output c⊕ G(k)

.Theorem 92.2 Scheme (Gen,Enc,Dec) described in Algorithm 92.1
is single-message secure.

Proof. Assume for contradiction that there exists a distinguisher
D and a polynomial p(n) such that for infinitely many n, there
exist messages m0

n, m1
n such that D distinguishes between the

following two distributions

• {k← Gen(1n) : Enck(m0)}

• {k← Gen(1n) : Enck(m1)}

with probability 1/p(n). Consider the following hybrid distribu-
tions:

• H1
n (Encryption of m0

n): {s← Gen(1n) : m0
n ⊕ G(s)}.

• H2
n (OTP with m1

n): {r ← Un : m0
n ⊕ r}.

• H3
n (OTP with m1

n): {r ← Un : m1
n ⊕ r}.

• H4
n (Encryption of m1

n): {s← Gen(1n) : m1
n ⊕ G(s)}.

3.7. Multi-message Secure Encryption 93

By construction D distringuishes H1
n and H4

n with probability
1/p(n) for infinitely many n. It follows by the hybrid lemma
that D also distinguishes two consequetive hybrids with prob-
ability 1/4p(n) (for infinitely many n). We show that this is a
contradiction.

• Consider the n.u. p.p.t. machine Mi(x) = mi
|x| ⊕ x1 and

the distribution Xn = {s ← U n
2

: G(s)}. By definition,
H1

n = M0(Xn), H4
n = M1(Xn) and H2

n = M0(Un), H3
n =

M1(Un). But since {Xn}n ≈ {Un}n (by the PRG property
of G) it follows by closure under efficient operations that
{H1

n}n ≈ {H2
n}n and {H3

n}n ≈ {H4
n}n.

• Additionally, by the perfect secrecy of the OTP, H2
n and H3

n
are identically distributed.

Thus, all consequetive hybrid distributions are indistinguishable,
which is a contradiction. �

3.7 Multi-message Secure Encryption

As suggested by the name, single-message secure encryption only
considers the security of an encryption scheme that is used to
encrypt a single message. In general, we encrypt many messages
and still require that the adversary cannot learn anything about
the messages.

The following definition extends single-message security to
multi-message security. The definition is identical, with the only
exception being that we require that the encryptions of any two
vectors or messages are indistinguishable.

.Definition 93.1 (Multi-message Secure Encryption). An encryp-
tion scheme (Gen,Enc,Dec) is said to be multi-message secure if
for all non uniform p.p.t. D, for all polynomials q(n), there
exists a negligible function ε(·) such that for all n ∈ N and
m0, m1, . . . , mq(n), m′0, m′1, . . . , m′q(n) ∈ {0, 1}n, D distinguishes be-
tween the the following distributions with probability at most
ε(n):

1Note that Mi is non-uniform as for each input lenght n, it has the message
mi

n hard-coded.

94 chapter 3. indistinguishability & pseudo-randomness

• {k← Gen(1n) : Enck(m0),Enck(m1), . . . Enck(mq(n))}
• {k← Gen(1n) : Enck(m′0),Enck(m′1), . . . Enck(m′q(n))}

It is easy to see that the single-message secure encryption
scheme in Scheme 92.1 (i.e., Enck(m) = m⊕ G(s), where G is a
PRG) is not multi-message secure. More generally,

.Theorem 94.2 A multi-message secure encryption scheme cannot be
deterministic and stateless.

Proof. For any two messages m0, m1, consider the encryptions
(c0, c1), (c′0, c′1) of the messages (m0, m0) and (m0, m1). If the
encryption scheme is deterministic and stateless, c0 = c1, but
c′0 6= c1. �

Thus, any multi-message secure encryption scheme (that is
stateless) must use randomness. One idea for such a scheme
is to pick a random string r, then output r||m⊕ f (r) for some
function f . Ideally, we would like the output of f to be a random
string as well. One way to get such an f might be to have a long
pseudorandom sequence of length on the order of n2n. Then
f could use r as an index into this sequence and return the
n bits at r. But no pseudorandom generator can produce an
exponential number of bits; the construction in §3.2 only works
for pseudorandom generators with polynomial expansion.

If we were to use a pseudorandom generator, then r could be
at most O(log n) bits long, so even if r is chosen randomly, we
would end up choosing two identical values of r with reasonable
probability; this scheme would not be multi-message secure,
though a stateful scheme that keeps track of the values of r
used could be. What we need instead is a new type of “pseudo-
random” function that allows us to index an exponentially long
pseudo-random string.

3.8 Pseudorandom Functions

Before defining pseudorandom function, we first recall the defi-
nition of a random function.

3.8. Pseudorandom Functions 95

3.8.1 Random Functions

The scheme r||m⊕ f (r) would be multi-message secure if f were
a random function. We can describe a random functions in
two different ways: a combinatorial description—as a random
function table—and compuational description—as a machine
that randomly chooses outputs given inputs and keeps track
of its previous answers. In the combinatorial description, the
random function table can be view as a long array that stores the
values of f . So, f (x) returns the value at position nx.

0101 . . . 1101 . . . 0010 . . . 0100 . . .

1 2 3 2n

n bits n bits n bits n bits

Note that the description length of a random function is n2n,
so there are 2n2n

random functions from {0, 1}n → {0, 1}n. Let
RFn be the distribution that picks a function mapping {0, 1}n →
{0, 1}n uniformly at random.

A computational description of a random function is instead
as follows: a random function is a machine that upon receiving
input x proceeds as follows. If it has not seen x before, it chooses
a value y← {0, 1}n and returns y; it then records that f (x) = y.
If it has seen x before, then it looks up x, and outputs the same
value as before.

x

y
f (x) = y

It can be seen that both of the above descriptions of a random
functions give rise to identical distributions.

The problem with random functions is that (by definition)
they have a long description length. So, we cannot employ a
random function in our encryption scheme. We will next define
a pseudorandom function, which mimics a random function, but
has a short description.

96 chapter 3. indistinguishability & pseudo-randomness

3.8.2 Definition of Pseudorandom Functions

Intuitively, a pseudorandom function (PRF) “looks” like a ran-
dom function to any n.u. p.p.t. adversary. In defining this notion,
we consider an adversary that gets oracle access to either the PRF,
or a truly random function, and is supposed to decide which
one it is interacting with. More precisely, an oracle Turing ma-
chine M is a Turing machine that has been augmented with a
component called an oracle: the oracle receives requests from M
on a special tape and writes its responses to a tape in M. We
now extend the notion of indistinguishability of distributions, to
indistinguishability of distributions of oracles.

.Definition 96.1 (Oracle Indistinguishability). Let {On}n∈N and
{O′n}n be ensembles where On, O′n are probability distributions
over functions f : {0, 1}`1(n) → {0, 1}`2(n) for some polynomi-
als `1(·), `2(·). We say that {On}n and {O′n}n are computation-
ally indistinguishable (denoted by {O′n}n ≈ {O′n}n∈N) if for all
non-uniform p.p.t. oracles machines D, there exists a negligible
function ε(·) such that ∀n ∈N∣∣∣∣∣∣ Pr

[
F ← On : DF(·)(1n) = 1

]
−Pr

[
F ← O′n : DF(·)(1n) = 1

] ∣∣∣∣∣∣ < ε(n).

It is easy to verify that oracle indistinguishability satisfies “clo-
sure under efficient operations”, the Hybrid Lemma, and the
Prediction Lemma.

We turn to define pseudorandom functions.

.Definition 96.2 (Pseudo-random Function). A family of functions
{ fs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ is pseudo-random if

• (Easy to compute): fs(x) can be computed by a p.p.t. algo-
rithm that is given input s and x

• (Pseudorandom): {s← {0, 1}n : fs}n ≈ {F ← RFn : F}n.

Note that in the definition of a PRF, it is critical that the seed s
to the PRF is not revealed; otherwise it is easy to distinguish fs
from a random function: simply ask the oracle a random query
x and check whether the oracle’s reply equals fs(x).

3.8. Pseudorandom Functions 97

Also note that the number of pseudorandom functions is
much smaller than the number of random function (for the same
input lenghts); indeed all pseudorandom functions have a short
description, whereas random functions in general do not.

.Theorem 97.3 If a pseudorandom generator exists, then pseudoran-
dom functions exist.

Proof. We have already shown that any pseudorandom generator
g is sufficient to construct a pseudorandom generator g′ that has
polynomial expansion. So, without loss of generality, let g be a
length-doubling pseudorandom generator.

g : x g0(x) g1(x)

n bits n bitsn bits

Then we define fs as follows to be a pseudorandom function:

fs(b1b2 . . . bn) = gbn(gbn−1(· · · (gb1(s)) · · ·))

f keeps only one side of the pseudorandom generator at each
of n iterations. Thus, the possible outputs of f for a given input
form a tree; the first three levels are shown in the following
diagram. The leaves of the tree are the output of f .

s

s0 = g0(s)

s00 = g0(s0) s01 = g1(s0)

s1 = g1(s)

s10 = g0(s1) s11 = g1(s1)

The intuition about why f is a pseudorandom function is
that a tree of height n contains 2n leaves, so exponentially many
values can be indexed by a single function with n bits of input.
Thus, each unique input to f takes a unique path through the
tree. The output of f is the output of a pseudorandom generator
on a random string, so it is also pseudo-random.

98 chapter 3. indistinguishability & pseudo-randomness

One approach to the proof is to look at the leaves of the
tree. Build a sequence of hybrids by successively replacing each
leaf with a random distribution. This approach, however, does
not work because our hybrid lemma does not apply when there
are exponentially many hybrids. Instead, we form hybrids by
replacing successive levels of the tree: hybrid HFi

n is formed
by picking all levels through the ith uniformly at random, then
applying the tree construction as before.

random

Note that HF1
n = {s← {0, 1}n : fs(·)} (picking only the seed

at random), which is the distribution defined originally. Further,
HFn

n = RFn (picking the leaves at random).
Thus, if D can distinguish F ← RFn and fs for a randomly

chosen s, then D distinguishes F1 ← HF1
n and Fn ← HFn

n with
probability ε. By the hybrid lemma, there exists some i such that
D distinguishes HFi

n and HFi+1
n with probability ε/n.

The difference between HFi
n and HFi+1

n is that level i + 1 in
HFi

n is g(Un), whereas in HFi+1
n , level i + 1 is Un. Afterwards,

both distributions continue to use g to construct the tree.
To finish the proof, we will construct one more set of hybrid

distributions. Recall that there is some polynomial p(n) such
that the number of queries made by D is bounded by p(n). So,
we can now apply the first hybrid idea suggested above: define
hybrid HHF

j
n that picks F from HFi

n, and answer the first j new
queries using F, then answer the remaining queries using HFi+1

n .
But now there are only p(n) hybrids, so the hybrid lemma

applies, and D can distinguish HHF
j
n and HHF

j+1
n for some j

with probability ε/(np(n)). But HHF
j
n and HHF

j+1
n differ only

in that HHF
j+1
n answers its j + 1st query with the output of a

pseudorandom generator on a randomly chosen value, whereas

3.9. Construction of Multi-message Secure Encryption 99

HHF
j
n answers its j + 1st query with a randomly chosen value.

As queries to HHF
j
n can be emulated in p.p.t. (we here rely on the

equivalence between the combinatorial and the computational
view of a random function; we omit the details), it follows by
closure under efficient operations that D contradicts the pseudo-
random property of g. �

3.9 Construction of Multi-message Secure
Encryption

The idea behind our construction is to use a pseudorandom func-
tion in order to pick a separate random pad for every message.
In order to make decryption possible, the ciphertext contains the
input on which the pseudo-random function is evaluated.

algorithm 99.1: Many-message Encryption Scheme

Assume m ∈ {0, 1}n and let { fk} be a PRF family.

Gen(1n) : k← Un

Enck(m) : Pick r ← Un. Output (r, m⊕ fk(r))

Deck((r, c)) : Output c⊕ fk(r)

.Theorem 99.2 (Gen, Enc, Dec) is a many-message secure encryption
scheme.

Proof. Assume for contradiction that there exists a n.u. p.p.t.
distinguisher D, and a polynomial p(·) such that for infinitely
many n, there exists messages m̄ = {m0, m1 . . . , mq(n)} and m̄′ =
{m′0, m′1 . . . , m′q(n)} such that D distinguishes between encryp-

tions of m̄ and m̄′ w.p. 1
p(n) . (To simplify notation, here—and in

subsequent proofs—we sometimes omit n from our notation and
let mi denote mi

n, whenever n is clear from the context). Con-
sider the following sequence of hybrid distributions: As above, it
should be clear that Hi denotes Hi

n.

100 chapter 3. indistinguishability & pseudo-randomness

• H1: real encryptions of m0, m1 . . . , mq(n)

s← {0, 1}n

r0, . . . , rq(n) ← {0, 1}n

(r0, m0 ⊕ fs(r0)), . . . , (rq(n), mq(n) ⊕ fs(rq(n)))

This is precisely what the adversary sees when receiving
the encryptions of m0, . . . , mq(n).

• H2: Replace f with a truly random function R:

R← RFn

r0, . . . , rq(n) ← {0, 1}n

(r0, m0 ⊕ R(r0)), . . . , (rq(n), mq(n) ⊕ R(rq(n)))

• H3 – using OTP on m0, m1, . . . , mq(n)

p0 . . . pq(n) ← {0, 1}n

r0, . . . , rq(n) ← {0, 1}n

(r0, m0 ⊕ p0, . . . , mq(n) ⊕ pq(n))

• H4 – using OTP on m′0, m′1, . . . , m′q(n)

p0 . . . pq(n) ← {0, 1}n

r0, . . . , rq(n) ← {0, 1}n

(r0, m′0 ⊕ p0, . . . m′q(n) ⊕ pq(n)

• H5 – Replace f with a truly random function R:

R← {{0, 1}n → {0, 1}n}
r0, . . . , rq(n) ← {0, 1}n

(r0, m′0 ⊕ R(r0), . . . (rq(n), m′q(n) ⊕ R(rq(n)))}

• H6 – real encryptions of m′0, m′1, . . . , m′q(n)

s← {0, 1}n

r0, . . . , rq(n) ← {0, 1}n

(r0, m′0 ⊕ fs(r0), . . . , (rq(n), m′q(n) ⊕ fs(rq(n))}

3.10. Public Key Encryption 101

By the Hybrid Lemma, D distinguishes between to adjacent
hybrid distributions with inverse polynomial probability (for
infinitely many n). We show that this is a contradiction:

• First, note that D distinguish between H1 and H2 only with
negligible probability; otherwise (by closure under efficient
operations) we contradict the pseudorandomness property
of { fs}n.

The same argument applies for H6 and H5.

• H2 and H3 are “almost” identical except for the case when
∃i, j such that ri = rj, but this happens only with probability(

q(n)
2

)
· 2−n,

which is negligible; thus, D can distinguishes between
H2 and H3 only with negligible probability. The same
argument applies for H4 and H5.

• Finally, H3 and H4 are identical by the perfect secrecy of
the OTP.

This contradicts that D distinguishes two adjacent hybrids. �

3.10 Public Key Encryption

So far, our model of communication allows the encryptor and
decryptor to meet in advance and agree on a secret key which
they later can use to send private messages. Ideally, we would
like to drop this requirement of meeting in advance to agree on a
secret key. At first, this seems impossible. Certainly the decryp-
tor of a message needs to use a secret key; otherwise, nothing
prevents the eavesdropper from running the same procedure
as the decryptor to recover the message. It also seems like the
encryptor needs to use a key because otherwise the key cannot
help to decrypt the cyphertext.

The flaw in this argument is that the encrypter and the de-
cryptor need not share the same key, and in fact this is how
public key cryptography works. We split the key into a secret

102 chapter 3. indistinguishability & pseudo-randomness

decryption key sk and a public encryption key pk. The public
key is published in a secure repository, where anyone can use it
to encrypt messages. The private key is kept by the recipient so
that only she can decrypt messages sent to her.

We define a public key encryption scheme as follows:

.Definition 102.1 (Public Key Encryption Scheme). A triple of
algorithms (Gen,Enc,Dec) is a public key encryption scheme if

1. (pk, sk)← Gen(1n) is a p.p.t. algorithm that produces a key
pair (pk, sk)

2. c ← Encpk(m) is a p.p.t. algorithm that given pk and m ∈
{0, 1}n produces a ciphertext c.

3. m ← Decsk(c) is a deterministic algorithm that given a
ciphertext c and secret key sk produces a message m ∈
{0, 1}n ∪⊥.

4. There exists a polynomial-time algorithm M that on input
(1n, i) outputs the ith n-bit message (if such a message exists)
according to some order.

5. For all n ∈N, m ∈ {0, 1}n

Pr
[
(pk, sk)← Gen(1n) : Decsk(Encpk(m)) = m

]
= 1

We allow the decryption algorithm to produce a special sym-
bol ⊥ when the input ciphertext is “undecipherable.” The secu-
rity property for public-key encryption can be defined using an
experiment similar to the ones used in the definition for secure
private key encryption.

.Definition 102.2 (Secure Public Key Encryption). The public key
encryption scheme (Gen,Enc,Dec) is said to be secure if for all
non uniform p.p.t. D, there exists a negligible function ε(·) such
that for all n ∈N, m0, m1 ∈ {0, 1}n, D distinguishes between the
the following distributions with probability at most ε(n):

• {(pk, sk)← Gen(1n) : (pk,Encpk(m0))}n

• {(pk, sk)← Gen(1n) : (pk,Encpk(m1))}n

3.10. Public Key Encryption 103

With this definitions, there are some immediate impossibility
results:

Perfect secrecy Perfect secrecy is not possible (even for small
message spaces) since an unbounded adversary could sim-
ply encrypt every message in {0, 1}n with every random
string and compare with the challenge ciphertext to learn
the underlying message.

Deterministic encryption It is also impossible to have a deter-
ministic encryption algorithm because otherwise an adver-
sary could simply encrypt and compare the encryption
of m0 with the challenge ciphertext to distinguish the two
experiments.

As with the case of private-key encryption, we can extend the
definition to multi-message security. Fortunately, for the case of
public-key encryption, multi-message security is equivalent to
single-messages security. This follows by a simple application of
the hybrid lemma, and closure under efficient operations; the key
point here is that we can efficiently generate encryptions of any
message, without knowing the secret key (this was not possible,
in the case of private-key encryption). We leave it as an exercise
to the reader to complete the proof.

