Inference, Deployment, and
Compression

CS4787/5777 Lecture 23 — Fall 2025

Review: Why we should care about inference

* Train once, infer many times
 Many production machine learning systems just do inference

« Often want to run inference on low-power edge
devices
* Such as cell phones, security cameras
« Limited memory on these devices to store models

« Need to get responses to users quickly
« On the web, users won't wait more than a second

Review: Metrics for Inference

* Important metric: accuracy

« Inference accuracy can be close to test accuracy — if data from same
distribution

* Important metric: throughput
- How many examples can we classify in some amount of time

* Important metric: latency
- How long does it take to get a prediction for a single example

* Important metric: model size

- How much memory do we need to store/transmit the model for
prediction

* Important metric: energy use
- How much energy do we use to produce each prediction

* Important metric: cost
« How much money will all this cost us

Tradeoffs

* When designing an ML system for inference, there are
trade-offs among all these metrics!

- Most "techniques” do not give free improvements, but have
some trade-off where some metrics get better and others get
worst

* There is no one-size-fits-all “best” way to do ML
iInference.

 We need to decide which metric we value the most
 Then keep that in mind as we design the system

Improving the performance of
inference

Altering the batch size

 Just like with learning, we can make predictions in batches

* Increasing the batch size helps improve parallelism

* Provides more work to parallelize and an additional dimension for
parallelization

* This improves throughput

« But increasing the batch size can make us do more work
before we can return an answer for any individual example
« Can negatively affect latency

Neural Network Compression

* Find an easier-to-compute network with similar
accuracy

« Or find a network with smaller model size, depending on the
goal

* Most compression methods are lossy, meaning that the
compressed network may sometimes predict differently

« Many techniques for doing this
« We'll see some in the following slides

Simple Technique: “Old-School” Compression

» Just apply a standard lossless compression technigque to
the weights of your neural network.

« Huffman coding works here, for example.
« Even something very general like gzip can be beneficial.

* This lowers the stored model size without affecting
accuracy

* But this does mean we need to decompress
eventually, so it comes at the cost of some compute &
can affect start-up latency.

Problem with Lossless Compression

« Something like gzip or bz2 doesn’'t know the difference
between useful and useless information

* |t preserves everything losslessly

» Low-order bits of neural network weights are like a
random signal that contains little useful information

* Not only are they unnecessary, they're hard to compress!

« Compressor can't distinguish important from
unimportant weights—needs to preserve both!

Low-precision arithmetic for inference

« Very simple: just use low-precision arithmetic in inference
* This discards the low-usefulness low-order bits of original format

« Can make any signals in the model low-precision

 Simple heuristic for compression: keep lowering the
precision of signals until the accuracy decreases
« Can often get down below 16 bit numbers with this method alone

- Binarization is low-precision arithmetic in the extreme
 Even some hardware support with binary TensorCores

Models in low-precision @ gpt-oss-20b

Tensors = Shape Precision

model.layers.0

input_layernorm.weight [2 880] BF16
mlp (2,
experts
.down_proj_bias [32, 2880] BF16
down_proj_blocks [32, 2880, 90, 16] us
down_proj_scales [32, 2880, 90] us
gate_up_proj_bias [32, 5760] BF16
gate_up_proj_blocks [32, 5760, 90, 16] us
gate_up_proj_scales [32, 5760, 90] us
router
bias [32] BF16
weight [32, 2880] BF16
post_attention_layernorm.weight [2 880] BF16
self_attn
k_proj
bias [512] BF16
weight [512, 2 880] BF16
o_proj (

bias [2 880] BF16

Mixed—precision inference

« Activation quantization also important!
 What are the tradeoffs?

« We often see models described as W4A16 or W4A4

* This notation describes how many bits of precision are used for
the weights and how many are used for the activations

 Where do we often use higher precision weights?
* |Nn softmax
* [N attention layers
 Initial embedding layer (why?)

Post-Training Quantization

* Pretrain a model in high-precision, fine-tune it to task,
then quantize it afterwards to the format we need

 Many techniques for this!

