Math 335 HW 1 - Due Feb. 9, 2004

1. A partition of the integers, \mathbb{Z} , is a collection A_i of subsets of \mathbb{Z} such that the union of all of the subsets is all of \mathbb{Z} , and if $i \neq j$, then A_i is disjoint from A_j . For example, A_1 the odd numbers and A_2 the even numbers is a partition. A different example is $A_i = \{3i, 3i+1, 3i+2\}$, where i is any integer. You can visualize this partition as $\{\dots, \{-6, -5, -4\}, \{-3, -2, -1\}, \{0, 1, 2\}, \{3, 4, 5\}, \dots\}$.

An equivalence relation on \mathbb{Z} is subset $R \subseteq \mathbb{Z} \times \mathbb{Z}$ such that

- (a) $(a, a) \in R$ for all $a \in \mathbb{Z}$. (R is reflexive.)
- (b) If $(a, b) \in R$, then $(b, a) \in R$. (R is symmetric)
- (c) If $(a,b) \in R$ and $(b,c,) \in R$, then $(a,c) \in r$. (R is transitive).

An example of an equivalence relation is $R = \{(a, a) \in \mathbb{Z} \times \mathbb{Z}\}$. The subset $R' = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \leq b\}$ is NOT an equivalence relation because $(3, 5) \in R'$, but $(5, 3) \notin R'$.

- (a) Given a partition A_i of the integers, let $R = \{(a, b) \in \mathbb{Z} : a \text{ and } b \text{ are in the same subset of the partition.}\}$. Prove that R is an equivalence relation.
- (b) Let R be an equivalence relation on \mathbb{Z} . For each $i \in \mathbb{Z}$ define $A_i = \{j \in \mathbb{Z} : (i, j) \in R.\}$ Show that for every i and j, either $A_i = A_j$, or A_i and A_j are disjoint. Hence, the set of all distinct A_i form a partition of \mathbb{Z} .
- (c) Fix an integer m. Prove that $R = \{(a, b,) \in \mathbb{Z} \times \mathbb{Z} : a \equiv b \pmod{m}\}$ is an equivalence relation on \mathbb{Z} .
- 2. Show all work.
 - (a) Compute (6188,4709).
 - (b) Show that 1234 and 357 are relatively prime. Find the multiplicative inverse of 357 in \mathbb{Z}_{1234} .
- 3. Suppose we are told that the plaintext

breathtaking

yields the ciphertext

RUPOTENTOIFV.

where the Hill cipher is used, but m is not specified. Determine the encryption matrix.

4. Decrypt the following Vigenére Cipher:

KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXRGUD DKOTFMBPVGEGLTGCKQRACQCWDNAWCRXIZAKFTLEWRPTYC QKYVXCHKFTPONCQQRHJVAJUWETMCMSPKQDYHJVDAHCTRL SVSKCGCZQQDZXGSFRLSWCWSJTBHAFSIASPRJAHKJRJUMV GKMITZHFPDISPZLVLGWTFPLKKEBDPGCEBSHCTJRWXBAFS PEZQNRWXCVYCGAONWDDKACKAWBBIKFTIOVKCGGHJVLNHI FFSQESVYCLACNVRWBBIREPBBVFEXOSCDYGZWPFDTKFQIY CWHJVLNHIQIBTKHJVNPIST

5. Decrypt the following message. It was encrypted using the Hill cipher with encrypting matrix

$$\begin{bmatrix} 4 & 3 \\ 5 & 1 \end{bmatrix}.$$

HMSQNNAYXDWKXVWMINET

6. For any $m \ge 1$, $\phi(m)$ is the number of integers a such that $1 \le a \le m$ and a is relatively prime to m. This function is called the *Euler* ϕ -function. For instance, if p is prime, then $\phi(p) = p - 1$.

1

- (a) If p is prime, what is $\phi(p^r)$?
- (b) Compute $\phi(10), \phi(5), \phi(9), \phi(4), \phi(20), \phi(45), \phi(36),$ and $\phi(40).$
- (c) Suppose that r and s are relatively prime. Find a formula for $\phi(rs).$ * Can you prove this formula? *
- 7. Write the Euclidean algorithm as follows:

Prove that $r_i \geq 2r_{i+2}$ whenever this makes sense. Prove that m is $O((\log a)^2)$.