We can consider a weaker notion of “single-bit” secure en-
cryption in which we only require that encryptions of 0 and 1
are indistinguishable. Any single-bit secure encryption can be
turned into a secure encryption scheme by simply encrypting
each bit of the message using the single-bit secure encryption;
the security of the new scheme follows directly from the multi-
message security (which is equivalent to traditional security) of
the single-bit secure encryption scheme.2

3.10.1 Constructing a Public Key Encryption Scheme

Trapdoor permutations seem to fit the requirements for a public
key cryptosystem. We could let the public key be the index i of

2As we discuss in a later chapter, this same argument does not apply for
stronger definitions of encryption such as chosen-ciphertext security. In fact, a
more sophisticated argument is needed to show the same simple result.

104 chapter 3. indistinguishability & pseudo-randomness

the function to apply, and the private key be the trapdoor t. Then
we might consider Enci(m) = fi(m), and Deci,t(c) = f−1

i (c). This
makes it easy to encrypt, and easy to decrypt with the public key,
and hard to decrypt without. Using the RSA function defined in
Theorem 53.2, this construction yields the commonly used RSA
cryptosystem.

However, according to our definition, this construction does
not yield a secure encryption scheme. In particular, it is de-
terministic, so it is subject to comparison attacks. A better
scheme (for single-bit messages) is to let Enci(x) = {r ← {0, 1}n :
〈 fi(r), b(r)⊕ m〉} where b is a hardcore bit for f . As we show,
the scheme is secure, as distinguishing encryptions of 0 and
1 essentially requires predicting the hardcore bit of a one-way
permutation.

algorithm 104.3: 1-Bit Secure Public Key Encryption

Gen(1n) : (fi, f−1
i)← GenT(1n). Output (pk, sk)← ((fi, bi), f−1

i)

Encpk(m): Pick r ← {0, 1}n. Output (fi(r), bi(r)⊕m).

Decsk(c1, c2): Compute r ← f−1
i (c1). Output bi(r)⊕ c2.

Here, (fi, f−1)i∈I is a family of one-way trapdoor permutations
and bi is the hard-core bit corresponding to fi. Let GenT be the
p.p.t. that samples a trapdoor permutation index from I.

.Theorem 104.4 If trapdoor permutations exist, then scheme 104.3 is
a secure single-bit public-key encryption system.

Proof: As usual, assume for contradiction that there exists a
n.u. p.p.t. D and a polynomial p(·), such that D distinguishes
{(pk, sk) ← Gen(1n) : (pk,Encpk(0))} and {(pk, sk) ← Gen(1n) :
(pk,Encpk(1))} w.p. 1

p(n) for infinitely many n. By the prediction
lemma, there exist a machine A such that

Pr
[
m← {0, 1}; (pk, sk)← Gen(1n) : D(pk,Encpk(m)) = m

]
>

1
2
+

1
2p(n)

We can now use A to construct a machine A′ that predicts the
hard-core predicate b(·):

3.11. El-Gamal Public Key Encryption scheme 105

• A′ on input (pk, y) picks c← {0, 1}, m← A(pk, (y, c)), and
outputs c⊕m.

Note that,

Pr
[
(pk, sk)← Gen(1n); r ← {0, 1}n : A′(pk, fpk(r)) = b(r)

]
= Pr

 (pk, sk)← Gen(1n);
r ← {0, 1}n;
c← {0, 1}

: A(pk, (fpk(r), c))⊕ c = b(r)

= Pr

 (pk, sk)← Gen(1n);
r ← {0, 1}n;
m← {0, 1}

: A(pk, (fpk(r), m⊕ b(r))) = m

= Pr

[
m← {0, 1}
(pk, sk)← Gen(1n)

: A(pk,Encpk(m)) = m
]

≥ 1
2
+

1
2p(n)

.

�

3.11 El-Gamal Public Key Encryption scheme

The El-Gamal public key encryption scheme is a popular and
simple public key encryption scheme that is far more efficient
than the one just presented. However, this efficiency requires
us to make a new complexity assumption called the Decisional
Diffie-Hellman Assumption (DDH).

.Assumption 105.1 (Decisional Diffie-Hellman (DDH)) The fol-
lowing ensembles are computationally indistinguishable{

p← Π̃n, y← Genq, a, b← Zq : p, y, ya, yb, yab
}

n
≈{

p← Π̃n, y← Genq, a, b, z← Zq : p, y, ya, yb, yz
}

n

Here the term Π̃n refers to the special subset of safe primes

Π̃n = {p | p ∈ Πn and p = 2q + 1, q ∈ Πn−1}

The corresponding q is called a Sophie Germain prime. We use such
a multiplicative group G = Zp because it has a special structure

106 chapter 3. indistinguishability & pseudo-randomness

that is convenient to work with. First, G has a subgroup Gq of
order q, and since q is prime, Gq will be a cyclic group. Thus, it is
easy to pick a generator of the group Gq (since every element is
a generator). When p = 2q + 1, then the subgroup Gq consists of
all of the squares modulo p. Thus, choosing a generator involves
simply picking a random element a ∈ G and computing a2. Note
that all of the math is still done in the “big” group, and therefore
modulo p.

It is crucial for the DDH assumption that the group within
which we work is a prime-order group. In a prime order group, all
elements except the identity have the same order. On the other
hand, in groups like G, there are elements of order 2, q and 2q,
and it is easy to distinguish between these cases. For example, if
one is given a tuple T = (p, y, g, h, f) and one notices that both
g, h are of order q but f is of order 2q, then one can immediately
determine that tuple T is not a DDH-tuple.

Notice that the DDH assumption implies the discrete-log
assumption (Assumption 52.2) since after solving the discrete
log twice on the first two components, it is easy to distinguish
whether the third component is yab or not.

We now construct a Public Key Encryption scheme based on
the DDH assumption.

algorithm 106.2: El-Gamal Secure Public Key Encryption

Gen(1n): Pick a safe prime p = 2q + 1 of length n. Choose
a random element g ∈ Zp and compute h ← g2 mod p.
Choose a ← Zq. Output pk ← (p, h, ha mod p) and sk as
sk← (p, h, a).

Encpk(m): Choose b← Zq. Output (hb, hab ·m mod p).

Decsk (c = (c1, c2)): Output c2/ca
1 mod p.

Roughly speaking, this scheme is secure assuming the DDH
assumption since hab is indistinguishable from a random element
and hence, by closure under efficient operations, hab ·m is indis-
tinguishable from a random element too. We leave the formal
proof as an exercise to the reader.

3.12. A Note on Complexity Assumptions 107

.Theorem 107.3 If the DDH Assumption holds, then scheme 106.2 is
secure.

3.12 A Note on Complexity Assumptions

During these first two chapters, we have studied a hierarchy
of constructions. At the bottom of this hierarchy are computa-
tionally difficult problems such as one-way functions, one-way
permutations, and trapdoor permutations. Our efficient con-
structions of these objects were further based on specific number-
theoretic assumptions, including factoring, RSA, discrete log, and
decisional Diffie-Hellman.

Using these hard problems, we constructed several primi-
tives: pseudorandom generators, pseudorandom functions, and
private-key encryption schemes. Although our constructions
were usually based on one-way permutations, it is possible to
construct these same primitives using one-way functions. Further,
one-way functions are a minimal assumption, because the exis-
tence of any of these primitives implies the existence of one-way
functions.

Public-key encryption schemes are noticeably absent from
the list of primitives above. Although we did construct two
public key encryption schemes, it is unknown how to base such
a construction on one-way functions. Moreover, it is known to
be impossible to create a black-box construction from one-way
functions.

Chapter 4

Knowledge

In this chapter, we investigate what it means for a conversation
to “convey” knowledge.

4.1 When Does a Message Convey
Knowledge

Our investigation is based on a behavioristic notion of knowledge
which models knowledge as the ability to complete a task. A
conversation therefore conveys knowledge when the conversation
allows the recipient to complete a “new” task that the recipient
could not complete before. To quantify the knowledge inherent
in a message m, it is therefore sufficient to quantify how much
easier it becomes to compute some new function given m.

To illustrate the idea, consider the simplest case of a conver-
sation in when Alice sends a single message to Bob. As before,
to describe such phenomena, we must consider a sequence of
conversations of increasing size parameterized by n.

Imagine Alice always sends the same message 0n to Bob. Al-
ice’s message is deterministic and it has a short description; Bob
can easily produce the message 0n himself. Thus, this message
does not convey any knowledge to Bob.

Now suppose that f is a one-way function, and consider
the case when Alice sends Bob the message consisting of “the
preimage of the preimage ... (n times) of 0.” Once again, the
string that Alice sends is deterministic and has a short description.

109

110 chapter 4. knowledge

However, in this case, it is not clear that Bob can produce the
message himself because producing the message might require a
lot of computation (or a very large circuit). This leads us to a first
approximate notion of knowledge. The amount of knowledge
conveyed in a message can be quantified by considering the
running time and size of a Turing machine that generates the
message. With this notion, we can say that any message which
can be generated by a constant-sized Turing machine that runs
in polynomial-time in n conveys no knowledge since Bob can
generate that message himself. These choices can be further
refined, but are reasonable for our current purposes.

So far the messages that Alice sends are deterministic; our
theory of knowledge should also handle the case when Alice uses
randomness to select her message. In this case, the message that
Alice sends is drawn from a probability distribution. To quantify
the amount of knowledge conveyed by such a message, we again
consider the complexity of a Turing machine that can produce
the same distribution of messages as Alice. In fact, instead of
requiring the machine to produce the identical distribution, we
may be content with a machine that samples messages from a
computationally indistinguishable distribution. This leads to the
following informal notion:

“Alice conveys zero knowledge to Bob if Bob can sample
from a distribution of messages that is computationally indis-
tinguishable from the distribution of messages that Alice would
send.”

Shannon’s theory of information is certainly closely related
to our current discussion; briefly, the difference between infor-
mation and knowledge in this context is the latter’s focus on the
computational aspects, i.e. running time and circuit size. Thus,
messages that convey zero information may actually convey
knowledge.

4.2 A Knowledge-Based Notion of Secure
Encryption

As a first case study of our behavioristic notion of knowledge,
we can re-cast the theory of secure encryption in terms of knowl-

4.2. A Knowledge-Based Notion of Secure Encryption 111

edge. (In fact, this was historically the first approach taken by
Goldwasser and Micali.) A good notion for encryption is to
argue that an encrypted message conveys zero knowledge to
an eavesdropper. In other words, we say that an encryption
scheme is secure if the cipertext does not allow the eavesdropper
to compute any new (efficiently computable) function about the
plaintext message with respect to what she could have computed
without the ciphertext message.

The following definition of zero-knowledge encryption1 cap-
tures this very intuition. This definition requires that there exists
a simulator algorithm S which produces a string that is indistin-
guishable from a ciphertext of any message m.

.Definition 111.1 (Zero-Knowledge Encryption). A private-key
encryption scheme (Gen,Enc,Dec) is zero-knowledge encryption
scheme if there exists a p.p.t. simulator algorithm S such that ∀
non uniform p.p.t. D, ∃ a negligible function ε(n), such that ∀m ∈
{0, 1}n it holds that D distinguishes the following distributions
with probability at most ε(n)

• {k← Gen(1n) : Enck(m)}
• {S(1n)}

Note that we can strengthen the definition to require that
the above distributions are identical; we call the resulting notion
perfect zero-knowledge.

A similar definition can be used for public-key encryption;
here we instead that D cannot distinguish the following two
distributions

• {pk, sk← Gen(1n) : pk,Encpk(m)}

• {pk, sk← Gen(1n) : pk, S(pk, 1n)}

As we show below, for all “interesting” encryption schemes
the notion of zero-knowledge encryption is equivalent to the
indistinguishability-based notion of secure encryption. We show
this for the case of private-key encryption, but it should be appre-
ciated that the same equivalence (with essentially the same proof)

1This is a variant of the well-known notion of semanical security.

112 chapter 4. knowledge

holds also for the case of public-key encryption. (Additionally,
the same proof show that perfect zero-knowledge encryption is
equivalent to the notion of perfect secrecy.)

.Theorem 112.2 Let (Gen,Enc,Dec) be an encryption scheme such
that Gen,Enc are both p.p.t, and there exists a polynomial-time machine
M such that for every n, M(n) outputs a messages in {0, 1}n. Then
(Gen,Enc,Dec) is secure if and only if it is zero-knowledge.

Proof. We prove each direction separately.

Security implies ZK. Intuitively, if it were possible to extract
“knowledge” from the encrypted message, then there would
be a way to distinguish between encryptions of two different
messages. More formally, suppose that (Gen,Enc,Dec) is secure.
Consider the following simulator S(1n):

1. Pick a message m ∈ {0, 1}n (recall that by our asumptions,
this can be done in p.p.t.)

2. Pick k← Gen(1n), c← Enck(m).

3. Output c.

It only remains to show that the output of S is indistinguishable
from the encryption of any message. Assume for contradiction
that there exist a n.u. p.p.t. distinguisher D and a polynomial
p(·) such that for infinitely many n, there exist some message m′n
such that D distinguishes

• {k← Gen(1n) : Enck(mn)}

• {S(1n)}

with probability p(n). Since {S(1n)} = {k ← Gen(1n); m′n ←
M(1n) : Enck(m′n)}, it follows that there exists messages mn
and m′n such that their encryptions can be distinguished with
inverse polynomial probability; this contradict the security of
(Gen,Enc,Dec).

4.3. Zero-Knowledge Interactions 113

ZK implies Security. Suppose for the sake of reaching contra-
diction that (Gen,Enc,Dec) is zero-knowledge, but there exists a
n.u. p.p.t. distringuisher D and a polynomial p(n), such that for
infinitely many n there exist messages m1

n and m2
n such that D

distinguishes

• H1
n = {k← Gen(1n) : Enck(m1

n)}

• H2
n = {k← Gen(1n) : Enck(m2

n)}

with probability p(n). Let S denote the zero-knowledge simulator
for (Gen,Enc,Dec), and define the hybrid distribution H3:

• H3
n = {S(1n)}

By the hybrid lemma, D distinguishes between either H1
n and H2

n
or between H2

n and H3
n, with probability 1

2p(n) for infinitely many
n; this is a contradiction. �

4.3 Zero-Knowledge Interactions

So far, we have only worried about an honest Alice who wants to
talk to an honest Bob, in the presence of a malicious Eve. We will
now consider a situation in which neither Alice nor Bob trust
each other.

Suppose Alice (the prover) would like to convince Bob (the
verifier) that a particular string x is in a language L. Since Alice
does not trust Bob, Alice wants to perform this proof in such a
way that Bob learns nothing else except that x ∈ L. In particular,
it should not be possible for Bob to later prove that x ∈ L to
someone else. For instance, it might be useful in a cryptographic
protocol for Alice to show Bob that a number N is the product
of exactly two primes, but without revealing anything about the
two primes.

It seems almost paradoxical to prove a theorem in such a
way that the theorem proven cannot be established subsequently.
However, zero-knowledge proofs can be used to achieve exactly this
property.

Consider the following toy example involving the popular
“Where’s Waldo?” children’s books. Each page is a large compli-
cated illustration, and somewhere in it there is a small picture of

114 chapter 4. knowledge

Waldo, in his sweater and hat; the reader is invited to find him.
Sometimes, you wonder if he is there at all.

The following protocol allows a prover to convince a verifier
that Waldo is in the image without revealing any information
about where he is in the image: Take a large sheet of newsprint,
cut a Waldo-sized hole, and overlap it on the “Where’s waldo”
image, so that Waldo shows through the hole. This shows he
is somewhere in the image, but there is no extra contextual
information to show where.

A slightly more involved example follows. Suppose you want
to prove that two pictures or other objects are distinct without
revealing anything about the distinction. Have the verifier give
the prover one of the two, selected at random. If the two really
are distinct, then the prover can reliably say “this one is object
1”, or “this is object 2”. If they were identical, this would be
impossible.

The key insight in both examples is that the verifier generates
a puzzle related to the original theorem and asks the prover to
solve it. Since the puzzle was generated by the verifier, the verifier
already knows the answer—the only thing that the verifier does
learn is that the puzzle can be solved by the prover, and therefore
the theorem is true.

4.4 Interactive Protocols

To begin the study of zero-knowledge proofs, we must first
formalize the notion of interaction. The first step is to consider an
Interactive Turing Machine. Briefly, an interactive Turing machine
(ITM) is a Turing machine with a read-only input tape, a read-only
auxiliary input tape, a read-only random tape, a read/write work-
tape, a read-only communication tape (for receiving messages)
a write-only communication tape (for sending messages) and
finally an output tape. The content of the input (respectively
auxiliary input) tape of an ITM A is called the input (respectively
auxiliary input) of A and the content of the output tape of A, upon
halting, is called the output of A.

A protocol (A, B) is a pair of ITMs that share communication
tapes so that the (write-only) send-tape of the first ITM is the

4.4. Interactive Protocols 115

(read-only) receive-tape of the second, and vice versa. The com-
putation of such a pair consists of a sequence of rounds 1, 2,
In each round only one ITM is active, and the other is idle. A
round ends with the active machine either halting —in which
case the protocol ends— or by it entering a special idle state. The
string m written on the communication tape in a round is called
the message sent by the active machine to the idle machine.

In this chapter, we consider protocols (A, B) where both A
and B receive the same string as input (but not necessarily as
auxiliary input); this input string is the common input of A and B.
We make use of the following notation for protocol executions.

Executions, transcripts and views. Let MA and MB be vectors
of strings MA = {m1

A, m2
A, ...}, MB = {m1

B, m2
B, ...} and let

x, r1, r2, z1, z2 ∈ {0, 1}∗. We say that the pair

((x, z1, r1, MA), (x, z2, r2, MB))

is an execution of the protocol (A, B) if, running ITM A
on common input x, auxiliary input z1 and random tape
r1 with ITM B on x, z2 and r2, results in mi

A being the
ith message received by A and in mi

B being the ith mes-
sage received by B. We also denote such an execution by
Ar1(x, z1)↔ Br2(x, z2).

In an execution ((x, z1, r1, MA), (x, z2, r2, MB)) = (VA, VB)
of the protocol (A, B), we call VA the view of A (in the ex-
ecution), and VB the view of B. We let viewA[Ar1(x, z1) ↔
Br2(x, z2)] denote A’s view in the execution Ar1(x, z1) ↔
Br2(x, z2) and viewB[Ar1(x, z1)↔ Br2(x, z2)] B’s view in the
same execution. (We occasionally find it convenient refer-
ring to an execution of a protocol (A, B) as a joint view of
(A, B).)

In an execution ((x, z1, r1, MA), (x, z2, r2, MB)), the tuple
(MA, MB) is called the transcript of the execution.