» Typical to use a development set to gather activation statistics
then compress based on those statistics

« For example, adaptive rounding estimates the second
moment matrix of activations entering a linear layer, then uses
that matrix to decide how to round

» Data-free methods eschew a development set

Post-Training Quantization: Open Source

* [t's now become popular © gpt-oss-20b-GEUF
to do this and release Dowrloads last montt crnh
. . 227,755
guantized models online
IN a variety of precisions

B GGUF Modelsize 21B params Architecture gpt-oss {3} Chat template
« Targets efficient local
infe rence & Hardware compatibility Add hardware for estimation
2-bit Q2_K Q2_K_L
3-bit Q3_K_S Q3_K_M
* You don't have to +bit (Q4K.S 116D Q4011568 Q41 11668 QAKM 11668 QKL
guantize the model 5 it Q5 11768 Q5 KM
yourself anymore sl QK 1268 QKR
8-bit Q8_0 Q8_K_XL

16-bit F16

Quantization Aware Training (QAT)

« Train a model in with low-precision weights
 No need to quantize afterwards

 Almost always we keep the optimizer states (e.g. Adam
weight buffer, momentum buffer, second moment
buffer) in higher precision during training
* The weights used in the forward pass are a quantized version
of the weights stored in the optimizer

Quantization Aware Training (QAT)

« How do we take .
. . round(x)
derivatives? 4 round(x)

ax

minimize: £(round(w))

;.
* If we just math it out, the 0 J_’_,I'JF
derivative of a rounding -

operation is mostly O!

1 1 1 1 1 1 1
—8 —b6 —4 -2 0 2 4 o 8
unquantized input x

Quantization Aware Training (QAT)

« How do we take 61— round(x
derivatives? 2 round(x)
4_
. . . —— straight-through estimator
minimize: £(round(w))
_ e

- Straight-through- 01 J’I,—"r
estimator .

» Just imagine the rounding
wasn't there when we do —4 -
the forward pass

1 1 1 1 1 1 1
—8 —b6 —4 -2 0 2 4 o 8
unquantized input x

Quantization Aware Training (QAT)

 Don't mix this up with using low-precision arithmetic
during training to train more efficiently!

« QAT is about producing a quantized model for
downstream inference use
* |t might also be more efficient to train, which would be good
« But that's incidental to the method

Pruning

 Remove activations that are usually zero
 Orthat don't seem to be contributing much
to the model
« Good heuristic: remove the smallest X% of weights

« Effectively creates a smaller model

* This makes it easy to retrain, since we're just training a smaller
network

* There's always the question of whether training a smaller
model in the first place would have been as good or better.
 But usually pruning is observed to produce benefits.

Types of Pruning

 Neuron pruning
« Remove whole rows and columns
from weight matrices

« Unstructured weight pruning
« Remove weights, making them O
* Results in a sparse model

« Structured weight pruning

https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-
ampere-architecture-and-applications-in-search-engines/

Structured-sparse
matrix W

Fine-grained
structured-sparse

R X C/2 elements +
R X C/2 2bits meta
data

.L_

Structured-sparse and
compressed matrix W

Non-zero data 2-bits
values indices

* E.9. 2:4 sparsity where 2 of every block of 4 weights must be O

Fine-Tuning atter Compression

 Powerful idea: apply a lossy compression operation, then
retrain the model to improve accuracy

Retrain final
Weights compressed
on Training Set model

original Lossy
model Compression

» A general way of “getting back” accuracy lost due to
lossy compression.

Knowledge distillation

* |dea: take a large/complex model (the teacher)
and train a smaller network (the student) to

match its output
 Hinton et. al. “Distilling the Knowledge in a
Neural Network.”

« Often used for distilling ensemble models into a single
network

- Ensemble models average predictions from multiple independently-
trained models into a single better prediction

« Ensembles often win Kaggle competitions

« Can also improve the accuracy in some cases.

Knowledge distillation

» |[dea: take a large/complex model and train a

smaller network to match its output
* E.g. Hinton et. al. “Distilling the Knowledge in a
Neural Network.”

* In generative Al, it's often used to improve smaller
student models in a pretrained model family by using
larger models in the same family as the teacher

* E.g. Gemini-Nano was trained by distilling from larger Gemini
models.

Efficient architectures

« Some neural network architectures are designed to be
efficient at inference time

« Early examples: MobileNet, ShuffleNet, SqueezeNet
« Common for vision

* Networks are often based on sparsely connected neurons

* This limits the number of weights which makes models smaller and
easier to run inference on

* To be efficient, we can just train one of these networks in
the first place for our application.

