
Introduction to Algorithms The Edmonds-Karp Max-Flow Algorithm
CS 4820, Spring 2010 Friday, March 5

These lecture notes present the Edmonds-Karp maximum flow algorithm. We’ll assume famil-
iarity with the basic notions of residual graph, augmenting path, and bottleneck capacity. Recall
that the Ford-Fulkerson algorithm is the following algorithm for the maximum flow problem.

Algorithm 1 FordFulkerson(G)

1: f ← 0; Gf ← G
2: while Gf contains an s− t path P do
3: Let P be one such path.
4: Augment f using P .
5: Update Gf

6: end while
7: return f

The algorithm’s running time is pseudopolynomial, but not polynomial. We’ve seen an ex-
ample illustrating that a bad choice of augmenting paths can cause the Ford-Fulkerson algorithm
to run for an exponential number of steps. In fact, when the edge capacities are allowed to be
real-valued (rather than integer-valued) there exist executions of the Ford-Fulkerson algorithm
that never terminate!

The Edmonds-Karp algorithm refines the Ford-Fulkerson algorithm by always choosing the
augmenting path with the smallest number of edges. In these notes, we will analyze the al-
gorithm’s running time and prove that it is polynomial in m and n (the number of edges and
vertices of the flow network).

Algorithm 2 EdmondsKarp(G)

1: f ← 0; Gf ← G
2: while Gf contains an s− t path P do
3: Let P be an s− t path in Gf with the minimum number of edges.
4: Augment f using P .
5: Update Gf

6: end while
7: return f

To begin our analysis of the Edmonds-Karp algorithm, note that the s − t path in Gf with
the minimum number of edges can be found in O(m) time using breadth-first search. (Generally,
breadth-first search in a graph with n vertices and m edges requires O(m + n) time, but our
standing assumption that every vertex of the graph has at least one incident edge implies that
n ≤ 2m from which it follows that O(m + n) = O(m).) Once path P is discovered, it takes only
O(n) time to augment f using P and O(n) time to update Gf , so — again using the fact that
n = O(m) — we see that one iteration of the while loop in EdmondsKarp(G) requires only
O(m) time. However, we still need to figure out how many iterations of the while loop could
take place, in the worst case.

To reason about the maximum number of while loop iterations, we take an indirect approach
based on thinking about the breadth-first search tree of Gf , starting from s. (Henceforth we call



this the BFS tree for short.) Recall that the vertices of the BFS tree can be organized into levels
L0, L1, . . . , Lk, where L0 = {s} and Li (i > 0) consists of all the vertices v such that the path from
s to v in the BFS tree has i edges. An elementary and useful property of BFS is the following:
for all v ∈ Lj, every shortest path from s to v contains exactly one vertex from each of levels
L0, L1, . . . , Lj (in that order) and no other vertices. In particular, every time the Edmonds-Karp
algorithm chooses an augmenting path, that path consists of vertices s = v0, v1, . . . , vj = t with
vi ∈ Li for 0 ≤ i ≤ j.

Let us consider how the graph Gf changes when we augment f using P .

• If P contains a forward edge e, then edge e may be deleted from Gf (if the augmentation
saturates e) and the backward edge←−e may be added to Gf (if Gf did not contain←−e before
the augmentation).

• If P contains a backward edge ←−e , then ←−e may be deleted from Gf (if the augmentation
eliminates all flow on e) and the forward edge e may be added to Gf (if e had previously
been saturated before the augmentation).

• No other edges are added or deleted.

• Thus, every new edge that is created when augmenting f using P is the reverse of an edge
that belongs to P .

Recalling that every edge of P goes from level i to i + 1, for some 0 ≤ i < j, we see that every
new edge that gets created in Gf after the augmentation must go from level i + 1 to level i, for
some 0 ≤ i < j. In particular, for any vertex v, the distance from s to v never decreases as we run
the Edmonds-Karp algorithm! (Creating edges that point from a higher-numbered level of the
BFS tree to a lower-numbered level can never produce a “shortcut” that reduces the length of
the shortest path from s to v.) This is the key property that guides our analysis of the algorithm.

When we choose augmenting path P in Gf , let us say that edge e ∈ E(Gf ) is a bottleneck
edge for P if cf (e) = bottleneck(f, P ). Notice that if e = (u, v) is a bottleneck edge for P , then it
is eliminated from Gf after augmenting f using P . Suppose that u ∈ Li and v ∈ Li+1 when this
happens. In order for e to be added back into Gf later on, u must occupy a higher-numbered
level than v. (Recall that edges are only added to Gf when they point from one level to the
immediately preceding level.) Since the distance from s to v never decreases, this means that v
remains in level Li+1 or higher, and u must rise to level Li+2 or higher, before e is added back
into Gf . The BFS tree has no levels numbered above n. Thus, the total number of times that
e can occur as a bottleneck edge during the Edmonds-Karp algorithm is at most n/2. There
are 2m edges that can potentially appear in the residual graph, and each of them serves as a
bottleneck edge at most n/2 times, so there are at most mn bottleneck edges in total. Every
iteration of the while loop identifies an augmenting path, and that augmenting path must have
a bottleneck edge, so there are at most mn while loop iterations in total. Earlier, we saw that
every iteration of the loop takes O(m) time, so the running time of the Edmonds-Karp algorithm
is O(m2n).

Faster network flow algorithms have been discovered. There is an algorithm due to Dinic
that is very similar in spirit to Edmonds-Karp but achieves a running time of O(mn2). A mod-
ification of Dinic’s algorithm using fancy data structures achieves running time O(mn log n).
The preflow-push algorithm, presented in Section 7.4 of Kleinberg-Tardos, has a running time
of O(n3). The fastest known algorithm, due to Goldberg and Rao, has a running time of
O(m min{n2/3, m1/2} log(n2/m) log(U)), provided that the edge capacities are integers between
1 and U .