Outputs of executions and views. If e is an execution of a protocol
(A, B) we denote by outX(e) the output of X, where X ∈
{A, B}. Analogously, if v is the view of A, we denote by
out(v) the output of A in v.

116 chapter 4. knowledge

Random executions. We denote by A(x, z1)↔ B(x, z2), the prob-
ability distribution of the random variable obtained by
selecting each bit of r1 (respectively, each bit of r2, and
each bit of r1 and r2) randomly and independently, and
then outputting Ar1(x, z1)↔ Br2(x, z2). The corresponding
probability distributions for view and out are analogously
defined.

Time Complexity of ITMs. We say that an ITM A has time-
complexity t(n), if for every ITM B, every common input
x, every auxiliary inputs za, zb, it holds that A(x, za) always
halts within t(|x|) steps in an interaction with B(x, zb), re-
gardless of the content of A and B’s random tapes). Note
that time complexity is defined as an upperbound on the
running time of A independently of the content of the mes-
sages it receives. In other words, the time complexity of A
is the worst-case running time of A in any interaction.

4.5 Interactive Proofs

With this notation, we start by considering interactive proofs in
which a prover wishes to convince a verifier that a statement is
true (without consideration of the additional property of zero-
knowledge). Roughly speaking, we require the following two
properties from an interactive proof system: it should be possible
for a prover to convince a verifier of a true statment, but it should
not be possible for a malicious prover to convince a verifier of a
false statement.

.Definition 116.1 (Interactive Proof). A pair of interactive ma-
chines (P, V) is an interactive proof system for a language L if V
is a p.p.t. machine and the follwing properties hold.

1. (Completeness) For every x ∈ L, there exists a witness string
y ∈ {0, 1}∗ such that for every auxiliary string z:

Pr [outV [P(x, y)↔ V(x, z)] = 1] = 1

2. (Soundness) There exists some negligible function ε such
that for all x 6∈ L and for all prover algorithms P∗, and all

4.5. Interactive Proofs 117

auxiliary strings z ∈ {0, 1}∗,

Pr [outV [P∗(x)↔ V(x, z)] = 0] > 1− ε(|x|)

Note that the prover in the definition of an interactive proof
need not be efficient. (Looking forward, we shall later consider a
definition which requires the prover to be efficient.)

Note that we do not provide any auxilary input to the “mali-
cious” prover strategy P∗; this is without loss of generality as we
consider any prover strategy; in particular, this prover strategy
could have the auxilary input hard-coded.

Note that we can relax the definition and replace the 1− ε(|x|)
with some constant (e.g., 1

2); more generally we say that an
interactive proof has soundness error s(n) if it satisfies the above
definitiob, but with 1− ε(|x|) replaced by 1− s(n).

The class of languages having an interactive proofs is denoted
IP. It trivially holds that NP ⊂ IP—the prover can simply provide
the NP witness to the verifier, and the verifier checks if it is a
valid witness. Perhaps surprisingly, there are languages that are
not known to be in NP that also have interactive proofs: as shown
by Shamir, every language in PSPACE—i.e., the set of languages
that can be recognized in polynomial space—has an interactive
proof; in fact, IP = PSPACE. Below we provide an example of
an interactive proof for a language that is not known to be in
NP. More precisely, we show an interactive proof for the Graph
Non-isomorphism Language.

An Interactive Proof Graph Non-isomorphism

A graph G = (V, E) consists of a set of vertices V and a set
of edges E which consists of pairs of verticies. Typically, we
use n to denote the number of verticies in a graph, and m to
denote the number of edges. Recall that two graphs G1 =
(V1, E1), G2 = (V2, E2) are isomorphic if there exists a permu-
tation σ over the verticies of V1 such that V2 = {σ(v1) | v1 ∈ V1}
and E2 = {(σ(v1), σ(v2)) | (v1, v2) ∈ E1}. In other words, per-
muting the verticies of G1 and maintaining the permuted edge
relations results in the graph G2. We will often write σ(G1) = G2
to indicate that graphs G1 and G2 are isomorphic via the per-
mutation σ. Similarly, two graphs are non-isomorphic if there

118 chapter 4. knowledge

exists no permutation σ for which σ(G1) = G2. (See Fig. 2 for
examples.)

8

37

1

5

2

6 4 46

2

5

1

7 3

8

Figure 118.2: (a) Two graphs that are isomorphic, (b) Two graphs
that are non-isomorphic. Notice that the highlighted 4-clique has
no corresponding 4-clique in the extreme right graph.

Notice that the language of isomorphic graphs is in NP since
the permutation serves as a witness. Let Lniso be the language of
pairs of graphs (G0, G1) that have the same number of verticies
but are not isomorphic. This language Lniso ∈ coNP and is not
known to be in NP. Consider the following protocol 118.3 which
proves that two graphs are non-isomorphic.

protocol 118.3: Protocol for Graph Non-Isomorphism

Input: x = (G0, G1) where |Gi| = n

V H−→ P The verifier, V(x), chooses a random bit
b ∈ {0, 1}, chooses a random permutation
σ ∈ Sn, computes H ← σ(Gb), and finally
sends H to the prover.

V b′←− P The prover computes a b′ such that H and
Gb′ are isomorphic and sends b′ to the ver-
ifier.

V(x, H, b, b′) The verifier accepts and outputs 1 if b′ = b
and 0 otherwise.
Repeat the procedure |G1| times.

.Proposition 118.4 Protocol 118.3 is an interactive proof for Lniso.

4.5. Interactive Proofs 119

Proof. Completeness follows by inspection: If G1 and G2 are not
isomorphic, then the Prover (who runs in exponential time in
this protocol) will always succeed in finding b′ such that b′ = b.
For soundness, the prover’s chance of succeeding in one iteration
of the basic protocol is 1/2. This is because when G1 and G2
are isomorphic, then H is independent of the bit b. Since each
iteration is independent of all prior iterations, the probability
that a cheating prover succeeds is therefore upper-bounded by
2−n. �

4.5.1 Interactive proofs with Efficient Provers

The Graph Non-isomorphism protocol required an exponential-
time prover. Indeed, a polynomial time prover would imply that
Lniso ∈ NP. In cryptographic applications, we require protocols
in which the prover is efficient. To do so we are required to
restrict our attention to languages in NP; the prover strategy
should be efficient when given a NP-witness y to the statement x
that it attempts to prove. See Appendix B for a formal definition
of NP languages and witness relations.

.Definition 119.5 (Interactive Proof with Efficient Provers). An
interactive proof system (P, V) is said to have an efficient prover
with respect to the witness relation RL if P is p.p.t. and the
completeness condition holds for every y ∈ RL(x).

Note that although we require that the honest prover strategy
P is efficient, the soundness condition still requires that not even
an all powerful prover strategy P∗ can cheat the verifier V. A
more relaxed notion—called an interactive argument considers
only P∗’s that are n.u. p.p.t.

Although we have already shown that the Graph Isomor-
phism Language has an Interactive Proof, we now present a new
protocol which will be useful to us later. Since we want an effi-
cient prover, we provide the prover the witness for the theorem
x ∈ Liso, i.e., we provide the permutation to the prover.

An Interactive Proof for Graph Isomorphism

120 chapter 4. knowledge

protocol 120.6: Protocol for Graph Isomorphism

Input: x = (G0, G1) where |Gi| = n
P’s witness: σ such that σ(G0) = G1

V H←− P The prover chooses a random permutation
π, computes H ← π(G0) and sends H.

V b−→ P The verifier picks a random bit b and sends
it.

V
γ←− P If b = 0, the prover sends π. Otherwise,

the prover sends γ = π · σ−1.
V The verifier outputs 1 if and only if

γ(Gb) = H.
P, V Repeat the procedure |G1| times.

.Proposition 120.7 Protocol 120.6 is an interactive proof for Lniso.

Proof. If the two graphs G1, G2 are isomorphic, then the verifier
always accepts because π(H) = G1 and σ(π(H)) = σ(G1) = G2.
If the graphs are not isomorphic, then no malicious prover can
convince V with probability greater than 1

2 : if G1 and G2 are not
isomorphic, then H can be isomorphic to at most one of them.
Thus, since b is selected at random after H is fixed, then with
probability 1

2 it will be the case that H and Gi are not isomorphic.
This protocol can be repeated many times (provided a fresh H is
generated), to drive the probability of error as low as desired. �

As we shall see, the Graph-Isomorphism protocol is in fact
also zero-knowledge.

4.6 Zero-Knowledge Proofs

In addition to being an interactive proof, the protocol 120.6
also has the property that the verifier “does not learn anything”
beyond the fact that G0 and G1 are isomorphic. In particular,
the verifier does not learn anything about the permutation σ.
As discussed in the introduction, by “did not learn anything,”
we mean that the verifier is not able to perform any extra tasks
after seeing a proof that (G0, G1) ∈ Liso. As with zero-knowledge
encryption, we can formalize this idea by requiring there to be a
simulator algorithm that produces “interactive transcripts” that

4.6. Zero-Knowledge Proofs 121

are identical to the transcripts that the verifier encounters during
the actual execution of the interactive proof protocol.

.Definition 121.1 (Honest Verifier Zero-Knowledge) Let (P, V) be
an efficient interactive proof for the language L ∈ NP with witness
relation RL. (P, V) is said to be honest verifier zero-knowledge if
there exists a p.p.t. simulator S such that for every n.u. p.p.t. distin-
guisher D, there exists a negligible function ε(·) such that for every
x ∈ L, y ∈ RL(x), z ∈ {0, 1}∗, D distinguishes the following distribu-
tions with probability at most ε(n).

• {viewV [P(x, y)↔ V(x, z)]}

• {S(x, z)}

Intuitively, the definition says whatever V “saw” in the interactive
proof could have been generated by V himself by simply running
the algorithm S(x, z). The auxiliary input z to V denotes any a-
priori information V has about x; as such the definition requires
that V does not learn anything “new” (even considering this
a-priori information).

This definition is, however, not entirely satisfactory. It en-
sures that when the verifier V follows the protocol, it gains no
additional information. But what if the verifier is malicious and
uses some other machine V∗. We would still like V to gain no
additional information. To achieve this we modify the definition
to require the existence of a simulator S for every, possibly ma-
licious, efficient verifier strategy V∗. For technical reasons, we
additionally slighty weaken the requirement on the simulator
S and only require it to be an expected p.p.t—namely a machine
whose expected running-time (where expectation is taken only over
the internal randomness of the machine) is polynomial.2

.Definition 121.2 (Zero-knowledge) Let (P, V) be an efficient inter-
active proof for the language L ∈ NP with witness relation RL. (P, V)
is said to be zero-knowledge if for every p.p.t. adversary V∗ there
exists an expected p.p.t. simulator S such that for every n.u. p.p.t.

2In essence, this relaxation will greatly facilitate the construction of zero-
knowledge protocols

122 chapter 4. knowledge

distinguisher D, there exists a negligible function ε(·) such that for
every x ∈ L, y ∈ RL(x), z ∈ {0, 1}∗, D distinguishes the following
distributions with probability at most ε(n).

• {viewV∗ [P(x, y)↔ V∗(x, z)]}

• {S(x, z)}

Note that here only consider p.p.t. adversaries V∗ (as opposed
to non-uniform p.p.t. adversaries). This only makes our definition
stronger: V∗ can anyway receive any non-uniform “advice” as its
auxiliary input; in contrast, we can now require that the simulator
S is only p.p.t. but is also given the auxiliary input of V∗. Thus,
our definition says that even if V∗ is non-uniform, the simulator
only needs to get the same non-uniform advice to produce its
transcript.

In the case of zero-knowledge encryption, we can strengthen
the definition to require the above two distributions to be identi-
cally distributed; in this case the interactive proof is called perfect
zero-knowledge.

An alternate formalization more directly considers what V∗

“can do”, instead of what V∗ “sees”. That is, we require that
whatever V∗ can do after the interactions, V∗ could have already
done it before it. This is formalized by simply exchanging viewV∗

to outV∗ in the above definition. We leave it as an exercise to the
reader to verify that the definitions are equivalent.

We can now show that the Graph-isomorphism protocol is
zero-knowledge.

.Theorem 122.3 Protocol 120.6 is a perfect zero-knowledge interactive
proof for the Graph-isomorphism language (for some canonical witness
relation).

Proof. We have already demonstrated completeness and sound-
ness in Proposition 120.7. We show how to construct an expected
p.p.t. simulator for every p.p.t. verifier V∗. S(x, z) makes use of
V∗ and proceeds as described in Algorithm 123.4. For simplicity,
we here only provide a simulator for a single iteration of the
Graph Isomorphism protocol; the same technique easily extends
to the iterated version of the protocol as well. In fact, as we show

4.6. Zero-Knowledge Proofs 123

in §7.2.1, this holds for every zero-knowledge protocol: namely,
the sequential repetition of any zero-knowledge protocol is still
zero-knowledge.

123.4: Simulator for Graph Isomorphism

1. Randomly pick b′ ← {0, 1}, π ← Sn
2. Compute H ← π(Gb′).
3. Emulate the execution of V∗(x, z) by feeding it H and truly

random bits as its random coins; let b denote the response
of V∗.

4. If b = b′ then output the view of V∗—i.e., the messages
H, π, and the random coins it was feed. Otherwise, restart
the emulation of V∗ and repeat the procedure.

We need to show the following properties:

• the expected running time of S is polynomial,

• the output distribution of S is correctly distributed.

Towards this goal, we start with the following lemma.

.Lemma 123.5 In the execution of S(x, z), H is identically distributed
to π(G0), and Pr[b′ = b] = 1

2 .

Proof. Since G0 is an isomorphic copy of G1, the distribution
of π(G0) and π(G1) is the same for random π. Thus, the distri-
bution of H is independent of b′. In particular, H has the same
distribution as π(G0).

Furthermore, since V∗ takes only H as input, its output, b, is
also independent of b′. As b′ is chosen at random from {0, 1}, it
follows that Pr[b′ = b] = 1

2 . �
From the lemma, we directly have that S has probability 1

2 of
succeeding in each trial. It follows that the expected number of
trials before terminating is 2. Since each round takes polynomial
time, S runs in expected polynomial time.

Also from the lemma, H has the same distribuion as π(G0).
Thus, if we were always able to output the corresponding π,
then the output distribution of S would be the same as in the

124 chapter 4. knowledge

actual protocol. However, we only output H if b′ = b. Fortunetly,
since H is independent from b′, this does not change the output
distribution. �

4.7 Zero-knowledge proofs for NP

We now show that every language in NP has a zero-knowledge
proof system assuming the existence of a one-way permutation.
(In fact, using a more complicated proof, it can be shown that
general one-way functions suffice.)

.Theorem 124.1 If one-way permutations exist, then every language
in NP has a zero-knowledge proof.

Proof. Our proof proceeds in two steps:

Step 1: Show a ZK proof (P′, V ′) (with efficient provers) for an
NP-complete language; the particular language we will
consider is Graph 3 Coloring—namely the language of all
graphs whose vertices can be colored using only three
colors 1, 2, 3 such that no two connected vertices have the
same color.

Step 2: To get a zero-knowledge proof (P, V) for any NP lan-
guage, proceed as follows: Given a language L, instance
x and witness y, both P and V reduce x into an instance
of a Graph 3-coloring x′; this can be done using Cook’s
reduction (the reduction is deterministic which means that
both P and V will reach the same instance x). Additionally,
Cook’s reduction can be applied to the witness y yielding
a witness y′ for the instance x′. The parties then execute
protocol (P, V) on common input x′, and the prover addi-
tionally uses y′ as its auxiliary input.

It is easy to verify that the above protocol is a zero-knowledge
proof if we assume that (P′, V ′) is a zero-knowledge proof for
Graph 3-coloring. Thus it remains to show a zero-knowledge
proof for Graph 3-coloring.

To give some intuition, we start by proving a “physical” vari-
ant of the protocol. Given a graph G = (V, E), where V is the

4.7. Zero-knowledge proofs for NP 125

set of verticies, and E is the set of edges, and a coloring C of
the vertices V, the prover picks a random permutation π over
the colors {1, 2, 3} and physically colors the graph G with the
permuted colors. It then covers each vertices with individual
cups. The verifier is next asked to pick a random edge, and
the prover is supposed to remove the two cups corresponding
to the vertices of the edge, to show that the two vertices have
different colors. If they don’t the prover has been caught cheat-
ing, otherwise the interaction is repeated (each time letting the
prover pick a new random permutation π.) As we shall see, if
the procedure is repeated O(n|E|), where |E| is the number of
edges, then the soundness error will be 2−n. Additionally, in
each round of the interaction, the verifier only learns something
he knew before—two random (but different) colors. See Figure 2

for an illustration of the protocol.

1

5

37

8 2

46

Alice Bob
pick a color perm

color the graph

pick a random edge
reveals chosen edge

check colors

place cups over nodes

Figure 125.2: 3-Coloring

To be able to digitally implement the above protocol, we need
to have a way to implement the “cups”. Intuitively, we require
two properties from the cups: a) the verifier should not be able to
see what is under the cup—i.e., the cups should be hiding, b) the
prover should not be able to change what is under a cup—i.e, the
cups should be binding. The cryptographic notion that achieves
both of these properties is a commitment scheme.

126 chapter 4. knowledge

4.7.1 Commitment Schemes

Commitment schemes are usually referred to as the digital equiva-
lent of a “physical” locked box. They consist of two phases:

Commit phase : Sender puts a value v in a locked box.

Reveal phase : Sender unlocks the box and reveals v.

We require that before the reveal phase the value v should remain
hidden: this property is called hiding. Additionally, during the
reveal phase, there should only exists a signle value that the
commitment can be revealed to: this is called binding.

We provide a formalization of single-messages commitments
where both the commit and the reveal phases only consist of a
single message sent from the committer to the receiver.

.Definition 126.3 (Commitment). A polynomial-time machine
Com is called a commitment scheme it there exists some polyno-
mial `(·) such that the following two properties hold:

1. (Binding): For all n ∈ N and all v0, v1 ∈ {0, 1}n, r0, r1 ∈
{0, 1}l(n) it holds that Com(v0, r0) 6= Com(v1, r1).

2. (Hiding): For every n.u. p.p.t. distinguisher D, there exists
a negligible function ε such that for every n ∈ N, v0, v1 ∈
{0, 1}n, D distinguishes the following distributions with
probability at most ε(n).

• {r ← {0, 1}l(n) : Com(v0, r)}
• {r ← {0, 1}l(n) : Com(v1, r)}

Just as the definition of multi-message secure encryption,
we can define a notion of “multi-value security” for commit-
ments. It directly follows by a simple hybrid argument that any
commitment scheme is multi-value secure.