Efticient architectures: Mixture of Experts

https://github.com/deepseek-ai/DeepSeek-V2/tree/main

(Also note the cool KV cache compression on the bottom of
this figure via a low-rank decomposition)

DeepSeekMoE
r--=-=-"=-=-==-=========="----sssssT TS TEETETEE" I
: o000 - - 0000 C] Routed Expert :
¢ U Se O n |y SO m e Transformer Block : Output Hidde[n h; |] C] Shared Ex::ert :
weights in the i L N |
M L p b | OC k fo r e a C h E Feed-Forward Network :j:ﬁ E’Mr i
tO ke n i e E E d:hﬂ]:[l] Top-K, i
E i E OOOO] Input Hidden u; :
: : Multi-Head Latent Attention (MLA) |
. I 1 rm- -~ T T T T TS T T T T T T Tt T I
o C h O Ose Wh I C h : Attention § v | Cached During Inference :
. | . Output Hidden u:[(OOOQQO 1 0000) |
We I g h tS to u Se E i b | [Multi-Head Attention E
I | RMS Norm : : 1 :
with a router layer i - Py—— |
KO (k)
" apply 1
: RoPE :

Re-use of computation

* For video and time-series data, there is a lot of
redundant information from one frame to the next.

* We can try to re-use some of the computation from
previous frames.

* This is less popular than some of the other approaches here,
because it Is not really general.

Re-use of computation: KV Cache

 The KV cache is the ur-example of this
 Reuses computation to process later tokens in the sequence
« Attention operation is designed for this!

« Can also target KV cache with other compression
methods we've already seen
« KV cache guantization
« Sparse KV caching

Speculative Decoding

* Large language model inference latency is bottlenecked by
memory bandwidth

 Need to read the whole model to make each token prediction

« Can we get around this bottleneck and infer faster?

- Idea: generate multiple tokens at a time from a lightweight
“‘draft” model and then check them with the big model

 Only requires one forward pass of the big model

- What are the tradeoffs of this method?

The last resort for speeding up DNN inference

« Train another, faster type of model that is not a deep
neural network

 For some real-time applications, you can't always use a DNN

* |f you can get away with a linear model, it's almost always
much faster.

« Also, decision trees tend to be quite fast for inference.

. ..but with how technology is developing, we're seeing more
and more support for fast DNN inference (especially on
edge hardware) so this will become less necessary.

Where do we run inference?

Inference on the cloud

* Most inference today is run on cloud platforms

* The cloud supports large amounts of compute
« And makes It easy to access it and make it reliable

* This Is a good place to put Al that needs to think
about data

* For interactive models, latency is critical

Inference in the Al cloud

* Al cloud platforms sell generations, fine-tuning,
predictions, etc. by the token

* This Is the place you can get predictions from
major proprietary models
 E.g. ChatGPT

 Lots of requests means high throughput!
« Often lower cost

Inference on edge devices

* Inference can run on your laptop or smartphone
e Here, the size of the model becomes more of an issue
* Limited smartphone memory

* This is good for user privacy and security

* But not as good for companies that want to keep
their models private

* Also can be used to deploy personalized models

Inference on sensors

« Sometimes we want inference right at the
source

e On the sensor where data is collected

 Example: a survelillance camera taking video

e Don't want to stream the video to the cloud,
especially If most of it is not interesting.

 Energy use is very important here.

	Slide 1: Inference, Deployment, and Compression
	Slide 2: Review: Why we should care about inference
	Slide 3: Review: Metrics for Inference
	Slide 4: Tradeoffs
	Slide 5: Improving the performance of inference
	Slide 6: Altering the batch size
	Slide 7: Neural Network Compression
	Slide 8: Simple Technique: “Old-School” Compression
	Slide 9: Problem with Lossless Compression
	Slide 10: Low-precision arithmetic for inference
	Slide 11: Models in low-precision
	Slide 12: Mixed-precision inference
	Slide 13: Post-Training Quantization
	Slide 14: Post-Training Quantization: Open Source
	Slide 15: Quantization Aware Training (QAT)
	Slide 16: Quantization Aware Training (QAT)
	Slide 17: Quantization Aware Training (QAT)
	Slide 18: Quantization Aware Training (QAT)
	Slide 19: Pruning
	Slide 20: Types of Pruning
	Slide 21: Fine-Tuning after Compression
	Slide 22: Knowledge distillation
	Slide 23: Knowledge distillation
	Slide 24: Efficient architectures
	Slide 25: Efficient architectures: Mixture of Experts
	Slide 26: Re-use of computation
	Slide 27: Re-use of computation: KV Cache
	Slide 28: Speculative Decoding
	Slide 29: The last resort for speeding up DNN inference
	Slide 30: Where do we run inference?
	Slide 31: Inference on the cloud
	Slide 32: Inference in the AI cloud
	Slide 33: Inference on edge devices
	Slide 34: Inference on sensors

