Max Coverage—Randomized LP Rounding

CS 4820—April 2014

David Steurer

Maximum Coverage Problem

- given: subsets S_{1}, \ldots, S_{m} of a ground set $U=\left\{u_{1}, \ldots, u_{n}\right\}$, parameter $k \in \mathbb{N}$
- find: collection C of k sets so as to maximize the number of covered elements

This problem is NP-complete. In this lecture, we will develop an approximation algorithm for this problem based on linear programming.

LP relaxation for Max Coverage

Given an instance I of Max Coverage, we construct the following LP instance $\operatorname{LP}(\mathcal{I})$.

- variables: x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n}
- constraints:

$$
\begin{array}{ll}
\sum_{i=1}^{m} x_{i}=k, & \quad \text { (cardinality constraint) } \\
\sum_{i: u_{j} \in S_{i}} x_{i} \geq y_{j} \quad \text { for } j \in\{1, \ldots, n\}, \quad \text { (coverage constraints) } \\
0 \leq x_{i} \leq 1 \quad \text { for } i \in\{1, \ldots, m\}, & \\
0 \leq y_{j} \leq 1 \quad \text { for } j \in\{1, \ldots, n\} . &
\end{array}
$$

- objective: maximize $\sum_{j=1}^{n} y_{j}$

Claim 1. $\operatorname{Opt} \operatorname{LP}(\mathcal{I}) \geq \operatorname{Opt} I$.
Proof. Let C be an optimal solution for I, that is, a collection of k sets that cover Opt I elements of U. We are to construct a solution of $\operatorname{LP}(\mathcal{I})$ with objectie value at least $\operatorname{Opt} I$.
Consider the following solution to $\operatorname{LP}(\mathcal{I})$,

$$
x_{i}=\left\{\begin{array}{ll}
1 & \text { if } S_{i} \in C \\
0 & \text { otherwise },
\end{array} \text { and } y_{j}= \begin{cases}1 & \text { if } u_{j} \in \bigcup_{S_{i} \in C} S_{i} \\
0 & \text { otherwise }\end{cases}\right.
$$

This solution satisfies the cardinality constraint because exactly k of the variables x_{1}, \ldots, x_{m} are set to 1 and the rest are set to 0 . The solution also satisfies the coverage constraints for all $j \in\{1, \ldots, n\}$. If $y_{j}=0$, then the corresponding coverage constraint is satisfied because all x_{i} values are nonnegative. Otherwise, if $y_{j}=1$, then u_{j} is covered by C, which means that one of the sets $S_{i} \in C$ contains u_{j}. Therefore, at least one of terms of the sum $\sum_{i: u_{j} \in S_{i}} x_{i}$ is equal to 1 , which is enough to satisfy the inequality.
Claim 2 (Randomized rounding algorithm). There exists a randomized algorithm that, given an optimal solution to $\operatorname{LP}(\mathcal{I})$, outputs a collection C of k sets that in expectation covers at least $(1-1 / e) \cdot \operatorname{Opt} \operatorname{LP}(\mathcal{I})$ elements of U.

We defer the proof of Claim 2 to the next section. At this point, let us note that Claim 1 and Claim 2 together give a ($1-1 / e$)-approximation algorithm for Max Coverage.

LP-based Approximation Algorithm for Max Coverage. Given an instance I of Max Coverage, we construct the linear-programming instance $\operatorname{LP}(\mathcal{I})$. Using a polynomial-time algorithm for linear-programming, we compute an optimal solution for $\operatorname{LP}(\mathcal{I})$. We apply the randomized rounding algorithm from Claim 2 to this LP solution to obtain a solution for the original problem instance \mathcal{I} that covers at least $(1-1 / e) \cdot \operatorname{Opt} \operatorname{LP}(\mathcal{I})$ elements, which, by Claim 1 , is within a $1-1 / e$ factor $\operatorname{Opt}(I)$-the maximum number of elements that k sets can cover.

Randomized Rounding—Proof of Claim 2

Let I be an instance of MC and let x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n} be a solution to $\operatorname{LP}(\mathcal{I})$ with value $\operatorname{Opt} \operatorname{LP}(\mathcal{I})$. The following efficient randomized algorithm turns this LP solution into a collection C of k sets that covers at least $(1-1 / e) \cdot \operatorname{OptLP}(\mathcal{I})$ elements in expectation.

- Interpret the numbers $x_{1} / k, \ldots, x_{m} / k$ as probabilities for the sets S_{1}, \ldots, S_{m}. (Notice that these numbers are nonnegative and add up to 1 according to the constraints of $\operatorname{LP}(\mathcal{I})$.)
- Choose k sets independently at random according to these probabilities.
- Output the collection C consisting of the k chosen sets.

Claim. For every element $u_{j} \in U$, the probability that the collection C produced by the rounding algorithm covers u_{j} is at least $(1-1 / e) \cdot y_{j}$
Proof. If we choose a random set according to the probabilities $x_{1} / k, \ldots, x_{m} / k$, it covers element u_{j} with probability $\sum_{i: u_{j} \in S_{i}} x_{i} / k \geq y_{j} / k$. (Here, we use the coverage constraints.) Therefore, the probability that none of the k sets chosen by the rounding algorithm covers u_{j} is at most $\left(1-y_{j} / k\right)^{k}$. Thus, the element u_{j} is covered by the collection C with probability at least $1-\left(1-y_{j} / k\right)^{k}$. It remains to verify that $1-\left(1-y_{j} / k\right)^{k} \geq(1-1 / e) \cdot y_{j}$. In the interval $[0,1]$, the function on the left is concave and the function on the right is linear. Since the inequality is satisfied at the end points of the interval (i.e., $y_{j}=0$ and $y_{j}=1$), it follows that the inequality holds in the entire interval. (A good way to verify this argument is to plot the two functions in the interval $[0,1]$.)
Claim. The expected number of elements covered by C is at least $(1-1 / e) \cdot \operatorname{Opt} \operatorname{LP}(\mathcal{I})$.
Proof. Let Z_{j} be the $0 / 1$-valued random variable such $Z_{j}=1$ indicates the event that C covers u_{j}. Then, the number of elements that C covers is equal to $\sum_{j=1}^{n} Z_{j}$. Therefore, by linearity of expectation, the expected number of elements covered by C is equal to

$$
\mathbb{E} \sum_{j=1}^{n} Z_{j}=\sum_{j=1}^{n} \mathbb{E} Z_{j}
$$

Since Z_{j} is a $0 / 1$-valued random variable, the expectation of Z_{j} is equal to the probability that $Z_{j}=1$. Hence, the expected number of elements covered by C is equal to

$$
\sum_{j} \operatorname{Pr}\left\{Z_{j}=1\right\}=\sum_{j} \operatorname{Pr}\left\{C \text { covers } u_{j}\right\} \geq(1-1 / e) \sum_{j} y_{j}=(1-1 / e) \cdot \operatorname{OptLP}(\mathcal{I}) .
$$