.Theorem 126.4 If one-way permutations exist, then commitment schemes
exist.

Proof. We construct a single-bit commitment scheme using a
one-way permutation. A full-fledge commitment scheme to a
value v ∈ {0, 1}n can be obtained by individually committing to

4.7. Zero-knowledge proofs for NP 127

each bit of v; the security of the full-fledged construction follows
as a simple application of the hybrid lemma (show this!).

Let f be a one-way permutation with a hard-core predicate
h. Let Com(b, r) = f (r), b⊕ h(r). It directly follows from the con-
struction that Com is binding. Hiding follows using identically
the same proof as in the proof of Theorem 104.4. �

4.7.2 A Zero-knowledge Proof for Graph 3-Coloring

We can now replace the physical cups with commitments in the
protocol for Graph 3-coloring described above. Consider the
following protocol.

protocol 127.5: Zero-Knowledge for Graph 3-Coloring

Common input: G = (V, E) where |V| = n, |E| = m
Prover input: Witness y = c0, c1, . . . , cm

P→ V Let π be a random permutation over {1, 2, 3}.
For each i ∈ [1, n], the prover sends a commit-
ment to the color π(ci) = c′i.

V → P The verifier sends a randomly chosen edge
(i, j) ∈ E

P→ V The prover opens commitments c′i and c′j
V V accepts the proof if and only if c′i 6= c′j
P, V Repeat the procedure n|E| times.

.Proposition 127.6 Protocol 127.5 is a zero-knowledge protocol for the
language of 3-colorable graphs.

Proof. The completeness follows by inspection. If G is not 3 col-
orable, then for each coloring c1, . . . , cm, there exists at least one
edge which has the same colors on both endpoints. Thus, sound-
ness follows by the binding property of the commitment scheme:
In each iteration, a cheating prover is caught with probability
1/|E|. Since the protocol is repeated |E|2 times, the probability
of successfully cheating in all rounds is(

1− 1
|E|

)n|E|
≈ e−n

128 chapter 4. knowledge

For the zero-knowledge property, the prover only “reveals”
2 random colors in each iteration. The hiding property of the
commitment scheme intuitively guarantees that “everything else”
is hidden.

To prove this formally requires more care. We construct the
simulator in a similar fashion to the graph isomorphism simula-
tor. Again, for simplicity, we here only provide a simulator for a
single iteration of the Graph 3-Coloring protocol. As previously
mentioned, this is without loss of generality (see §7.2.1).

128.7: Simulator for Graph 3-Coloring

1. Pick a random edge (i′, j′) ∈ E and pick random colors
c′i, c′j ∈ {1, 2, 3}, c′i 6= c′j. Let c′k = 1 for all other k ∈ [m] \
{i′, j′}

2. Just as the honest prover, commit to c′i for all i and feed
the commitments to V∗(x, z) (while also providing it truly
random bits as its random coins).

3. Let (i, j) denote the answer from V∗.
4. If (i, j) = (i′, j′) reveal the two colors, and output the view

of V∗. Otherwise, restart the process from the first step, but
at most n|E| times.

5. If, after n|E| repetitions the simulation has not been sucess-
ful, output fail.

By construction it directly follows that S is a p.p.t. We pro-
ceed to show that the simulator’s output distribution is correctly
distributed.

.Proposition 128.8 For every n.u. p.p.t. distinguisher D, there exists
a negligible function ε(·) such that for every x ∈ L, y ∈ RL(x), z ∈
{0, 1}∗, D distinguishes the following distributions with probability at
most ε(n).

— {viewV∗ [P(x, y)↔ V∗(x, z)]}

— {S(x, z)}

Assume for contradiction that there exists some n.u. distinguisher
D and a polynomial p(·), such that for infinitely many x ∈ L, y ∈
RL(x), z ∈ {0, 1}∗, D distinguishes

4.7. Zero-knowledge proofs for NP 129

• {viewV∗ [P(x, y)↔ V∗(x, z)]}

• {S(x, z)}

with probability p(|x|). First consider the following hybrid simu-
lator S′ that receives the real witness y = c1, . . . , cn (just like the
Prover): S′ proceeds exactly as S, except that instead of picking
the colors c′i and c′j at random, it picks π at random and lets
c′i = π(ci) and c′j = π(cj) (just as the prover). It directly follows
that {S(x, z)} and {S′(x, z, y)} are identically distributed.

Next, consider the following hybrid simulator S′′: S′′ pro-
ceeds just as S, but just as the real prover commits to a random
permutation of the coloring given in the witness y; except for
that it does everything just like S—i.e., it picks i′, j′ at random
and restarts if (i, j) 6= (i′, j′). If we assume that S′ never outputs
fail, then clearly the following distributions are identical.

• {viewV∗ [P(x, y)↔ V∗(x, z)]}

• {S′′(x, z, y)}

However, as i, j and i′, j′ are independently chosen, S′ fails with
probability (

1− 1
|E|

)n|E|
≈ e−n

It follows that

• {viewV∗ [P(x, y)↔ V∗(x, z)]}

• {S′′(x, z, y)}

can be distinguished with probability at most O(e−n) < 1
2p(n) .

By the hybrid lemma, D thus distinguishes {S′(x, z, y)} and
{S′′(x, z)} with probability 1

2p(n) .
Next consider a sequence S0, S1, . . . , S2n|E| of hybrid simula-

tors where Sk proceeds just as S′ in the first k iterations, and like
S′′ in the remaining ones. Note that {S0(x, z, y)} is identically
distributed to {S′′(x, z, y)} and {S2n|E|(x, z, y)} is identically dis-
tributed to {S′(x, z, y)}. By the hybrid lemma, there exist some k
such that D distinguishes between

130 chapter 4. knowledge

• {Sk(x, z, y)}

• {Sk+1(x, z, y)}

with probability 1
2n|E|p(n) . (Recall that the only difference be-

tween Sk and Sk+1 is that in the k + 1th iteration, Sk commits to
1’s, whereas Sk+1 commits to the real witness.) Consider, next,
another sequence of 6|E| hybrid simulators S̃0, . . . , S̃6|E| where
S̃e proceeds just as Sk if in the k + 1th iteration the index, of the
edge (i′, j′) and permutation π, is smaller than e; otherwise, it
proceeds just as Sk+1. Again, note that {S̃0(x, z, y)} is identically
distributed to {Sk+1(x, z, y)} and {S̃6|E|(x, z, y)} is identically dis-
tributed to {Sk(x, z, y)}. By the hybrid lemma there exists some
e = (ĩ, j̃, π̃) such that D distinguishes

• {S̃e(x, z, y)}

• {S̃e+1(x, z, y)}

with probability 1
12n|E|2 p(n) . Note that the only difference between

{S̃e(x, z, y)} and {S̃e+1(x, z, y)} is that in {S̃e+1(x, z, y)}, if in the
kth iteration (i, j, π) = (ĩ, j̃, π̃), then V∗ is feed commitments
to π(ck) for all k 6∈ {i, j}, whereas in {S̃e+1(x, z, y)}, it is feed
commitments to 1. Since S̃e is computable in n.u. p.p.t, by
closure under efficient operations, this contradicts the (multi-
value) computational hiding property of the commitments. �

4.8 Proof of knowledge

4.9 Applications of Zero-knowledge

One of the most basic applications of zero-knowledge protocols
are for secure identification to a server. A typical approach to
identification is for a server and a user to share a secret password;
the user sends the password to the server to identify herself. This
approach has one major drawback: an adversary who intercepts
this message can impersonate the user by simply “replaying” the
password to another login session.

4.9. Applications of Zero-knowledge 131

It would be much better if the user could prove identity in
such a way that a passive adversary cannot subsequently imper-
sonate the user. A slightly better approach might be to use a
signature. Consider the following protocol in which the User
and Server share a signature verification key V to which the User
knows the secret signing key S.

1. The User sends the Server the “login name.”

2. The server sends the User the string σ=“Server name, r”
where r is a randomly chosen value.

3. The user responds by signing the message σ using the
signing key S.

Proving Your Identity without Leaving a Trace

In the above protocol, the “User” is trying to prove to “Server”
that she holds the private key S corresponding to a public key
V; r is a nonce chosen at random from {0, 1}n. We are implicitly
assuming that the signature scheme resists chosen-plaintext at-
tacks. Constraining the text to be signed in some way (requiring
it to start with “server”) helps.

This protocol has a subtle consequence. The server can prove
that the user with public key V logged in, since the server has,
and can keep, the signed message σ = {“Server name”, r}.
This property is sometimes undesirable. Imagine that the user is
accessing a politically sensitive website. With physical keys, there
is no way to prove that a key has been used. Here we investigate
how this property can be implemented with cryptography.

In fact, a zero-knowledge protocol can solve this problem.
Imagine that instead of sending a signature of the message, the
User simply proves in zero-knowledge that it knows the key
S corresponding to V. Certainly such a statement is in an NP
language, and therefore the prior protocols can work. Moreover,
the server now has no reliable way of proving to another party
that the user logged in. In particular, no one would believe a
server who claimed as such because the server could have easily
created the “proof transcript” by itself by running the Simulator

132 chapter 4. knowledge

algorithm. In this way, zero-knowledge protocols provide a
tangibly new property that may not exist with simple “challenge-
response” identity protocols.

Chapter 5

Authentication

5.1 Message Authentication

Suppose Bob receives a message addressed from Alice. How
does Bob ensure that the message received is the same as the
message sent by Alice? For example, if the message was actually
sent by Alice, how does Bob ensure that the message was not
tampered with by any malicious intermediary?

In day-to-day life, we use signatures or other physical meth-
ods to solve the forementioned problem. Historically, govern-
ments have used elaborate and hard-to-replicate seals, water-
marks, special papers, holograms, etc. to address this problem.
In particular, these techniques help ensure that only, say, the phys-
ical currency issued by the government is accepted as money. All
of these techniques rely on the physical difficulty of “forging” an
official “signature.”

In this chapter, we will discuss digital methods which make
it difficult to “forge” a “signature.” Just as with encryption, there
are two different approaches to the problem based on whether
private keys are allowed: message authentication codes and digital
signatures. Message Authentication Codes (MACs) are used in
the private key setting. Only people who know the secret key
can check if a message is valid. Digital Signatures extend this
idea to the public key setting. Anyone who knows the public key
of Alice can verify a signature issued by Alice, and only those
who know the secret key can issue signatures.

133

134 chapter 5. authentication

5.2 Message Authentication Codes

.Definition 134.1 (MAC) (Gen,Tag,Ver) is a message authentica-
tion code (MAC) over the message space {Mn}n if the following
hold:

• Gen is a p.p.t. algorithm that returns a key k← Gen(1n).

• Tag is a p.p.t. algorithm that on input key k and message m
outputs a tag σ← Tagk(m).

• Ver is a deterministic polynomial-time algorithm that on input k,
m and σ outputs “accept” or “reject”.

• For all n ∈N, for all m ∈ Mn,

Pr[k← Gen(1n) : Verk(m,Tagk(m)) = “accept”] = 1

The above definition requires that verification algorithms always
correctly “accepts” a valid signature.

The goal of an adversary is to forge a MAC. In this case,
the adversary is said to forge a MAC if it is able to construct
a tag σ′ such that it is a valid signature for some message. We
could consider many different adversaries with varying powers
depending on whether the adversary has access to signed mes-
sages; whether the adversary has access to a signing oracle; and
whether the adversary can pick the message to be forged. The
strongest adversary is the one who has oracle access to Tag and
is allowed to forge any chosen message.

.Definition 134.2 (Security of a MAC) A MAC (Gen,Tag,Ver) is
secure if for all non-uniform p.p.t. adversaries A, there exists a negligi-
ble function ε(n) such that for all n,

Pr[k← Gen(1n); m, σ← ATagk(·)(1n) :
A did not query m ∧ Verk(m, σ) = “accept”] ≤ ε(n)

We now show a construction of a MAC using pseudorandom
functions.
protocol 134.3: MAC Scheme

Let F = { fs} be a family of pseudorandom functions such
that fs : {0, 1}|s| → {0, 1}|s|.

5.3. Digital Signature Schemes 135

Gen(1n): k← {0, 1}n

Tagk(m): Output fk(m)

Verk(m, σ): Ouptut “accept” if and only if fk(m) = σ.

.Theorem 135.4 If there exists a pseudorandom function, then the
above scheme is a Message Authentication Code over the message space
{0, 1}n.

Proof. (Sketch) Consider the above scheme when a random func-
tion RF is used instead of the pseudorandom function F. In this
case, A succeeds with a probability at most 2−n, since A only
wins if A is able to guess the n bit random string which is the
output of RFk(m) for some new message m. From the security
property of a pseudorandom function, there is no non uniform
p.p.t. distinguisher which can distinguish the output of F and
RF with a non negligible probability. Hence, we conclude that
(Gen,Tag,Ver) is secure. �

5.3 Digital Signature Schemes

With message authentication codes, both the signer and veri-
fier need to share a secret key. In contrast, digital signatures
mirror real-life signatures in that anyone who knows Alice (but
not necessarily her secrets) can verify a signature generated by
Alice. Moreover, digital signatures possess the property of non-
repudiability, i.e., if Alice signs a message and sends it to Bob,
then Bob can prove to a third party (who also knows Alice) the
validity of the signature. Hence, digital signatures can be used
as certificates in a public key infrastructure.

.Definition 135.1 (Digital Signatures) (Gen, Sign,Ver) is a digital
signature scheme over the message space {Mn}n if

• Gen(1n) is a p.p.t. which on input n outputs a public key pk and
a secret key sk: pk, sk← Gen(1n).

• Sign is a p.p.t. algorithm which on input a secret key sk and
message m outputs a signature σ: σ← Signsk(m).

136 chapter 5. authentication

• Ver is a deterministic p.p.t. algorithm which on input a public
key pk, a message m and a signature σ returns either “accept”
or “reject”.

• For all n ∈N, for all m ∈ Mn,

Pr[pk, sk← Gen(1n) : Verpk(m,Signsk(m)) = “accept”] = 1

The security of a digital signature can be defined in terms
very similar to the security of a MAC. The adversary can make
a polynomial number of queries to a signing oracle. It is not
considerd a forgery if the adversary A produces a signature on
a message m on which it has queried the signing oracle. Note
that by definition of a public key infrastructure, the adversary
has free oracle access to the verification algorithm Verpk.

.Definition 136.2 (Security of Digital Signatures). (Gen,Sign,Ver)
is secure if for all non-uniform p.p.t. adversaries A, there exists a
negligible function ε(n) such that ∀n ∈N,

Pr[pk, sk← Gen(1n); m, σ← ASignsk(·)(1n) :
A did not query m ∧ Verpk(m, σ) = “accept”] ≤ ε(n)

In contrast, a digital signature scheme is said to be one-time
secure if Definition 136.2 is satisfied under the constraint that the
adversary A is only allowed to query the signing oracle once. In
general, however, we need a digital signature scheme to be many-
message secure. The construction of the one-time secure scheme,
however, gives insight into the more general construction.

5.4 A One-Time Signature Scheme for {0, 1}n

To produce a many-message secure digital signature scheme,
we first describe a digital signature scheme and prove that it is
one-time secure for n-bit messages. We then extend the scheme
to handle arbitrarily long messages. Finally, we take that scheme
and show how to make it many-message secure.

Our one-time secure digital signature scheme is a triple of
algorithms (Gen,Sign,Ver). Gen produces a secret key consisting

5.4. A One-Time Signature Scheme for {0, 1}n
137

of 2n random elements and a public key consisting of the image
of the same 2n elements under a one-way function f .

protocol 137.1: One-Time Digital Signature Scheme

Gen(1n): For i = 1 to n, and b = 0, 1, pick xi
b ← Un. Output the

keys:

sk =
(x1

0
x1

1

x2
0

x2
1

· · · xn
0

xn
1

)
pk =

(f (x1
0)

f (x1
1)

f (x2
0)

f (x2
1)
· · · f (xn

0)
f (xn

1)

)
Signsk(m): For i = 1 to n, σi ← xi

mi
. Output σ = (σ1, . . . , σn).

Verpk(σ, m): Output accept if and only if f (σi) = f (xi
mi
) for all

i ∈ [1, n].

For example, to sign the message m = 010, Signsk(m) returns
x1

0, x2
1, x3

0. From these definitions, it is immediately clear that
(Gen,Sign,Ver) is a digital signature scheme. However, this sig-
nature scheme is not many-message secure because after two
signature queries (on say, the message 0 . . . 0 and 1 . . . 1), it is
possible to forge a signature on any message.

Nonetheless, the scheme is one-time secure. The intuition
behind the proof is as follows. If after one signature query on
message m, adversary A produces a pair m′, σ′ that satisfies
Versk(m′, σ′) = accept and m 6= m′, then A must be able to invert
f on a new point. Thus A has broken the one-way function f .

.Theorem 137.2 If f is a one-way function, then (Gen,Sign,Ver) is
one-time secure.

Proof. By contradiction. Suppose f is a one-way function, and sup-
pose we are given an adversary A that succeeds with probability
ε(n) in breaking the one-time signature scheme. We construct a
new adversary B that inverts f with probability ε(n)

poly(n) .
B is required to invert a one-way function f , so it is given a

string y and access to f , and needs to find f−1(y). The intuition
behind the construction of B is that A on a given instance of

138 chapter 5. authentication

(Gen, Sign,Ver) will produce at least one value in its output that
is the inverse of f (xi

j) for some xi
j not known to A. Thus, if

B creates an instance of (Gen, Sign,Ver) and replaces one of the
f (xi

j) with y, then there is some non-negligible probability that
A will succeed in inverting it, thereby inverting the one-way
function.

Let m and m′ be the two messages chosen by A (m is A’s
request to the signing oracle, and m′ is in A’s output). If m and
m′ were always going to differ in a given position, then it would
be easy to decide where to put y. Instead, B generates an instance
of (Gen, Sign,Ver) using f and replaces one of the values in pk
with y. With some probability, A will choose a pair m, m′ that
differ in the position B chose for y. B proceeds as follows:

• Pick a random i ∈ {1, . . . , n} and c ∈ {0, 1}

• Generate pk, sk using f and replace f (xi
c) with y

• Internally run m′, σ′ ← A(pk, 1n)

– A may make a query m to the signing oracle. B an-
swers this query if mi is 1− c, and otherwise aborts
(since B does not know the inverse of y)

• if m′i = c, output σ′i , and otherwise output ⊥

To find the probability that B is successful, first consider the
probability that B aborts while running A internally; this can only
occur if A’s query m contains c in the ith bit, so the probability is
1
2 . This probability follows because B’s choice of c is independent
of A’s choice of m (A cannot determine where B put y, since all
the elements of pk, including y, are the result of applications of f
to a random value). The probability that B chose a bit that differs
between m and m′ is greater than 1

n (since there must be at least
one such bit), and A succeeds with probability ε.

