
Introduction to Algorithms Lecture Notes on Gradient Descent, Part 2
CS 4820, Spring 2014 Monday, May 5

Review

Recall that a function f : Rn → R is convex if at each point x ∈ Rn there is a vector ∇f(x) ∈ Rn, called
the gradient of f , such that the inequality

f(y) ≥ f(x) +∇f(x)ᵀ(y − x)

is satisfied for all y ∈ Rn. Vectors in Rn are interpreted as columns vectors, hence the notation
∇f(x)ᵀ(y − x) denotes the dot product of the vectors ∇f(x) and y − x. The linear function `x(y) =
f(x)+∇f(x)ᵀ(y−x) can be interpreted as the function whose graph constitutes the tangent hyperplane
to the graph of f at the point (x, f(x)).

In a convex optimization problem we are given the function f (represented in some form that allows us
to evaluate f and its gradient) along with an initial point x0. We are asked to find the minimizer x∗ of
f , i.e. the point x∗ ∈ Rn where f(x∗) = minx∈Rn f(x). In reality, algorithms for convex minimization
do not output the exact minimizer but merely a point at which the value of f is within ε of its global
minimum value.

We make the following assumptions abaout f . (Throughout these notes, ‖y‖ denotes the 2-norm of y,
i.e. the Euclidean length of the vector y, which according to the Pythagorean Theorem is equal to square
root of yᵀy.)

‖x∗ − x0‖ ≤ D (1)
‖∇f(x)‖ ≤ L ∀x ∈ Rnwith‖x∗ − x‖ ≤ D (2)

Under those assumptions we saw that a gradient descent algorithm with fixed step size γ = ε/L2 finds
a point x̄ at which f(x̄) ≤ f(x∗) + ε in at most T = L2D2/ε2 iterations.

Strongly convex functions

In this lecture our aim is to provide a gradient descent method that converges much more rapidly when
the function f is strongly convex, which informally means that the curvature of f is not too close to zero.
The material in this lecture is drawn from Boyd and Vandenberghe, Convex Optimization, published
by Cambridge University Press and available for free download (with the publisher’s permission) at
http://www.stanford.edu/~boyd/cvxbook/.

We will make the following assumptions about f .

f(x0)− f(x∗) ≤ B (3)
m

2
‖y − x‖2 ≤ f(y)− `x(y) ≤ M

2
‖y − x‖2 ∀x, y ∈ Rn (4)

When f is twice differentiable, the second inequality is equivalent to requiring that the Hessian matrix
∇2f(x) has all of its eigenvalues between m and M , at every point x ∈ Rn. The ratio M/m is thus an
upper bound on the condition number of the Hessian of f . In geometric terms, when M/m is close to 1,
it means that the level sets of f are nearly round, while if M/m is large it means that the level sets of
f may be quite elongated.



We will analyze an algorithm which, in each iteration, moves in the direction of −∇f(x) until it reaches
the point on the ray {x − t∇f(x) | t ≥ 0} where the function f is (exactly or approximately) min-
imized. The advantage of this algorithm is that it is able to take large steps when the value of f is
far from its minimum, and we will see that this is a tremendous advantage in terms of the number of
iterations.
1: repeat
2: ∆x = −∇f(x).
3: Choose t ≥ 0 so as to minimize f(x+ t∆x).
4: x← x+ t∆x.
5: until ‖∇f(x)‖ ≤ 2εm

To see why the stopping condition makes sense, observe that inequality (4) implies

`x(x∗)− f(x∗) ≤ −m
2
‖x∗ − x‖2

f(x)− f(x∗) ≤ ∇f(x)T (x∗ − x)− m

2
‖x∗ − x‖2

f(x)− f(x∗) ≤ min
t∈R
‖∇f(x)‖t− m

2
t2

f(x)− f(x∗) ≤ ‖∇f(x)‖2

2m
. (5)

The last line follows from basic calculus. The stopping condition ‖∇f(x)‖2 ≤ 2εm ensures that f(x)−
f(x∗) ≤ ε as desired.

To bound the number of iterations, we show that f(x)− f(x∗) decreases by a prescribed multiplicative
factor in each iteration. First observe that for any t,

f(x+ t∆x)− `x(x+ t∆x) ≤ M

2
‖t∆x‖2 =

M

2
‖∇f(x)‖2t2

f(x+ t∆x)− f(x∗) ≤ `x(x+ t∆x)− f(x∗) +
M

2
‖∇f(x)‖2t2

= f(x)− f(x∗) +∇f(x)ᵀ(t∆x) +
M

2
‖∇f(x)‖2t2

≤ f(x)− f(x∗)− ‖∇f(x)‖2t+
M

2
‖∇f(x)‖2t2

The right side can be made as small as f(x) − f(x∗) − ‖∇f(x)‖
2

2M by setting t = ‖∇f(x)‖
M . Our algorithm

sets t to minimize the left side, hence

f(x+ t∆x)− f(x∗) ≤ f(x)− f(x∗)− ‖∇f(x)‖2

2M
. (6)

Recalling from inequality (5) that ‖∇f(x)‖2 ≥ 2m(f(x)− f(x∗)), we see that inequality (6) implies

f(x+ t∆x)− f(x∗) ≤ f(x)− f(x∗)− m

M
[f(x)− f(x∗)] =

(
1− m

M

)
[f(x)− f(x∗)]. (7)

This inequality shows that the difference f(x) − f(x∗) shrinks by a factor of 1 − m
M , or better, in each

iteration. Thus, after no more than log1−m/M (ε/B) iterations, we reach a point where f(x)−f(x∗) ≤ ε,
as was our goal. The expression log1−m/M (ε/B) is somewhat hard to parse, but we can bound it from
above by a simpler expression, by using the inequality ln(1− x) ≤ −x.

log1−m/M (ε/B) =
ln(ε/B)

ln(1−m/M)
=

ln(B/ε)

− ln(1−m/M)
≤

(
M

m

)
ln

(
B

ε

)
.



The key things to notice about this upper bound are that it is logarithmic in 1/ε—as opposed to the
algorithm from the previous lecture whose number of iterations was quadratic in 1/ε—and that the
number of iterations depends linearly on the condition number M/m. Thus, the method is very fast
when the Hessian of the convex function is not too ill-conditioned; for example when M/m is a constant
the number of iterations is merely logarithmic in 1/ε.

Another thing to point out is that our bound on the number of iterations has no dependence on the
dimension, n. Thus, the method is suitable even for very high-dimensional problems, as long as the high
dimensionality doesn’t lead to an excessively large condition number M/m.


