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Convex optimization

• Given: convex function f : Rn
→ R

• Find: minimizer x∗ ∈ Rn of function f so that f (x∗) = minx∈Rn f (x)

Note. This problem specification is incomplete. In particular, we did not specify how the
input function f is represented. For the sake of the current discussion, we will assume
that we are given an explicit formula for f (x1, . . . , xn) in terms of the variables x1, . . . , xn,
using standard arithmetic operations as well as max /min operations. Another issue is
that exact minimizers x∗ of f might have irrational coordinates. What does it mean to
output x∗ in this case? We resolve this issue by allowing approximation, that is, our goal is
to find a point x̃ ∈ Rn such that f (x̃) ≈ f (x∗).

Applications

Convex optimization is a very general problem. We will see two examples of problems
that reduce to convex optimization.

Linear programming

Claim. Linear programming reduces to convex optimization.

Given an LP instance, we can construct a convex function such that the minimizers of
this function correspond to optimal LP solutions. To illustrate this reduction, let us show
that the problem of finding a solution to a system of linear inequalities reduces to convex
optimization.

Let {a>1 x ≥ b1, . . . , a>mx ≥ bm} be a system of linear inequalities. (Here, a>x denotes the scalar
product of the vectors a and x.) Then, a point x ∈ Rn is a solution to this system of linear
inequalities if and only if f (x) ≤ 0 for the convex function f : Rn

→ R defined by

f (x) = max{0, b1 − a>1 x, . . . , bm − a>mx} .

Hence, if there exists a solution to the linear system, we can find one by computing a
minimizer of f .

Supervised Machine Learning

Motivation. Suppose we have a way of encoding movies as vectors in Rn. Then, the set
of all movies corresponds to some subset Y ⊆ Rn. To each movie y ∈ Y, we can assign
a label σ(y) ∈ {±1} depending on whether we like the movie or not. Further, suppose
that this labeling happens to be consistent with a hyperplane H through the origin, in the
sense that all points y ∈ Y above the hyperplane are labeled σ(y) = 1 and all points y ∈ Y
below the hyperplane are labeled σ(y) = −1. However, we have seen only a small subset
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{y1, . . . , ym} ⊆ Y of the set of all movies and we don’t know the separating hyperplane
H. Can we extrapolate such a separating hyperplane given a small number of (random)
examples y1, . . . , ym and their labels σ1 = σ(y1), . . . , σm = σ(ym)?

Model/Problem (Support vector machine).

• Given: example points y1, . . . , ym ∈ Rn and labels σ1, . . . , σm ∈ {±1}
• Find: a vector w ∈ Rn such that the hyperplane {x | w>x = 0} provides an “optimal

separation” between positive and negative examples, where the notion of “optimal
separation” is formalized as minimizing the following convex function f for some
parameter λ ≥ 0,

f (w) =

m∑
i=1

max{1 − σiw>yi, 0} + λ · ‖w‖2 .

Discussion. What’s the justification for the choice of f ? An “ideal separation” is achieved
by a vector w with very small Euclidean length such that w>y1 = σ1, . . . ,w>ym = σm.
However such an ideal separation might not be possible for a given set of example points
and labels. The function f is some way of measuring how far way w is from an ideal
separation.

Convexity

Definition. A function f : Rn
→ R is convex if for every point x ∈ Rn, there exists a

lower-bounding linear interpolation `x : Rn
→ R such that `x(x) = f (x) and `x(y) ≥ f (y) for all

y ∈ Rn.

Notation. Since `x is a linear function with `x(x) = f (x), there exists a vector ∇x f ∈ Rn such
that

`x(y) = f (x) + (∇x f )>(y − x) .

The vector ∇x f is called a (sub-)gradient of the function f at the point x ∈ Rn.

Assumption. Since we assumed that f is represented as a simple formula, there exists an
efficient algorithm that, given the formula for f and a point x ∈ Rn, computes f (x) and
∇x f .

Gradient Descent

Parameters.

• starting point x0 ∈ Rn,
• step size γ > 0
• number of iterations T ∈N

Algorithm.

• For t from 0 to T − 1,

– compute xt+1 = xt − γ∇x f .

• Output the best point x̃ ∈ Rn among x0, x1, . . . , xT (so that f (x̃) = min{ f (x0), . . . , f (xT)}).
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Theorem. Suppose ‖x∗ − x0‖
2
≤ D2 and ‖∇x f ‖2 ≤ L2 for all x ∈ Rn with ‖x∗ − x‖2 ≤ D2.

Then, if we choose γ = ε/L2 and T = L2D2/ε2, then Gradient Descent outputs a point x̃
with f (x̃) ≤ f (x∗) + ε.

The key ingredient for the analysis is the following lemma, which shows that in each
iteration either f (xt) ≤ f (x∗) + ε or the distance of the current point to x∗ decreases by at
least 2γε − γ2

‖∇x f ‖2

Lemma.
‖x∗ − xt+1‖

2
≤ ‖x∗ − xt+1‖

2
− 2γ · ( f (xt) − f (x∗)) + γ2

· ‖∇x f ‖2

Proof. The following algebraic identity achieves most of the proof,

‖x∗ − xt+1‖
2 = ‖x∗ − xt + γ∇xt f ‖2 (gradient descent iteration)

= ‖x∗ − xt‖
2 + 2γ · (∇xt f )>(x∗ − xt) + γ2

· ‖∇xt f ‖2 (quadratic binomial expansion)

= ‖x∗ − xt‖
2
− 2γ ·

(
f (xt) − f (xt) − (∇xt f )>(x∗ − xt)

)
+ γ2

· ‖∇xt f ‖2

= ‖x∗ − xt‖
2
− 2γ ·

(
f (xt) − `xt(x

∗)
)

+ γ2
· ‖∇xt f ‖2 (definition of gradient)

By convexity, `xt(x∗) ≤ f (x∗). This inequality together with the previous identity imply the
inequality in the lemma.

Proof of theorem

Consider some point xt that does not satisfy the conclusion of the theorem, i.e., f (xt) >
f (x∗) + ε. Then, by the choice of γ and the condition on L2, the lemma implies that

‖x∗ − xt+1‖
2 < ‖x∗ − xt‖

2
− ε2/L2 .

Suppose that all points x0, . . . , xk−1 violate the conclusion of the theorem, then

‖x∗ − xk‖
2 < ‖x∗ − xk−1‖

2
− ε2/L2 < ‖x∗ − xk−2‖

2
− 2 · ε2/L2 < · · · < ‖x∗ − x0‖

2
− k · ε2/L2

Since the left-hand side is nonnegative and ‖x∗ − x0‖
2
≤ D2, it follows that k < D2L2/ε2.

Therefore, if we run Gradient Descent for T = D2L2/ε2, one of the points x0, . . . , xT−1
satisfies the conclusion of the theorem.
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