Thus B returns f−1(y) = σ′i and succeeds with probability
greater than ε

2n . The security of f implies that ε(n) must be neg-
ligible, which implies that (Gen, Sign,Ver) is one-time secure. �

Now, we would like to sign longer messages with the same
length key. To do so, we will need a new tool: collision-resistant
hash functions.

5.5. Collision-Resistant Hash Functions 139

5.5 Collision-Resistant Hash Functions

Intuitively, a hash function is a function h(x) = y such that the
representation of y is smaller than the representation of x, so
h compresses x. The output of hash function h on a value x
is often called the hash of x. Hash functions have a number of
useful applications in data structures. For example, the Java
programming language provides a built-in method that maps
any string to a number in [0, 232). The following simple program
computes the hash for a given string.

public class Hash {

public void main(String args[]) {

System.out.println(args[0].hashCode());

}

}

By inspeciting the Java library, one can see that when run on
a string s, the hashCode function computes and returns the value

T = ∑
i

s[i] · 31n−i

where n is the length of the string and s[i] is the ith character
of s. This function has a number of positive qualities: it is easy
to compute, and it is n-wise independent on strings of length n.
Thus, when used to store strings in a hash table, it performs very
well.

For a hash function to be cryptographically useful, however,
we require that it be hard to find two elements x and x′ such that
h(x) = h(x′). Such a pair is called a collision, and hash functions
for which it is hard to find collisions are said to satisfy collision
resistance or are said to be collision-resistant. Before we formalize
collision resistance, we should note why it is useful: rather than
signing a message m, we will sign the hash of m. Then even if an
adversary A can find another signature σ on some bit string y, A
will not be able to find any x such that h(x) = y, so A will not
be able to find a message that has signature σ. Further, given the
signature of some message m, A will not be able to find an m′

140 chapter 5. authentication

that has h(m) = h(m′) (if A could find such an m′, then m and
m′ would have the same signature).

With this in mind, it is easy to see that the Java hash func-
tion does not work well as a cryptographic hash function. For
example, it is very easy to change the last two digits of a string
to make a collision. (This is because the contribution of the last
two symbols to the output is 31 ∗ s[n− 1] + s[n]. One can easily
find two pairs of symbols which contribute the same value here,
and therefore when pre-pended with the same prefix, result in
the same hash.)

5.5.1 A Family of Collision-Resistant Hash Functions

It is not possible to guarantee collision resistance against a non-
uniform adversary for a single hash function h: since h com-
presses its input, there certainly exist two inputs x and x′ that
comprise a collision. Thus, a non-uniform adversary can have x
and x′ hard-wired into their circuits. To get around this issue,
we must introduce a family of collision-resistant hash functions.

.Definition 140.1 A set of functions H = {hi : Di → Ri}i∈I is a
family of collision-resistant hash functions (CRH) if:

— (ease of sampling) Gen runs in p.p.t: Gen(1n) ∈ I

— (compression) |Ri| < |Di|

— (ease of evaluation) Given x, i ∈ I, the computation of hi(x) can
be done in p.p.t.

— (collision resistance) for all non-uniform p.p.t. A, there exists a
negligible ε such that ∀n ∈N,

Pr[i← Gen(1n); x, x′ ← A(1n, i) : hi(x) = hi(x′) ∧ x 6= x′]

is less than ε(n).

Note that compression is a relatively weak property and does
not even guarantee that the output is compressed by one bit. In
practice, we often require that |h(x)| < |x|

2 . Also note that if h is
collision-resistant, then h is one-way.1

1The question of how to construct a CRH from a one-way permutation,
however, is still open. There is a weaker kind of hash function: the universal

5.5. Collision-Resistant Hash Functions 141

5.5.2 Attacks on CRHFs

Collision-resistance is a stronger property than one-wayness, so
finding an attack on a collision-resistant hash functions is easier
than finding an attack on a one-way function. We now consider
some possible attacks.

Enumeration. If |Di| = 2d, |Ri| = 2n, and x, x′ are chosen at
random, what is the probability of a collision between h(x) and
h(x′)?

In order to analyze this situation, we must count the number
of ways that a collision can occur. Let py be the probability that
h maps a element from the domain into y ∈ Ri. The probability
of a collision at y is therefore p2

y. Since a collision can occur at
either y1 or y2, etc., the probability of a collision can be written
as

Pr[collision] = ∑
y∈Ri

p2
y

Since ∑y∈Ri
py = 1, by the Cauchy-Schwarz Inequality 189.9, we

have that

∑
y∈Ri

p2
y >

1
|Ri|

The probability that x and x′ are not identical is 1
|Di | . Com-

bining these two shows that the total probability of a collision
is greater than 1

2n − 1
2d . In other words, enumeration requires

searching most of the range to find a collision.

Birthday attack. Instead of enumerating pairs of values, con-
sider a set of random values x1, . . . , xt. Evaluate h on each xi and
look for a collision between any pair xi and xi′ . By the linearity
of expectations, the expected number of collisions is the number
of pairs multiplied by the probability that a random pair collides.
This probability is (

t
2

)(
1
|Ri|

)
≈ t2

|Ri|
one-way hash function (UOWF). A UOWF satisfies the property that it is hard
to find a collision for a particular message; a UOWF can be constructed from a
one-way permutation.

142 chapter 5. authentication

so O(
√
|Ri|) = O(2n/2) samples are needed to find a collision

with good probability. In other words, the birthday attack only
requires the attacker to do computation on the order of the square
root of the size of the output space.2 This attack is much more
efficient than the best known attacks on one-way functions, since
those attacks require enumeration.

Now, we would like to show that, given some standard cryp-
tographic assumptions, we can produce a CRH that compresses
by one bit. Given such a CRH, we can then construct a CRH that
compresses more.3

protocol 142.2: Collision Resistant Hash Function

Gen(1n): Outputs a triple (g, p, y) such that p is an n-bit prime,
g is a generator for Z∗p, and y is a random element in Z∗p.

hp,g,y(x, b): On input an n-bit string x and bit b, output

hp,g,y(x, b) = ybgx mod p

.Theorem 142.3 Under the Discrete Logarithm assumption, construc-
tion 142.2 is a collision-resistant hash function that compresses by 1
bit.

Proof. Notice that both Gen and h are efficiently computable, and
h compresses by one bit (since the input is in Z∗p × {0, 1} and
the output is in Z∗p). We need to prove that if we could find a
collision, then we could also find the discrete logarithm of y.

To do so, suppose that A finds a collision with non-negligible
probability ε. We construct a B that finds the discrete logarithm
also with probability ε.

2This attack gets its name from the birthday paradox, which uses a similar
analysis to show that with 23 randomly chosen people, the probability of two
of them having the same birthday is greater than 50%.

3Suppose that h is a hash function that compresses by one bit. Note that
the naı̈ve algorithm that applies h k times to an n + k bit string is not secure,
although it compresses by more than 1 bit, because in this case m and h(m)
both hash to the same value.

5.5. Collision-Resistant Hash Functions 143

Note first that if hi(x, b) = hi(x′, b), then it follows that

ybgx mod p = ybgx′ mod p

which implies that gx mod p = gx′ mod p and x = x′.
Therefore, for a collision h(x, b) = h(x′, b′) to occur, it holds

that b 6= b′. Without loss of generality, assume that b = 0. Then,

gx = ygx′ mod p

which implies that

y = gx−x′ mod p.

Therefore, B(p, g, y) can compute the discrete logarithm of y by
doing the following: call A(p, g, y) → (x, b), (x′, b′). If b = 0,
then B returns x− x′, and otherwise it returns x′ − x. �

Thus we have constructed a CRH that compresses by one
bit. Note further that this reduction is actually an algorithm for
computing the discrete logarithm that is better than brute force:
since the Birthday Attack on a CRH only requires searching
2k/2 keys rather than 2k, the same attack works on the discrete
logarithm by applying the above algorithm each time. Of course,
there are much better (even deterministic) attacks on the discrete
logarithm problem.4

5.5.3 Multiple-bit Compression

Given a CRHF function that compresses by one bit, it is possible
to construct a CRHF function that compresses by polynomially-
many bits. The idea is to apply the simple one-bit function
repeatedly.

4Note that there is also a way to construct a CRH from the Factoring
assumption:

hN,y(x, b) = ybx2 mod N

Here, however, there is a trivial collision if we do not restrict the domain : x
and −x map to the same value. For instance, we might take only the first half
of the values in Z∗p.

144 chapter 5. authentication

5.6 A One-Time Digital Signature Scheme for
{0, 1}∗

We now use a family of CRHFs to construct a one-time signature
scheme for messages in {0, 1}∗. Digital signature schemes that
operate on the hash of a message are said to be in the hash-and-
sign paradigm.

.Theorem 144.1 If there exists a CRH from {0, 1}∗ −→ {0, 1}n and
there exists a one-way function (OWF), then there exists a one-time
secure digital signature scheme for {0, 1}∗.

We define a new one-time secure digital signature scheme
(Gen′, Sign′,Ver′) for {0, 1}∗ by

protocol 144.2: One-time Digital Signature for {0, 1}∗

Gen′(1n): Run the generator (pk, sk)← GenSig(1n) and sampling
function i ← GenCRH(1n). Output pk′ = (pk, i) and sk′ =
(sk, i).

Sign′sk(m): Sign the hash of message m: ouptut Signsk(hi(m)).

Ver′pk(σ, m) : Verify σ on the hash of m: Output Verpk(hi(m), σ)

Proof. We will only provide a sketch of the proof here.
Let {hi}i∈I be a CRH with sampling function GenCRH(1n),

and let (GenSig, Sign,Ver) be a one-time secure digital signature
scheme for {0, 1}n (as constructed in the previous sections.)

Now suppose that there is a p.p.t. adversary A that breaks
(Gen′, Sign′,Ver′) with non-negligible probability ε after only one
oracle call m to Sign′. To break this digital signature scheme, A
must output m′ 6= m and σ′ such that Ver′pk′(m

′, σ′) = accept (so
Verpk(hi(m′), σ′) = accept). There are only two possible cases:

1. h(m) = h(m′).

In this case, A found a collision (m, m′) in hi, which is
known to be hard, since hi is a member of a CRH.

5.7. *Signing Many Messages 145

2. A never made any oracle calls, or h(m) 6= h(m′).

Either way, in this case, A obtained a signature σ′ to a new
message h(m′) using (Gen, Sign,Ver). But obtaining such a
signature violates the assumption that (Gen, Sign,Ver) is a
one-time secure digital signature scheme.

To make this argument more formal, we transform the two
cases above into two adversaries B and C. Adversary B tries to
invert a hash function from the CRH, and C tries to break the
digital signature scheme.

B(1n, i) operates as follows to find a collision for hi.

• Generate keys pk, sk← GenSig(1n)

• Call A to get m′, σ′ ← ASignsk(hi(·))(1n, (pk, i)).

• Output m, m′ where m is the query made by A (if A made
no query, then abort).

CSignsk(·)(1n, pk) operates as follows to break the one-time
security of (Gen, Sign,Ver).

• Generate index i← GenCRH(1n)

• Call A to get m′, σ′ ← A(1n, (pk, i))

– When A make a call to Sign′(sk,i)(m), query the signing
oracle Signsk(hi(m))

• Output hi(m′), σ′.

So, if A succeeds with non-negligible probability, then either
B or C must succeed with non-negligible probability. �

5.7 *Signing Many Messages

Now that we have extended one-time signatures on {0, 1}n to
operate on {0, 1}∗, we turn to increasing the number of messages
that can be signed. The main idea is to generate new keys
for each new message to be signed. Then we can still use our
one-time secure digital signature scheme (Gen,Sign,Ver). The

146 chapter 5. authentication

disadvantage is that the signer must keep state to know which
key to use and what to include in a given signature.

We start with a pair (pk0, sk0) ← Gen(1n). To sign the first
message m1, we perform the following steps:

• Generate a new key pair for the next message: pk1, sk1 ←
Gen(1n)

• Create signature σ1 = Signsk0
(m1 || pk1) on the concatena-

tion of message m1 and new public key pk1.

• Output σ′1 = (1, σ1, m1, pk1)

Thus, each signature attests to the next public key. Similarly,
to sign second message m2, we generate pk2, sk2 ← Gen(1n),
set σ2 = Signsk1

(m2 || pk2), and output σ′2 = (2, σ2, σ′1, m2, pk2).
Notice that we need to include σ′1 (the previous signature) to
show that the previous public key is correct. These signatures
satisfy many-message security, but the signer must keep state,
and signature size grows linearly in the number of signatures
ever performed by the signer. Proving that this digital signature
scheme is many-message secure is left as an exercise. We now
focus on how to improve this basic idea by keeping the size of
the signature constant.

5.7.1 Improving the Construction

A simple way to improve this many-message secure digital sig-
nature scheme is to attest to two new key pairs instead of one at
each step. This new construction builds a balanced binary tree
of depth n of key pairs, where each node and leaf in the tree
is associated with one public-private key pair pk, sk, and each
non-leaf node public key is used to attest to its two child nodes.
Each of the 2n leaf nodes can be used to attest to a message. Such
a digital signature algorithm can perform up to 2n signatures
with signature size n (the size follows because a signature using
a particular key pair pki, ski must provide signatures attesting to
each key pair on the path from pkiski to the root). The tree looks
as follows.

5.7. *Signing Many Messages 147

pk00…0

sk00…0

pk00…1

sk00…1

pk11…1

sk11…1

pk0

sk0

pk1

sk1

pk00

sk00

pk01

sk01

pk10

sk10

pk11

sk11

pk
sk

…
… …

To sign the first message m, the signer generates and stores
pk0, sk0, pk00, sk00, . . ., pk0n , sk0n along with all of their siblings
in the tree. Then pk0 and pk1 are signed with sk, producing sig-
nature σ0, pk00 and pk01 are signed with sk0, producing signature
σ1, and so on. Finally, the signer returns the signature

σ = (pk, σ0, pk0, σ1, pk00, . . . , σn−1, pk0n ,Signsk0n (m)

as a signature for m. The verification function Ver then uses
pk to check that σ0 attests for pk0, uses pk0 to check that σ1
attests for pk00, and so on up to pk0n , which is used to check that
Signsk0n (m) is a correct signature for m.

For an arbitrary message, the next unused leaf node in the
tree is chosen, and any needed signatures attesting to the path
from that leaf to the root are generated (some of these signatures
will have been generated previously). Then the leaf node key is
used to sign the message in the same manner as above

Proving that this scheme is many-message secure is left as an
exercise. The key idea is that fact that (Gen,Sign,Ver) is one-time
secure, and each signature is only used once. Thus, forging a
signature in this scheme requires creating a second signature.

For all its theoretical value, however, this many-message
secure digital signature scheme still requires the signer to keep a
significant amount of state. The state kept by the signer is

148 chapter 5. authentication

• The number of messages signed

To remove this requirement, we will assume that messages
consist of at most n bits. Then, instead of using the leaf
nodes as key pairs in increasing order, use the n-bit rep-
resentation of m to decide which leaf to use. That is, use
pkm, skm to sign m.

• All previously generated keys

• All previously generated signatures (for the authentication
paths to the root)

We can remove the requirement that the signer remembers
the previous keys and previous signatures if we have a pseudo-
random function to regenerate all of this information on demand.
In particular, we generate a public key pk and secret key sk′.
The secret key, in addition to containing the secret key sk cor-
responding to pk, also contains two seeds s1 and s2 for two
pseudo-random functions f and g. We then generate pki and ski
for node i by using fs1(i) as the randomness in the generation
algorithm Gen(1n). Similarly, we generate any needed random-
ness for the signing algorithm on message m with gs2(m). Then
we can regenerate any path through the tree on demand without
maintaining any of the tree as state at the signer.

5.8 Constructing Efficient Digital Signature

Consider the following method for constructing a digital signa-
ture scheme from a trapdoor permutation:

• Gen(1n): pk = i and sk = t, the trapdoor.

• Signsk(m) = f−1(m) using t.

• Verpk(m, σ) = “accept” if fi(σ) = m.

The above scheme is not secure if the adversary is allowed to
choose the message to be forged. Picking m = fi(0) guarantees
that 0 is the signature of m. If a specific trapdoor function like
RSA is used, adversaries can forge a large class of messages. In
the RSA scheme,

5.9. Zero-knowledge Authentication 149

• Gen(1n): pk = e, N and sk = d, N, such that ed = 1 mod
Φ(N), and N = pq, p, q primes.

• Signsk(m) = md mod N.

• Verpk(m, σ) = “accept” if σe = m mod N.

Given signatures on σ1 = md
1 mod N and σ2 = md

2 mod N an
adversay can easily forge a signature on m1m2 by multiplying
the two signatures modulo N.

To avoid such attacks, in practice, the message is first hashed
using some “random looking” function h to which the trapdoor
signature scheme can applied. It is secure if h is a random func-
tion RF. (In particular, such a scheme can be proven secure in
the Random Oracle Model.) We cannot, however, use a pseu-
dorandom function, because to evaluate the PRF, the adversary
would have to know the hashing function and hence the seed
of the PRF. In this case, the PRF ceases to be computationally
indistingiushable from a random function RF. Despite these theo-
retical problems, this hash-and-sign paradigm is used in practice
using SHA1 or SHA256 as the hash algorithm.

5.9 Zero-knowledge Authentication

Chapter 6

Computing on Secret
Inputs

6.1 Secret Sharing

Imagine the following situation: n professors sitting around a
table wish to compute the average of their salaries. However, no
professor wants to reveal their individual salary to the others;
and this also includes revealing information that a coalition of
n− 2 would be able to use to recover an individual salary. How
can the professors achieve this task?

Here is one way:

1. If professor i’s salary is si, then i chooses n random num-
bers pi,1, . . . , pi,n in a very large range [−2`, 2`] such that
∑k pi,k = si.

2. For each professor j = 1, . . . , n, professor i sends pi,j to
professor j.

3. After receiving numbers pj,1, . . . , pj,n, Professor j computes
the value tj = ∑k pj,k and broadcasts it to the others.

4. Upon receiving numbers t1, . . . , tn, each professor computes
S = ∑k tk and outputs S/n.

151

152 chapter 6. computing on secret inputs

This protocol works when all of the players are honest because

n

∑
k=1

pi =
n

∑
k=1

ti

Moreover, it also has the property that the protocol transcripts
of any n− 2 participants still remains informational theoretically
independent of the other two professor salaries. This follows
because each professor i is the only one who receives the secret
value pi,i.

