Math 335 HW 6 - Due March 12, 2004

- 1. Let F be a field.
 - (a) Let f(x) be a polynomial of degree d in F[x]. Prove that f has at most d distinct roots in F. (A root of f is an element a such that f(a) = 0.)
 - (b) Suppose that F is a finite field with p^k elements. Show that $x^{p^k} x$ has exactly p^k distinct roots in F.
 - (c) Suppose that F is a finite field with p^k elements. Let $f(x) \in F[x]$, where the degree of f is d and assume that f(x) divides $x^{p^k} x$. Show that f has d distinct roots in F.
- 2. Let F be a field. Let f be a degree d polynomial in F[x] and let g be a degree d' polynomial in F[x] with d' < d. Write the Euclidean algorithm as follows:

$$\begin{array}{rcl} f & = & q_0g + r_1 \\ g & = & q_1r_1 + r_2 \\ r_1 & = & q_2r_2 + r_3 \\ \vdots & & \vdots + \vdots \\ r_{m-1} & = & q_mr_m + r_{m+1} \end{array}$$

with $r_{m+1} = (f, g)$. Give the best estimate you can for m.

- 3. Problem 5.6 of the text.
- 4. Problem 5.7 of the text.
- 5. Problem 5.10 of the text.
- 6. Problem 5.11 of the text.
- 7. A group G is called *cyclic* if there is some $g \in G$ such that every element of G is a power of g. For each group below determine whether or not the group is cyclic.
 - (a) Z_{11} with addition.
 - (b) $(Z_{24})^*$ with multiplication.
 - (c) $(\mathbb{Z}_2[x]/(x^3+x+1))^*$ with multiplication.
- 8. List all the right cosets of $\{0, 5, 10\}$ as a subgroup of \mathbb{Z}_{15} (with addition). Also list the left cosets of $\{0, 5, 10\}$ as a subgroup of \mathbb{Z}_{15} .

Recall that a permutation of $\{1,2,3\}$ is a bijection $\pi:\{1,2,3\} \to \{1,2,3\}$. Let G be the group of all permutations of $\{1,2,3\}$. (There are six of them.) Multiplication is composition of functions. For instance, if ϕ is the permutation which maps $1 \to 1, 2 \to 3, 3 \to 2$ and ψ is the permutation which maps $1 \to 2, 2 \to 3$ and $3 \to 1$, then $\pi_1 \cdot \pi_2$ is the permutation which maps $1 \to 3, 2 \to 2$ and $3 \to 1$. Let H be the subgroup of G consisting of two permutations π_1 , which maps $1 \to 1, 2 \to 2$ and $3 \to 3$, and π_2 which maps $1 \to 2, 2 \to 1$ and $3 \to 3$. List the left cosets and the right cosets of H as a subgroup of G.

1