Universal Turing Machine
(--- this time I mean it!)

Announcement
No class this coming Friday and Monday.
Updated lecture schedule posted on website.

Turing Machine Descriptions
A description of a TM is a string of 0's and 1's that expresses the TM in some standardized format, that is simple enough to be interpreted by another TM.

For concreteness, standardize on:

```
header | transitions
```

where header = $0^n 10^m 10^k 10^l 10^s 10^t 0^n 10^m$

- $n =$ # states
- $m =$ # working tape symbols
- $k =$ # input tape symbols (first k out of m)
- $s,t,r =$ start, accept, reject states (in range 1...n)
- $u,v =$ blank and left endmarker symbols (1...m)
The transition rule S is represented as a sequence of strings (arbitrary order) in the "transitions" block of code. Each of them is:

$$0^1 0^a 1^b 0^c 1^d 1$$

if the machine, when reading symbol a in state p, writes b, transitions to q, moves in direction d where:

$$d = \begin{cases} 1 & \text{for direction } -1 \\ 2 & \text{for direction } 0 \\ 3 & \text{for direction } +1 \end{cases}$$

A universal Turing machine is one that takes an input string $x \# y$ (where x, y are both written in 0's + 1's) and:

- if x is not the description of a TM, it rejects input $x \# y$.
- if x is a description of TM M and y is not a valid input description, it rejects $x \# y$.
- if $x \# y$ represents a TM M and input string ξ then the UTM simulates M processing input ξ and accepts/rejects it if M accepts/rejects ξ.
For a Turing machine with input alphabet of size k, an input description is a binary string $0^{a_1}10^{a_2}10^{a_3}1\ldots 0^{a_e}1$ representing the input string $a_1a_2\ldots a_e$ where $1 \leq a_1, \ldots, a_e \leq k$.

We can describe the contents of M's working tape in binary similarly by using run-length encoding with runs of 0's of length ranging 1, ..., m. (m = size of working alphabet.)

Def. The configuration of a TM is (p, j, z) where

- $p \in Q$ is a current state,
- $j \in \mathbb{N}$ is the current read/write head position,
- z is a natural number representing working tape contents up to and including last non-blank symbol, (not including left end marker).

Configurations can be run-length encoded as $0^{p}10^{j}10^{z_1}10^{z_2}1\ldots 10^{z_e}1$ where $e = \text{length of } z$.
Skeleton for UTM: Multi-tape with

Tape 1 = input tape
Tape 2 = simulated working tape
Tape 3 = state tape

UTM:

// copy x from input tape to Tape 2
while (not reading # on Tape 1)
 \(\sigma \) = symbol on Tape 1
 write \(\sigma \) on Tape 2
 move right on Tapes 1, 2
endwhile // now Tape 2 contains x
if IsValidTM(Tape 2) returns false:
 Enter reject state, r
// clear Tape 2
while (not reading 1 on Tape 2)
 write blank symbol on Tape 2
 move left
endwhile
while (not reading \(\downarrow \) on Tape 1)
 \(\sigma \) = symbol on Tape 1
 write \(\sigma \) on Tape 2
 move right on Tapes 1, 2
while \(\text{now } y \text{ is on Tape 2} \)

if \(\text{IsValid Input (Tape 1, Tape 2)} \) return false:

Enter reject state, \(r \)

\(\# x y \) is a valid TM and its input

Now we want to actually simulate

\(x \) running on input \(y \)

INITIAL CONFIG (Tape 1, Tape 2)

\(\) Takes \(x \# y \) on Tape 1.

\(\) Write initial configuration of

\(\) \(x \) processing \(y \) on Tape 2.

\(\) \(\begin{array}{c} 0 s 1 0 1 y \\ \hline \text{start state } s, \text{symbols on tape} \end{array} \)

\(\) location \(1 \)

repeat forever:

SINGLE STEP (Tape 1, Tape 2)

\(\) simulates one transition of \(M \)

\(\) descriptor of \(M \) resides on Tape 1

\(\) Tape 2 holds configuration of \(M \)

\(\) function overwrites Tape 2

\(\) with the config after one

\(\) transition.

if \(\text{Test Accept (Tape 1, Tape 2)} \)

Enter accept state, \(t \).
How to implement Single Step?

1. Test Register (Type 1, Type 2)
 - Enter register state in
 - Else break the loop and halt