Of course, there are a few odd properties of this protocol. For
one, if the professors can only broadcast their secrets one-at-a-
time, then the last one to broadcast “knows” the answer before
everyone else. Thus, she may decide not to send a message, or
decide to send a different message instead of tn in order to get
the other participants to compute the “wrong” answer. In other
words, the protocol only works when all of the players honestly
follow the protocol; and is secure even if the players curiously
analyze their views of the protocol to learn information about
the other players’ inputs.

The principle behind this toy example is known as secret shar-
ing and it is the simplest example of how players can collaborate
to compute a function on privately held inputs. The simple idea
illustrated here is called the XOR-sharing or sum-sharing. Each
player distributes a value such that the XOR of all values results
in the secret. We now consider a more general variant called
threshold secret sharing in which k out of n shares are required
in order to recover the secret value. This notion of secret shar-
ing, due to Shamir, corresponds closely to Reed-Soloman error
correcting codes.

6.1.1 k-out-of-n Secret Sharing

Let us formalize the notion of threshold secret sharing.

.Definition 152.1 ((k, n) Secret Sharing) A (k, n) Secret Sharing
scheme consists of a pair of p.p.t. algorithms (Share,Recon) such that

1. Share(x) produces an n-tuple (s1, . . . , sn), and

6.1. Secret Sharing 153

2. Recon(s′i1 , . . . , s′ik
) is such that if {s′i1 , . . . , s′ik

} ⊆ {s1, . . . , sn}
then Recon outputs x.

3. For any two x and x′, and for any subset of at most k indicies S′ ⊂
[1, n], |S′| < k, the following two distributions are statistically
close:

{(s1, . . . , sn)← Share(x) : (si | i ∈ S′)}
and

{(s1, . . . , sn)← Share(x′) : (si | i ∈ S′)}

6.1.2 Polynomial Interpolation

Before presenting a secret sharing scheme, we review a basic
property of polynomials. Given any n+ 1 points on a polynomial
p(·) of degree n, it is possible to fully recover the polynomial p,
and therefore evaluate p at any other point.

.Lemma 153.2 (Lagrange) Given n + 1 points (xo, y0), . . . , (xn, yn)
in which x0, . . . , xn are distinct, the unique degree-n polynomial that
interpolates these points is

P(x) =
n

∑
i=0

yi pi(x)

where

pi(x) =
n

∏
j=0;j 6=i

x− xj

xi − xj
.

Proof. Notice that for the points x0, . . . , xn, the value pi(xj) is
equal to 1 when i = j and 0 for all other values of j. This follows
because all x0, . . . , xn are distinct. Therefore, it is easy to see that
P(xi) = yi for all i ∈ [0, n]. Moreover, P is a polynomial of degree
n.

To show that P is unique, suppose another polynomial P′

of degree n also had the property that P′(xi) = yi. Notice that
Q(x) = (P − P′)(x) is also a polynomial of degree at most n.
Also, Q is zero on the n + 1 values x0, . . . , xn. Therefore, by the
fact below, Q must be the zero polynomial and P = P′. �

.Fact 153.3 A non-zero polynomial of degree n can have at most n
zeroes.

154 chapter 6. computing on secret inputs

6.1.3 Protocol

protocol 154.4: Shamir Secret Sharing Protocol

Share(x, k, n):

1. Let p be a prime such that p > n. Choose n − 1
random coefficients, a1, . . . , an−1 where ai ∈ Zp.

2. Let s(t) = x + a1t + a2t2 + · · · + antn. Output the
shares s(1), . . . , s(n).

Recon((xi1 , yi1), . . . , (xik , yik)): Interpolate the unique polyno-
mial P that passes through all k points given as input using
the Lagrange formula from Lemma 153.2. Output the value
P(0).

.Proposition 154.5 The Shamir secret sharing scheme is a secure k-
out-of-n secret sharing scheme.

The proof is given as an exercise.

6.2 Yao Circuit Evaluation

In this section, we illustrate how two parties, A and B, who hold
the secret inputs x and y respectively, can jointly compute any
function f (x, y) in a secure manner.

It is first important to understand exactly what we mean
by “secure manner” in the above paragraph. For example, an
obvious method to accomplish the task is to have A send x to B,
and B to send y to A. Indeed, in some cases, this is a reasonable
solution. However, imagine, for example, that the function f (x, y)
is the “millionaire’s” function:

f (x, y) =
{

1 if x > y
0 otherwise

The problem with the obvious solution is that it reveals more
information than just the value f (x, y). In particular, Alice learns
Bob’s input (and vice versa), and such a revelation might change

6.2. Yao Circuit Evaluation 155

the future actions of Alice/Bob (recall the Match game from
chapter 1).

A better protocol is one that reveals nothing more than the
output to each of the parties. Obviously, for some functions, the
output might allow one or both of the parties to reason about
some properties of the other players’ input. Nonetheless, it is
the strongest property one can hope to achieve, and thus, it is
important to formalize.

The theory of zero-knowledge offers a good way to capture
this idea. Recall that zero-knowledge proofs are proofs that
only reveal whether a statement is true. Similarly, we seek to
design a protocol that reveals only the output to the parties.
Using the simulation paradigm, one could formalize this notion
by requiring that a protocol is secure when Alice’s (or Bob’s)
view of the protocol can be generated by a simulator algorithm
that is only given Alice (or Bob’s) input and output value. As
with zero-knowledge, this is a way of saying that the “protocol
transcript” gives no more information to Alice (or Bob) than
Alice’s (or Bob’s) input and output to f (x, y).

To simplify the definition, we first consider a limited form
of adversarial behavior that captures our concerns discussed
above. An honest-but-curious adversary is a party who follows the
instructions of the protocol, but will later analyze the protocol
transcript to learn any extra information about the other player’s
input.

Let f : {0, 1}n × {0, 1}n → {0, 1}n be a function and let π =
(A, B) be a two-party protocol for computing f (x, y). As per §4.4,
an execution of the protocol π will be represented by A(x) π↔
B(y), and the random variable viewX[A(x) π↔ B(y)] represents
party X’s input, random tape, and the sequence of messages
received by X from the other party. Similarly, outX(e) represents
the output of party X from execution e.

.Definition 155.1 (Two-party Honest-but-Curious Secure Proto-
col). A protocol π with security parameter 1n securely computes
a function f (x, y) in the honest-but-curious model if there exists
a pair of n.u. p.p.t. simulator algorithms SA, SB such that for all

156 chapter 6. computing on secret inputs

inputs x, y ∈ {0, 1}n, it holds that both{
SA(x, f (x, y)), f (x, y)

}
n

≈c

{
e← [A(x) π↔ B(y)] : viewA(e), outB(e)

}
n{

SB(y, f (x, y)), f (x, y)
}

n

≈c

{
e← [A(x) π↔ B(y)] : viewB(e), outA(e)

}
n

Let us briefly remark about a subtle point of this definition.
In the zero-knowledge definition, we only required the simulator
to produce a view of the protocol transcript. This definition
has the additional requirement that the output of the protocol
execution be indistinguishable from the actual value f (x, y). In
general, this property ensures the “correctness” of the protocol.
For the case of honest-but-curious adversaries, this requirement
requires the protocol to actually compute f (x, y). Were it not
present, then a protocol that instructs both parties to output 0
would trivially be secure.

6.2.1 Circuit Representations

Our first step in constructing a secure two-party protocol is to
write the function f (x, y) as a circuit whose input wires corre-
spond to the bits of x and the bits of y. For our purposes, each of
the gates of the circuit can have unbounded fan-out, but a fan-in
of two. We also assume that Alice and Bob have agreed upon
a particular circuit that computes f . Let this circuit be named
C. The future steps in the construction of the protocol involve
manipulations of circuit C.

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

6.2. Yao Circuit Evaluation 157

6.2.2 Garbled Wires

Let (Gen,Enc,Dec) be a multi-message secure encryption scheme
(see definition 93.1) with the following extra property: there
exists a negligible function ε such that for every n and message
m ∈ {0, 1}n, we have that

Pr[k← Gen(1n), k′ ← Gen(1n), c← Enck(m) : Deck′(c) = ⊥]
> 1− ε(n)

In other words, the encryption scheme is such that when a ci-
phertext is decrypted with the incorrect key, then the output
is almost always ⊥. It is easy to modify construction 99.1 in
order to build such an encryption scheme. All that is needed is
a length-doubling pseudo-random function family (see defini-
tion 96.2)

{
fs : {0, 1}|s| → {0, 1}2|s|

}
and padding as illustrated

in Algorithm 157.2.

algorithm 157.2: A Special Encryption Scheme

Gen(1n) : k← Un.
Enck(m) : r ← Un. Output (r, 0n||x⊕ fk(r)).
Deck(c1, c2) : Compute m0||m1 ← c2 ⊕ fk(c1) where |m0| = n. If

m0 = 0n, then output m1. Otherwise, output ⊥.

Given such an encryption scheme, associate to each wire
wi in the circuit C, a pair of randomly generated symmetric
encryption keys ki

0, ki
1 for a special encryption scheme described

above. When this “garbled” version of the circuit is evaluated,
the key ki

b will represent the value b for wire i. An example is of
this mapping of keys to wires is shown in the figure below.

6.2.3 Garbled Gates

In the previous step, we mapped the wires of circuit C to pairs of
symmetric keys. In this step, we apply a similar mapping to each
of the gates of C. The goal of these steps is to enable an evaluator
of the circuit to compute, given the keys corresponding to the
input wires of the gate, the key corresponding to the output wire
of the gate.

158 chapter 6. computing on secret inputs

NO
TAN
D

O
R

AN
D

AN
D

O
R

Thus, in order to preserve the semantics of each gate, a garbled
gate must implement a mapping between a pair of keys corre-
sponding to the inputs of the gate to a key corresponding to
the output of the gate. For example, given keys k1

0 and k2
0 in the

above circuit, the first garbled AND gate should map the pair to
the key k7

0. Additionally, in order to satisfy the security property,
this mapping should not reveal any extra information about the
key. For example, the mapping should not allow a party to learn
whether the key corresponds to the wire value of 0 or 1.

Let us describe how to implement such a mapping for the
AND gate. All logical gates will follow a similar construction.
A logical gate consists of a truth table with four rows. Suppose
the keys (k0, k1) corresponded to the first input, the keys (j0, j1)
corresponded to the second input, and the keys (o0, o1) corre-
sponded to the output keys. In the case of the AND gate, we
thus need to compute the following association:

First Input Second Input Output

k0 j0 o0
k0 j1 o0
k1 j0 o0
k1 j1 o1

Since the evaluating player has the keys corresponding to one
row of this table, a garbled gate can be implemented by doubly-
encrypting each row of the table. In other words, we encrypt the

6.2. Yao Circuit Evaluation 159

output key oi with the two input keys in each row. By using the
special encryption scheme described in the previous section, a
row that is decrypted with the wrong key will decrypt to the
special ⊥ symbol with high probability. Thus, the evaluating
player can attempt to decrypt all four rows with the two keys
that she knows. All but one row will evaluate to ⊥. The one row
that decrypts correctly results in the key associated to the output
wire of this gate. There is one final detail: If the rows of the truth
table occur in a canonical order, the evaluating player can then
determine the associated input value—e.g., if the third row in
the table above worked, the player could deduce that the inputs
were 1, 0. Therefore the rows of the doubly-encrypted truth table
must be randomly shuffled.

A
N
D

Figure 159.3: The implementation of a garbled AND gate. The
gate contains four doubly-encrypted values of the key associ-
ated to the output wire of the gate. Each double-encryption
corresponds to a row of the AND truth table; but the rows are
permuted.

With these ideas in mind, we have the basis of a protocol.
One of the parties can construct a garbled circuit for C, and the
other party can evaluate it. During the evaluation, the evaluating
party does not learn any intermediate value of the circuit. This
follows because the value of each internal wire will be one of
the two encryption keys associated with that wire, and only the
player who constructed the circuit knows that association.

The one remaining problem is how to transfer the keys corre-
sponding to the evaluator’s input to the evaluating player.

160 chapter 6. computing on secret inputs

6.2.4 Oblivious Transfer

The first player who constructs the garbled circuit knows for
every wire (including the input wires) the association between
the encryption key and the wire value 0 or 1. In order for the
evaluating player to begin evaluating the circuit, the player must
know the key corresponding to his input. If the evaluating player
just asks the first player for the corresponding key, then the first
player learns the second player’s input. But if the second player
sends over both keys, then the first player will be able to learn
both f (x, y) and also f (x, y) which would violate the security
definition. What is needed is a way for the second player to learn
exactly one of the two messages known to the first player in such
a way that the first player does not learn which message was
requested.

At first, this proposed functionality seems impossible. How-
ever, in 1973, Wiener first proposed such a functionality based
on the use of quantum communication channels. Later, Rabin
(and then EGL) formalized a computational version of the func-
tionality and coined it oblivious transfer.

A 1/k-oblivious transfer protocol is a secure computation for
party A to learn one of k secret bits held by party B, without
B learning which secret A obtains. More concretely, in a 1/2-
oblivious transfer, A has bits a1, a2, and B has an integer b ∈ [1, 2].
The function being computed is:

OT1/2(a1, a2, b) = (⊥, ab).

Here we make use of private outputs: A receives a constant
output ⊥, and B receives the requested bit.

Our construction of an OT1/2 protocol in the honest-but-
curious model requires a trapdoor permutation and an associate
hardcore predicate. Alice selects a trapdoor permutation (i, t)
and sends the permutation fi to Bob. Bob then selects two ran-
dom values y1, y2 in such a way that it knows the inverse f−1

i (yb)
and sends the pair to Alice. Finally, Alice uses yi to encrypt the bit
xi using the standard hardcore-predicate encryption: xi ⊕ h(yi).
It is straightforward to generalize this construction to handle
n-bit values.

6.2. Yao Circuit Evaluation 161

protocol 160.4: Oblivious Transfer Protocol

Let { fi}i∈I be a family of trapdoor permutations, Gen sample
a function from the family, and h be a hardcore predicate for any
function from the family.

Sender input: Bits (a1, a2)

Receiver input: An index b ∈ [1, 2]

A→ B:] A runs i, t← Gen(1n) and sends i to B.

A← B: B computes the following. If j 6= b then yj ← {0, 1}n

else x ← {0, 1}n; yj ← fi(x). B sends (y1, y2) to A.

A→ B: A computes the inverse of each value yj and XORs the
hard-core bit of the result with the input aj:

zj = h(f−1(yj))⊕ aj

A sends (z1, . . . , z4).

B outputs h(x)⊕ zb

Intuitively, the protocol satisfies the privacy property: A
learns nothing, because the yj it receives are all uniformly dis-
tributed and independent of b, and B learns nothing beyond
ab, because if it did it would be able to predict the hardcore
predicate.

.Proposition 161.5 Construction 160.4 is an honest-but-curious one-
out-of-2 Oblivious Transfer Protocol.

Proof. To prove this proposition, we must exhibit two simulators,
SA and SB which satisfy the honest-but-curious security defini-
tion for two-party computation (Def. 155.1). The simulator SA is
the easier case and works as follows:

1. SA((a1, a2),⊥): Complete the first instruction of the proto-
col and prints the corresponding message.

2. Randomly choose two string y1, y2 ∈ {0, 1}n and print a
message from Bob with these two values.

162 chapter 6. computing on secret inputs

3. Follow the third step of the protocol using values y1, y2 and
print a message with the computed values z1, z2.

4. Output ⊥.

Observe that

{SA((a1, a2),⊥), OT1/2((a1, a2), b)}

and {
e← [A(a1, a2)

π↔ B(b)] : viewA(e), outB(e)
}

n

are identically distributed. This follows because the only dif-
ference between SA and the real protocol execution is step 2.
However, since f is a permutation, the values y1, y2 are identi-
cally distributed.

The construction of SB is left as an exercise. �
Unfortunately, real adversaries are not necessarily honest, but

it is sometimes possible to enforce honesty. For example, honesty
might be enforced externally to the protocol by trusted hardware
or software. Or, honesty might be enforced by the protocol itself
through the use of coin-tossing protocols and zero-knowledge
proofs of knowledge, which can allow parties to prove that they
are following the protocol honestly. We discuss protocols in a
more general setting in §??.

6.2.5 Honest-but-Curious Two-Party Secure Protocol

With all of these pieces, we can finally present an honest-but-
curious protocol for evaluating any two-party function f (x, y).

protocol 162.6: Honest-but-Curious Secure Computation

A input: x ∈ {0, 1}n

B input: y ∈ {0, 1}n

A→ B: A generates a garbled circuit that computes a canonical
circuit representation of f . A sends the circuit and the
input keys corresponding to the bits of x to B.

6.2. Yao Circuit Evaluation 163

A↔ B: For each input bit y1, . . . , yn of y, A and B run a 1-out-
of-2 Oblivious Transfer protocol in which A’s inputs are
the keys (ki,0, ki,1) corresponding to the input wire for yi
and B’s input is the bit yi.

A→ B: Using the keys for all input wires, B evaluates the circuit
to compute the output f (x, y). B sends the result to A. A
and B output the result f (x, y).

.Theorem 163.7 Protocol 162.6 is an honest-but-curious two-party
secure function evaluation protocol.

Proof. To prove this result, we must exhibit two simulators SA
and SB. The first simulator is the easiest one. Notice that the
view of A consists of a random tape, a circuit, the transcript of
n oblivious-transfer protocols, and the final output. The first
two and the last component are easy to generate; the transcript
from the oblivious transfer protocols can be generated using the
simulator for the oblivious transfer protocol. Thus, the algorithm
SA(x, f (x, y)) proceeds as follows:

1. On input x, f (x, y), select a random tape r, and run the first
step of the protocol to generate a garbled circuit C′. Output
C′ as a message to Bob. Let kyi

0 , kyi
1 be the key-pair for input

wire yi in circuit C′.

2. For i ∈ [1, n], use the simulator Sim′A((k
yi
0 , kyi

1),⊥) for the
OT1/2 protocol to generate n transcripts of the oblivious
transfer protocol for each of Bob’s input wires.

3. Output a message from Bob to Alice containing the value
f (x, y).

The second simulator SB(y, f (x, y)) works as follows:

1. On input y, f (x, y), generate a random garbled circuit C′

that always outputs the value f (x, y) for all inputs. This
can be done by creating an otherwise correct circuit, with
the exception that all of the output wires correspond to

164 chapter 6. computing on secret inputs

the bits of the output f (x, y). As above, let kyi
0 , kyi

1 be the
key-pair for input wire yi in circuit C′.

Generate a message from Alice consisting of the circuit C′.

2. For i ∈ [1, n], use the simulator Sim′b(b, kyi
b) to produce n

transcripts of the OT1/2 protocol.

3. Output a message from Bob to Alice containing the value
f (x, y).

Using a hybrid argument, we can show that the security of the
encryption scheme implies that the circuit C′ is computationally
indistinguishable from a properly generated garbled circuit of C.
The security of the simulator for the OT1/2 protocol implies that
the messages from the second step are identically distributed to
the messages from a real execution of the protocol. Finally, the
last step is also identically distributed.

�

6.3 Secure Computation

Let P1, . . . , Pn be a set of parties, with private inputs x1, . . . , xn,
that want to compute a function f (x1, . . . , xn). Without loss of
generality, suppose that the output of function f is a single
public value. (If private outputs are instead desired, each party
can supply a public key as part of its input, and the output can
be a tuple with an encrypted element per party.) If a trusted
external party T existed, all the parties could give their inputs to
T, which would then compute f and publish the output; we call
this the ideal model. In this model, T is trusted for both:

Correctness: The output is consistent with f and the inputs xi,
and

Privacy: Nothing about the private inputs is revealed beyond
whatever information is contained in the public output.

In the absence of T, the (mutually distrusting) parties must
instead engage in a protocol among themselves; we call this the
real model. The challenge of secure computation is to emulate

6.3. Secure Computation 165

the ideal model in the real model, obtaining both correctness and
privacy without a trusted external party, even when an adversary
corrupts some of the parties.

.Definition 165.1 A protocol securely computes a function f if for
every p.p.t. adversary controlling a subset of parties in the real model,
there exists a p.p.t. simulator controlling the same subset of parties in
the ideal model, such that the output of all parties in the real model is
computationally indistinguishable from their outputs in the ideal model.

Goldreich, Micali, and Wigderson, building on a result of Yao,
showed the feasibility of secure computation for any function.
[Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play
any Mental Game or A Completeness Theorem for Protocols with
Honest Majority. In 19th ACM Symposium on Theory of Computing,
1987, pages 218–229.]

.Theorem 165.2 Let f : ({0, 1}m)n → ({0, 1}m)n be a poly-time
computable function, and let t be less than n/2. Assume the existence
of trapdoor permutations. Then there exists an efficient n-party protocol
that securely computes f in the presence of up to t corrupted parties.

The restriction on n/2 parties in this theorem is due to fairness:
all parties must receive their outputs. A simple induction on the
length of the protocol shows that fairness is impossible for n = 2.
We can also define secure computation without fairness, in which the
simulator is additionally allowed to decide which honest parties
receive their outputs, to remove the n/2 restriction.

Chapter 7

Composability

7.1 Composition of Encryption Schemes

7.1.1 CCA-Secure Encryption

So far, we have assumed that the adversary only captures the
ciphertext that Alice sends to Bob. In other words, the adversary’s
attack is a ciphertext only attack. One can imagine, however,
stronger attack models. We list some of these models below:

Attack models:

• Known plaintext attack – The adversary may get to see
pairs of form (m0, Enck(m0)) . . .

• Chosen plain text (CPA) – The adversary gets access to an
encryption oracle before and after selecting messages.

• Chosen ciphertext attack

CCA1: (“Lunch-time attack”) The adversary has access to
an encryption oracle and to a decryption oracle before
selecting the messages. (due to Naor and. Yung)

CCA2: This is just like a CCA1 attack except that the
adversary also has access to decryption oracle after
selecting the messages. It is not allowed to decrypt the
challenge ciphertext however. (introduced by Rackoff
and Simon)

167

168 chapter 7. composability

Fortunately, all of these attacks can be abstracted and captured by
a simple definition which we present below. The different attacks
can be captured by allowing the adversary to have oracle-access
to a special function which allows it to mount either CPA, CCA1,
or CCA2- attacks.

.Definition 168.1 (CPA/CCA-Secure Encryption) Let Π = (Gen,Enc,Dec)
be an encryption scheme. Let the random variable INDO1,O2

b (Π,A, n)
where A is a non-uniform p.p.t., n ∈N, b ∈ {0, 1} denote the output
of the following experiment:

INDO1,O2
b (Π, ma, n)

k← Gen(1n)

m0, m1, state← AO1(k)(1n)

c← Enck(mb)

Output AO2(k)(c, state)

Then we say π is CPA/CCA1/CCA2 secure if ∀ non-uniform p.p.t. A:{
INDO1,O2

0 (π, A, n)
}

n
≈
{
INDO1,O2

1 (π, A, n)
}

n

where O1 and O2 are defined as:

CPA [Enck; Enck]

CCA1 [Enck,Deck; Enck]

CCA2 [Enck,Deck; Enck,Deck]

Additionally, in the case of CCA2 attacks, the decryption oracle returns
⊥ when queried on the challenge ciphertext c.

7.1.2 A CCA1-Secure Encryption Scheme

We will now show that the encryption scheme presented in
construction 99.1 satisfies a stronger property than claimed earlier.
In particular, we show that it is CCA1 secure (which implies that
it is also CPA-secure).

.Theorem 168.2 π in construction 99.1 is CPA and CCA1 secure.

7.1. Composition of Encryption Schemes 169

Proof. Consider scheme πRF = (GenRF,EncRF,DecRF), which is
derived from π by replacing the PRF fk in π by a truly random
function. πRF is CPA and CCA1 secure. Because the adversary
only has access to the encryption oracle after chosing m0 and m1,
the only chance adversary can differentiate Enck(m0) = r0||m0 ⊕
f (r0) and Enck(m1) = r1||m1⊕ f (r1) is that the encryption oracle
happens to have sampled the same r0 or r1 in some previous
query, or additionally, in a CCA1 attack, the attacker happens to
have asked decryption oracle to decrypt ciphertext like r0||m or
r1||m. All cases have only negligible probabilities.

Given πRF is CPA and CCA1 secure, then so is π. Other-
wise, if there exists one distinguisher D that can differentiate
the experiment results (INDEnck ;Enck

0 and INDEnck ;Enck
1 in case of

CPA attack, while INDEnck ,Deck ;Enck
0 and INDEnck ,Deck ;Enck

1 in case of
CCA1 attack) then we can construct another distinguisher which
internally uses D to differentiate PRF from truly random function.

�

7.1.3 A CCA2-Secure Encryption Scheme

However, the encryption scheme π is not CCA2 secure. Consider
the attack: in experiment INDEnck ,Deck ;Enck ,Deck

b , given ciphertext
r‖c ← Enck(mb), the attacker can ask the decryption oracle to
decrypt r‖c + 1. As this is not the challenge itself, this is allowed.
Actually r‖c + 1 is the ciphertext for message mb + 1, as

Enck(mb + 1) = (r‖(mb + 1))⊕ fk(r)
= r‖mb ⊕ fk(r) + 1
= r‖c + 1

Thus the decryption oracle would reply mb + 1. The adversary
can differentiate which message’s encryption it is given.

We construct a new encryption scheme that is CCA2 secure.
Let { fs} and {gs} be families of PRF on space {0, 1}|s| → {0, 1}|s|.

algorithm 169.3: π′ : Many-message CCA2-secure Encryption

Assume m ∈ {0, 1}n and let { fk} be a PRF family

Gen′(1n): k1, k2 ← Un

170 chapter 7. composability

Enc′k1,k2
(m): Sample r ← Un. Set c1 ← m⊕ fk1(r). Output the

ciphertext (r, c1, fk2(c))

Dec′k1,k2
((r, c1, c2)): If fk2(c1) 6= c2, then output ⊥. Otherwise

output c1 ⊕ fk1(r)

.Theorem 170.4 π′ is CCA2-secure.

Proof. The main idea is to prove by contradiction. In specific, if
there is an CCA2 attack on π′, then there is an CPA attack on π,
which would contradict with the fact that π is CPA secure.

A CCA2 attack on π′ is a p.p.t. machine A′, s.t. it can differen-
tiate

{
INDEnck ,Deck ;Enck ,Deck

0

}
and

{
INDEnck ,Deck ;Enck ,Deck

1

}
. Visually,

it works as that in figure ??. The attacker A′ needs accesses to
the Enc′k and Dec′k oracles. To devise a CPA attack on π, we
want to construct another machine A as depicted in figure ??.
To leverage the CCA2 attacker A′, we simulate A as in figure ??
which internally uses A′.

Formally, the simulator works as follows:

• Whenever A′ asks for an encryption of message m, A asks
its own encryption oracle Encs1 to compute c1 ← Encs1(m).
However A′ expects an encryption of the form c1‖c2 which
requires the value s2 to evaluate gs2(c1); A does not have
access to s2 and so instead computes c2 ← {0, 1}n, and
replies c1‖c2.

• Whenever A′ asks for a decryption c1||c2. If we previously
gave A′ c1||c2 to answer an encryption query of some mes-
sage m, then reply m, otherwise reply ⊥.

• Whenever A′ outputs m0, m1, output m0, m1.

• Upon receiving c, feed c||r, where r ← {0, 1}n to A′.

• Finally, output A′’s output.

Consider the encryption scheme π′RF = (Gen′RF,Enc′RF,Dec′RF)
which is derived from π′ by replacing every appearance of gs2

with a truly random function.

7.1. Composition of Encryption Schemes 171

Note that the simulated Enc′ is just Enc′RF, and Dec′ is very
similar to Dec′RF. Then A′ inside the simulator is nearly conduct-
ing CCA2 attack on π′RF with the only exception when A′ asks
an c1||c2 to Dec′ which is not returned by a previous encryption
query and is a correct encryption, in which case Dec′ falsely
returns ⊥. However, this only happens when c2 = f (c1), where
f is the truly random function. Without previous encryption
query, the attacker can only guess the correct value of f (c1) w.p.
1
2n , which is negligible.

Thus we reach that: if A′ breaks CCA2 security of π′RF,
then it can break CPA security of π. The premise is true as
by assumption A′ breaks CCA2 security of π′, and that PRF is
indistinguishable from a truly random function. �

7.1.4 CCA-secure Public-Key Encryption

We can also extend the notion of CCA security to public-key en-
cryption schemes. Note that, as the adversary already knows the
the public key, there is no need to provide it with an encryption
oracle.

.Definition 171.5 (CPA/CCA-Secure Public Key Encryption) If
the triplet Π = (Gen,Enc, Dec) is a public key encryption scheme, let
the random variable Indb(Π,A, 1n) where A is a non-uniform p.p.t.
adversary, n ∈ N, and b ∈ {0, 1} denote the output of the following
experiment:

Indb(Π,A, n)
(pk, sk)← Gen(1n)

m0, m1, state← AO1(sk)(1n, pk)
c← Encpk(mb)

Output AO2(k)(c, state)

We say that Π is CPA/CCA1/CCA2 secure if for all non-uniform p.p.t.
A, the following two distributions are computationally indistinguish-
able:

{Ind0(Π,A, n)}n∈N ≈ {Ind1(Π,A, n)}n∈N

The oracles O1, O2 are defined as follows:

172 chapter 7. composability

CPA [·, ·]
CCA1 [Dec, ·]
CCA2 [Dec,Dec∗]

where Dec∗ answers all queries except for the challenge ciphertext c.

It is not hard to see that the encryption scheme in Construc-
tion 104.3 is CPA secure. CCA2 secure public-key encryption
schemes are, however, significantly hard to construct; such con-
tructions are outside the scope of this chapter.

7.1.5 Non-Malleable Encryption

Until this point we have discussed encryptions that prevent a
passive attacker from discovering any information about mes-
sages that are sent. In some situations, however, we may want to
prevent an attacker from creating a new message from a given
encryption.

Consider an auction for example. Suppose the Bidder Bob
is trying to send a message containing his bid to the Auctioneer
Alice. Private key encryption could prevent an attacker Eve from
knowing what Bob bids, but if she could construct a message
that contained one more than Bob’s bid, then she could win the
auction.

We say that an encryption scheme that prevents these kinds
of attacks is non-malleable. In such a scheme, it is impossible
for an adversary to output a ciphertext that corresponds to any
function of a given encrypted message. Formally, we have the
following definition:

.Definition 172.6 (Non-Malleable Encryption) Let the triple (Gen,Enc,Dec)

7.1. Composition of Encryption Schemes 173

be a public key encryption scheme. Define the following experiment:

NMb(Π, ma, n)
k← Gen(1n)

m0, m1, state← AO1(k)(1n)

c← Enck(mb)

c′1, c′2, c′3, . . . , c′` ← AO2(k)(c, state)

m′i ←
{

⊥ if ci = c
Deck(c′i) otherwise

Output (m′1, m′2, . . . , m′`)

Then (Gen,Enc,Dec) is non-malleable if for every non-uniform
p.p.t. A, and for every non-uniform p.p.t. D, there exists a negligible ε
such that for all m0, m1 ∈ {0, 1}n,

Pr [D(NM0(Π,A, n)) = 1]− Pr [D(NM1(Π,A, n)) = 1] ≤ ε(n)

One non-trivial aspect of this definition is the conversion to ⊥
of queries that have already been made (step 4). Clearly without
this, the definition would be trivially unsatisfiable, because the
attacker could simply “forge” the encryptions that they have
already seen by replaying them.

7.1.6 Relation-Based Non-Malleability

We chose this definition because it mirrors our definition of
secrecy in a satisfying way. However, an earlier and arguably
more natural definition can be given by formalizing the intu-
itive notion that the attacker cannot output an encryption of a
message that is related to a given message. For example, we
might consider the relation Rnext(x) = {x + 1}, or the relation
Rwithin-one(x) = {x − 1, x, x + 1}. We want to ensure that the
encryption of x does not help the attacker encrypt an element of
R(x). Formally:

.Definition 173.7 (Relation-Based Non-Malleable Encryption) An
encryption scheme (Gen,Enc,Dec) is relation-based non-malleable if
for every p.p.t. adversary A there exists a p.p.t. simulator S such that

174 chapter 7. composability

for all p.p.t.-recognizable relations R, there exists a negligible ε such
that for all m ∈ M with |m| = n, and for all z, it holds that∣∣∣∣ Pr[NM(A(z), m) ∈ R(m)]

−Pr[k← Gen(1n); c← S(1n, z) : Deck(c) ∈ R(m)]

∣∣∣∣ < ε

where i ranges from 1 to a polynomial of n and NM is defined as above.

This definition is equivalent to the non-relational definition given
above.

.Theorem 174.8 Scheme (Enc,Dec,Gen) is a non-malleable encryp-
tion scheme if and only if it is a relation-based non-malleable encryption
scheme.

Proof. (⇒) Assume that the scheme is non-malleable by the first
definition. For any given adversary A, we need to produce a
simulator S that hits any given relation R as often as A does. Let
S be the machine that performs the first 3 steps of NM(A(z), m′)
and outputs the sequence of cyphertexts, and let D be the distin-
guisher for the relation R. Then

| Pr[NM(A(z), m) ∈ R(m)]−
Pr[k← Gen(1n); c← S(1n, z); m′ = Deck(c) : m′ ∈ R(m)]

|

= |Pr[D(NM(A(z), m))]− Pr[D(NM(A(z), m′))]| ≤ ε

as required.
(⇐) Assume that the scheme is relation-based non-malleable.
Given an adversary A, we know there exists a simulator S that
outputs related encryptions as well as A does. The relation-
based definition tells us that NM(A(z), m0) ≈ Dec(S()) and
Dec(S()) ≈ NM(A(z), m1). Thus, by the hybrid lemma, it fol-
lows that NM(A(z), m0) ≈ NM(A(z), m1) which is the first
definition of non-malleability. �

7.1.7 Non-Malleability and Secrecy

Note that non-malleability is a distinct concept from secrecy. For
example, one-time pad is perfectly secret, yet is not non-malleable
(since one can easily produce the encryption of a⊕ b give then
encryption of a, for example). However, if we consider security
under CCA2 attacks, then the two definitions coincide.

7.2. Composition of Zero-knowledge Proofs* 175

.Theorem 175.9 An encryption scheme (Enc,Dec,Gen) is CCA2 se-
cret if and only if it is CCA2 non-malleable

Proof. (Sketch) If the scheme is not CCA2 non-malleable, then a
CCA2 attacker can break secrecy by changing the provided en-
cryption into a related encryption, using the decryption oracle on
the related message, and then distinguishing the unencrypted re-
lated messages. Similarly, if the scheme is not CCA2 secret, then
a CCA2 attacker can break non-malleability by simply decrypting
the cyphertext, applying a function, and then re-encrypting the
modified message. �

7.2 Composition of Zero-knowledge Proofs*

7.2.1 Sequential Composition

Whereas the definition of zero knowledge only talks about a
single execution between a prover and a verifier, the definitions is
in fact closed under sequential composition; that is, sequential
repetitions of a ZK protocol results in a new protocol that still
remains ZK.

.Theorem 175.1 (Sequential Composition) Let (P, V) be a perfec-
t/computational zero-knowledge proof for the language L. Let Q(n) be
a polynomial, and let (PQ, VQ) be an interactive proof (argument) that
on common input x ∈ {0, 1}n proceeds in Q(n) phases, each on them
consisting of an execution of the interactive proof (P, V) on common
input x (each time with independent random coins). Then (PQ, VQ) is
an perfect/computational ZK interactive proof.

Proof. (Sketch) Consider a malicious verifier VQ∗. Let

V∗(x, z, r, (m̄1, . . . , m̄i))

denote the machine that runs VQ∗(x, z) on input the random
tape r and feeds it the messages (m̄1, . . . , m̄i) as part of the i first
iterations of (P, V) and runs just as VQ∗ during the i + 1 iteration,
and then halts. Let S denote the zero-knowledge simulator for
V∗. Let p(·) be a polynomial bounding the running-time of VQ∗.
Condsider now the simulator SQ∗ that proceeds as follows on
input x, z

176 chapter 7. composability

• Pick a length p(|x|) random string r.

• Next proceed as follows for Q(|x|) iterations:

– In iteration i, run S(x, z||r||(m̄1, . . . , m̄i)) and let m̄i+1
denote the messages in the view output.

The linearity of expectations, the expected running-time of SQ is
polynomial (since the expected running-time of S is). A standard
hybrid argument can be used to show that the output of SQ is
correctly distributed. �

7.2.2 Parallel/Concurrent Composition

Sequential composition is a very basic notion of compostion. An
often more realistic scenario consider the execution of multiple
protocols at the same time, with an arbitrary scheduling. As we
show in this section, zero-knowledge is not closed under such
“concurrent composition”. In fact, it is not even closed under
“parallel-composition” where all protocols executions start at the
same time and are run in a lockstep fashion.

Consider the protocol (P, V) for proving x ∈ L, where P
on input x, y and V on input x proceed as follows, and L is a
language with a unique witness (for instance, L could be the
language consisting of all elements in the range of a 1− 1 one-
way function f , and the associated witness relation is RL(x) =
{y| f (y) = x}.

protocol 176.2: ZK Protocol that is not Concurrently Secure

P→ V P provides a zero-knowledge proof of knowledge of
x ∈ L.

P← V V either “quits” or starts a zero-knowledge proof of
knowledge x ∈ L.

P→ V If V provides a convincing proof, P reveals the witness
y.

It can be shown that the (P, V) is zero-knowledge; intuitively
this follows from the fact that P only reveals y in case the verifier

7.2. Composition of Zero-knowledge Proofs* 177

already knows the witness. Formally, this can be shown by
“extracting” y from any verifier V∗ that manages to convince P.
More precisely, the simulator S first runs the simulator for the ZK
proof in step 1; next, if V∗ produces an accepting proof in step
2, S runs the extractor on V∗ to extract a witness y′ and finally
feeds the witness to y′. Since by assumption L has a unique
witness it follows that y = y′ and the simulation will be correctly
distributed.

However, an adversary A that participates in two concurrent
executions of (P, V), acting as a verifier in both executions, can
easily get the witness y even if it did not know it before. A
simply schedules the messages such that the zero-knowledge
proof that the prover provides in the first execution is forwarded
as the step 2 zero-knowledge proof (by the verifier) in the second
execution; as such A convinces P in the second execution that it
knows a witness y (although it is fact only is relaying messages
from the the other prover, and in reality does not know y), and
as a consequence P will reveal the witness to A.

The above protocol can be modified (by padding it with
dummy messages) to also give an example of a zero-knowledge
protocol that is not secure under even two parallel executions.

P1(x, y) V∗(x) P2(x, y)

y quit

Figure 177.3: A Message Schedule which shows that proto-
col 176.2 does not concurrently compose. The Verifier feeds
the prover messages from the second interaction with P2 to the
first interaction with prover P1. It therefore convinces the first
prover that it “knows” y, and therefore, P1 sends y to V∗.

178 chapter 7. composability

7.2.3 Witness Indistinguishability

• Definition

• WI closed under concurrent comp

• ZK implies WI

7.2.4 A Concurrent Identification Protocol

• y1, y2 is pk

• x1, x2 is sk

• WI POK that you know inverse of either y1 or y2.

7.3 Composition Beyond Zero-Knowledge
Proofs

7.3.1 Non-malleable commitments

• Mention that standard commitment is malleable

• (could give construction based on adaptive OWP?)

Chapter 8

*More on Randomness and
Pseudorandomness

8.1 A Negative Result for Learning

Consider a space S ⊆ {0, 1}n and a family of concepts {Ci}i∈I
such that Ci ⊆ S.

The Learning Question: For a random i ∈ I, given samples
(xj, bj) such that xj ∈ S and bj = 1 iff xj ∈ Ci, determine for a
bit string x if x ∈ Ci. The existence of PRFs shows that there are
concepts that can not be learned.

.Theorem 179.1 There exists a p.p.t. decidable concept that cannot be
learned.

Proof sketch.

S = {0, 1}n

Ci = {x | fi(x)|1 = 1} fi(x)|1 is the first bit of fi(x)

I = {0, 1}n

No (n.u.) p.p.t. can predict whether a new sample x is in Ci better
than 1

2 + ε. �

179

180 chapter 8. *more on randomness and pseudorandomness

8.2 Derandomization

Traditional decision problems do not need randomness; a ran-
domized machine can be replaced by a deterministic machine
that tries all finite random tapes. In fact, we can do better if we
make some cryptographic assumptions. For example:

.Theorem 180.1 If pseudo-random generators (PRG) exist, then for
every constant ε > 0, BPP ⊆ DTIME(2nε

).

Proof. where DTIME(t(n)) denotes the set of all languages that
can be decided by deterministic machines with running-time
bounded by O(t(n)).

Given a language L ∈ BPP, let M be a p.p.t.Turing machine
that decides L with probability at least 2/3. Since the running
time of M is bounded by nc for some constant c, M uses at
most nc bits of the random tape. Note that we can trivially
de-randomize M by deterministically trying out all 2nc

possible
random tapes, but such a deterministic machine will take more
time than 2nε

.
Instead, given ε, let g : {0, 1}nε/2

→ {0, 1}nc
be a PRG (with

polynomial expansion factor nc−ε/2). Consider a p.p.t.machine
M′ that does the following given input x:

1. Read ε/2 bits from the random tape, and apply g to gener-
ate nc pseudo-random bits.

2. Simulate and output the answer of M using these pseudo-
random bits.

M′ must also decide L with probability negligibly close to 2/3;
otherwise, M would be a p.p.t.distinguisher that can distinguish
between uniform randomness and the output of g.

Since M′ only uses nε/2 random bits, a deterministic machine
that simulates M′ on all possible random tapes will take time

2nε/2 · poly(n) ∈ O(2nε
)

�

8.3. Imperfect Randomness and Extractors 181

Remark: We can strengthen the definition of a PRG to require
that the output of a PRG be indistinguishable from a uniformly
random string, even when the distinguisher can run in sub-
exponential time (that is, the distinguisher can run in time t(n)
where t(n) ∈ O(2nε

) for all ε > 0). With this stronger assump-
tion, we can show that BPP ⊆ DTIME(2poly(log n)), the class of
languages that can be decided in quasi-polynomial time.

However, for cryptographic primitives, we have seen that
randomness is actually required. For example, any deterministic
public key encryption scheme must be insecure. But how do we
get randomness in the real world? What if we only have access
to “impure” randomness?

8.3 Imperfect Randomness and Extractors

In this section we discuss models of imperfect randomness, and
how to extract truly random strings from imperfect random
sources with deterministic extractors.

8.3.1 Extractors

Intuitively, an extractor should be an efficient and deterministic
machine that produces truly random bits, given a sample from an
imperfect source of randomness. In fact, sometimes we may be
satisfied with just “almost random bits”, which can be formalized
with the notion of ε-closeness.

.Definition 181.1 (ε-closeness) Two distributions X and Y are ε-
close, written X ≈ε Y, if for every (deterministic) distinguisher D
(with no time bound),

|Pr[x ← X : D(x) = 1]− Pr[y← Y : D(y) = 1]| ≤ ε

.Definition 181.2 (ε-extractors) Let C be a set of distributions over
{0, 1}n. An m-bit ε-extractor for C is a deterministic function Ext :
{0, 1}n → {0, 1}m that satisfies the following:

∀X ∈ C, {x ← X : Ext(x)} ≈ε Um

where Um is the uniform distribution over {0, 1}m.

182 chapter 8. *more on randomness and pseudorandomness

8.3.2 Imperfect Randomness

An obvious example of imperfect randomness is to repeatedly
toss a biased coin; every bit in the string would be biased in
the same manner (i.e. the bits are independently and identically
distributed). Van Neumann showed that the following algorithm
is a 0-extractor (i.e. algorithm produces truly random bits): Toss
the biased coin twice. Output 0 if the result was 01, output 1 if
the result was 10, and repeat the experiment otherwise.

A more exotic example of imperfect randomness is to toss a
sequence of different biased coins; every bit in the string would
still be independent, but not biased the same way. We do not
know any 0-extractor in this case. However, we can get a ε-
extractor by tossing a sufficient large number of coins at once
and outputting the XOR of the results.

More generally, one can consider distributions of bit strings
where different bits are not even independent (e.g. bursty errors
in nature). Given an imperfect source, we would like to have
a measure of its “amount of randomness”. We first turn to the
notion of entropy in physics:

.Definition 182.3 (Entropy) Given a distribution X, the entropy of
X, denoted by H(x) is defined as follows:

H(X) = E

[
x ← X : log

(
1

Pr[X = x]

)]
= ∑

x
Pr[X = x] log

(
1

Pr[X = x]

)
When the base of the logarithm is 2, H(x) is the Shannon entropy of X.

Intuitively, Shannon entropy measures how many truly random
bits are “hidden” in X. For example, if X is the uniform distribu-
tion over {0, 1}n, X has Shannon entropy

H(X) = ∑
x∈{0,1}n

Pr[X = x] log2

(
1

Pr[X = x]

)
= 2n(2−n · n) = n

As we will soon see, however, a source with high Shannon en-
tropy can be horrible for extractors. For example, consider X

8.3. Imperfect Randomness and Extractors 183

defined as follows:

X =

{
0n w.p. 0.99

uniformly random element in {0, 1}n w.p. 0.01

Then, H(X) ≈ 0.01n. However, an extractor that samples an
instance from X will see 0n most of the time, and cannot hope
to generate even just one random bit1. Therefore, we need a
stronger notion of randomness.

.Definition 183.4 (Min Entropy) The min entropy of a probability
distribution X, denoted by H∞(x), is defined as follows:

H∞(X) = min
x

log2

(
1

Pr[X = x]

)
Equivalently,

H∞(X) ≥ k⇔ ∀x, Pr[X = x] ≤ 2−k

.Definition 183.5 (k-source) A probability distribution X is called a
k-source if H∞(X) ≥ k. If additionally X is the uniform distribution
on 2k distinct elements, we say X is a k-flat source.

Even with this stronger sense of entropy, however, extraction is
not always possible.

.Theorem 183.6 Let C be the set of all efficiently computable (n− 2)-
sources on {0, 1}n. Then, there are no 1-bit 1/4-extractors for C.

Proof. Suppose the contrary that Ext is a 1/4-extractor for C.
Consider the distribution X generated as follows:

1. Sample x ← Un. If Ext(x) = 1, output x. Otherwise repeat.

2. After 10 iterations with no output, give up and output a
random x ← Un.

1 A possible fix is to sample X many times. However, we restrict ourselves
to one sample only motivated by the fact that some random sources in nature
can not be independently sampled twice. E.g. the sky in the morning is not
independent from the sky in the afternoon.

184 chapter 8. *more on randomness and pseudorandomness

Since Un ∈ C and Ext is a 1/4-extractor, we have

Pr[x ← Un : Ext(x) = 1] ≥ 1/2− 1/4 = 1/4

which implies that |
{

x ∈ {0, 1}n : Ext(x) = 1
}
| ≥ (1/4)2n =

2n−2. We can then characterize X as follows:

X =

{
Un w.p. ≤

(3
4

)10

uniform sample from
{

x ∈ {0, 1}n , Ext(x) = 1
}

o.w.

Since |
{

x ∈ {0, 1}n , Ext(x) = 1
}
| ≥ 2n−2, both cases above are

(n − 2)-sources. This makes X a (n − 2)-source. Moreover, X
is computable in polynomial time since Ext is. This establishes
X ∈ C.

On the other hand,

Pr[x ∈ X : Ext(x) = 1] ≥ 1−
(

3
4

)10

> 0.9

and so {x ∈ X : Ext(x)} is definite not 1/4-close to U1, giving us
the contradiction. �

8.3.3 Left-over hash lemma

Bibliography

[aks04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena.
Primes is in p. Annals of Mathematics, 160(2):781–793,
2004.

[bbfk05] Friedrich Bahr, Michael Böhm, Jens Franke, and
Thorsten Kleinjung. Announcement of the factor-
ization of rsa-200, May 2005. http://www.crypto-
world.com/FactorAnnouncements.html.

[clrs09] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Cliff Stein. Introduction to Algorithms (3rd
Edition). MIT Press, 2009.

[eul63] Leonhard Euler. Theoremata arithmetica nova
methodo demonstrata. In Novi Commentarii academiae
scientiarum Petropolitanae 8, pages 74–104. –, 1763.

[kaf
+

10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Ar-
jen K. Lenstra, Emmanuel Thomé, Joppe W. Bos, Pier-
rick Gaudry, Alexander Kruppa, Peter L. Montgomery,
Dag Arne Osvik, Herman te Riele, Andrey Timofeev,
and Paul Zimmermann. Factorization of a 768-bit rsa
modulus. eprint.iacr.org/2010/006.pdf, January 2010.

[knu81] Donald E. Knuth. The Art of Computer Programming:
Seminumerical algorithms, volume 2. Addison-Wesley,
2nd edition edition, 1981.

[mil76] Gary Miller. Riemanns hypothesis and tests for pri-
mality. J. Comput. System Sci, 13(3):300–317, 1976.

185

186 BIBLIOGRAPHY

[rab80] Michael Rabin. Probabilistic algorithm for testing
primality. J. Number Theory, 12(1):128–138, 1980.

[sha49] Claude Shannon. Communication theory of secrecy
systems. Bell System Technical Journal, 28(4):656–715,
1949.

Appendix A

Background Concepts

Basic Probability

• Events A and B are said to be independent if

Pr[A ∩ B] = Pr[A] · Pr[B]

• The conditional probability of event A given event B, written
as Pr[A | B] is defined as

Pr[A | B] =
Pr[A ∩ B]

Pr[B]

• Bayes theorem relates the Pr[A | B] with Pr[B | A] as follows:

Pr[A | B] =
Pr[B | A]Pr[A]

Pr[B]

• Events A1, A2, . . . , An are said to be pairwise independent if
for every i and every j 6= i, Ai and Aj are independent.

• Union Bound: Let A1, A2, . . . , An be events. Then,

Pr[A1 ∪ A2 ∪ . . . ∪ An] ≤ Pr[A1] + Pr[A2] + . . . + Pr[An]

• Let X be a random variable with range Ω. The expectation
of X is the value:

E[X] = ∑
x∈Ω

x Pr[X = x]

187

188 chapter a. background concepts

The variance is given by,

Var[X] = E[X2]− (E[X])2

• Let X1, X2, . . . , Xn be random variables. Then,

E[X1 + X2 + · · ·+ Xn] = E[X1] + E[X2] + · · ·+ E[Xn]

• If X and Y are independent random variables, then

E[XY] = E[X] · E[Y]
Var[X + Y] = Var[X] + Var[Y]

Markov’s Inequality

If X is a positive random variable with expectation E(X) and
a > 0, then

Pr[X ≥ a] ≤ E(X)

a

Chebyshev’s Inequality

Let X be a random variable with expectation E(X) and variance
σ2, then for any k > 0,

Pr[|X− E(X)| ≥ k] ≤ σ2

k2

Chernoff’s inequality

.Theorem 188.7 Let X1, X2, . . . , Xn denote independent random vari-
ables, such that for all i, E(Xi) = µ and |Xi| ≤ 1.

Pr
[∣∣∑ Xi − µn

∣∣ ≥ ε
]
≤ 2−ε2n

The constants in this statement have been specifically chosen for
simplicity; they can be further optimized for tighter analysis.

A useful application of this inequality is the Majority voting
lemma. Assume you can get independent and identically dis-
tributed, but biased, samples of a bit b; that is, these samples are

Background Concepts 189

correct only with probability 1
2 + 1

poly(n) . Then, given poly(n)
samples, compute the most frequent value b′ of the samples; it
holds with high probability that b = b′.

.Lemma 189.8 (Majority vote) Let b ∈ {0, 1} be a bit and let X1, . . . , X`

denote independent random variables such that Pr[Xi = b] ≥ 1
2 +

1
p(n)

for some polynomial p. Then if ` > p(n)2,

Pr[majority(X1, . . . , X`) = b] > 1− 2??

Proof. Without loss of generality, assume that b = 1. (Similar
analysis will apply in the case b = 0.) In this case, µ = E[Xi] =
1
2 + 1

p(n) , and so µ` = `(1
2 + 1

p(n)) > `/2 + p(n). In order for
the majority procedure to err, less than `/2 of the samples must
agree with b; i.e. ∑ Xi < `/2. Applying the Chernoff bound, we
have that ...

�

Pairwise-independent sampling inequality

Let X1, X2, . . . , Xn denote pair-wise independent random vari-
ables, such that for all i, E(Xi) = µ and |Xi| ≤ 1.

Pr
[∣∣∣∣∑ Xi

n
− µ

∣∣∣∣ ≥ ε

]
≤ 1− µ2

nε2

Note that this is a Chernoff like bound when the random vari-
ables are only pairwise independent. The inequality follows as a
corollary of Chebyshev’s inequality.

Cauchy-Schwarz Inequality

In this course, we will only need Cauchy’s version of this inequal-
ity from 1821 for the case of real numbers. This inequality states
that

.Theorem 189.9 (Cauchy-Schwarz) For real numbers xi and yi,(
n

∑
i

xiyi

)2

≤
n

∑
i

x2
i ·

n

∑
i

y2
i

Appendix B

Basic Complexity Classes

We recall the definitions of the basic complexity classes DP, NP
and BPP.

The Complexity Class DP. We start by recalling the definition
of the class DP, i.e., the class of languages that can be decided in
(deterministic) polynomial-time.

.Definition 191.10 (Complexity Class DP) A language L is recog-
nizable in (deterministic) polynomial-time if there exists a deterministic
polynomial-time algorithm M such that M(x) = 1 if and only if x ∈ L.
DP is the class of languages recognizable in polynomial time.

The Complexity Class NP. We recall the class NP, i.e., the class
of languages for which there exists a proof of membership that
can be verified in polynomial-time.

.Definition 191.11 (Complexity Class NP) A language L is in NP
if there exists a Boolean relation RL ⊆ {0, 1}∗ × {0, 1}∗ and a polyno-
mial p(·) such that RL is recognizable in polynomial-time, and x ∈ L
if and only if there exists a string y ∈ {0, 1}∗ such that |y| ≤ p(|x|)
and (x, y) ∈ RL.

The relation RL is called a witness relation for L. We say that y is a
witness for the membership x ∈ L if (x, y) ∈ RL. We will also let
RL(x) denote the set of witnesses for the membership x ∈ L, i.e.,

RL(x) = {y : (x, y) ∈ L}

191

192 chapter b. basic complexity classes

We let co-NP denote the complement of the class NP, i.e., a
language L is in co-NP if the complement to L is in NP.

The Complexity Class BPP. The class BPP contains the lan-
guages that can be decided in probabilistic polynomial-time (with
two-sided error).

.Definition 192.12 (Complexity Class BPP) A language L is recog-
nizable in probabilistic polynomial-time if there exists a probabilistic
polynomial-time algorithm M such that

• ∀x ∈ L, Pr[M(x) = 1] ≥ 2/3

• ∀x 6∈ L, Pr[M(x) = 0] ≥ 2/3

BPP is the class of languages recognizable in probabilistic polynomial
time.

