Inference, Deployment, and Compression

CS4787/5777 Lecture 23 — Fall 2025

Review: Why we should care about inference

- Train once, infer many times
 - Many production machine learning systems just do inference
- Often want to run inference on low-power edge devices
 - Such as cell phones, security cameras
 - Limited memory on these devices to store models
- Need to get responses to users quickly
 - On the web, users won't wait more than a second

Review: Metrics for Inference

- Important metric: accuracy
 - Inference accuracy can be close to test accuracy if data from same distribution
- Important metric: throughput
 - How many examples can we classify in some amount of time
- Important metric: latency
 - How long does it take to get a prediction for a single example
- Important metric: model size
 - How much memory do we need to store/transmit the model for prediction
- Important metric: energy use
 - How much energy do we use to produce each prediction
- Important metric: cost
 - How much money will all this cost us

Tradeoffs

- When designing an ML system for inference, there are trade-offs among all these metrics!
 - Most "techniques" do not give free improvements, but have some trade-off where some metrics get better and others get worst
- There is no one-size-fits-all "best" way to do ML inference.
- We need to decide which metric we value the most
 - Then keep that in mind as we design the system

Improving the performance of inference

What tools do we have in our toolbox?

Altering the batch size

- Just like with learning, we can make predictions in batches
- Increasing the batch size helps improve parallelism
 - Provides more work to parallelize and an additional dimension for parallelization
 - This improves throughput
- But increasing the batch size can make us do more work before we can return an answer for any individual example
 - Can negatively affect latency

Neural Network Compression

- Find an easier-to-compute network with similar accuracy
 - Or find a network with smaller model size, depending on the goal
- Most compression methods are lossy, meaning that the compressed network may sometimes predict differently
- Many techniques for doing this
 - We'll see some in the following slides

Simple Technique: "Old-School" Compression

- Just apply a standard lossless compression technique to the weights of your neural network.
 - Huffman coding works here, for example.
 - Even something very general like gzip can be beneficial.
- This lowers the stored model size without affecting accuracy
- But this does mean we need to decompress
 eventually, so it comes at the cost of some compute &
 can affect start-up latency.

Problem with Lossless Compression

- Something like gzip or bz2 doesn't know the difference between useful and useless information
 - It preserves everything losslessly
- Low-order bits of neural network weights are like a random signal that contains little useful information
 - Not only are they unnecessary, they're hard to compress!
- Compressor can't distinguish important from unimportant weights—needs to preserve both!

Low-precision arithmetic for inference

- Very simple: just use low-precision arithmetic in inference
 - This discards the low-usefulness low-order bits of original format
- Can make any signals in the model low-precision
- Simple heuristic for compression: keep lowering the precision of signals until the accuracy decreases
 - Can often get down below 16 bit numbers with this method alone
- Binarization is low-precision arithmetic in the extreme
 - Even some hardware support with binary TensorCores

Tensors ≡	Shape	Precision
model.layers.0 (4) ~		
model.layers.0.input_layernorm.weight	[2 880]	BF16
model.layers.0.mlp (2) ~		
model.layers.0.mlp.experts (6) ~		
model.layers.0.mlp.experts.down_proj_bias	[32, 2880]	BF16
model.layers.0.mlp.experts.down_proj_blocks	[32, 2880, 90, 16]	U8
model.layers.0.mlp.experts.down_proj_scales	[32, 2880, 90]	U8
model.layers.0.mlp.experts.gate_up_proj_bias	[32, 5 760]	BF16
model.layers.0.mlp.experts.gate_up_proj_blocks	[32, 5760, 90, 16]	U8
model.layers.0.mlp.experts.gate_up_proj_scales	[32, 5760, 90]	U8
model.layers.0.mlp. router (2) ~		
model.layers.0.mlp.router.bias	[32]	BF16
model.layers.0.mlp.router.weight	[32, 2880]	BF16
model.layers.0.post_attention_layernorm.weight	[2 880]	BF16
model.layers.0. self_attn (5) ~		
model.layers.0.self_attn. k_proj (2) ~		
model.layers.0.self_attn.k_proj.bias	[512]	BF16
model.layers.0.self_attn.k_proj.weight	[512, 2880]	BF16
model.layers.0.self_attn. o_proj (2) ~		
model.layers.0.self_attn.o_proj.bias	[2 880]	BF16

Mixed-precision inference

- Activation quantization also important!
 - What are the tradeoffs?
- We often see models described as W4A16 or W4A4
 - This notation describes how many bits of precision are used for the weights and how many are used for the activations
- Where do we often use higher precision weights?
 - In softmax
 - In attention layers
 - Initial embedding layer (why?)

Post-Training Quantization

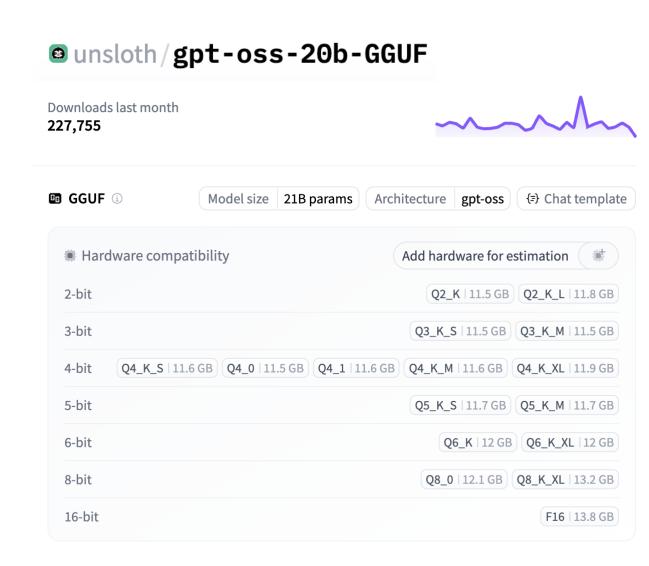
 Pretrain a model in high-precision, fine-tune it to task, then quantize it afterwards to the format we need

- Many techniques for this!
 - Typical to use a development set to gather activation statistics then compress based on those statistics
 - For example, adaptive rounding estimates the second moment matrix of activations entering a linear layer, then uses that matrix to decide how to round
 - Data-free methods eschew a development set

Post-Training Quantization: Open Source

- It's now become popular to do this and release quantized models online in a variety of precisions
 - Targets efficient local inference

 You don't have to quantize the model yourself anymore



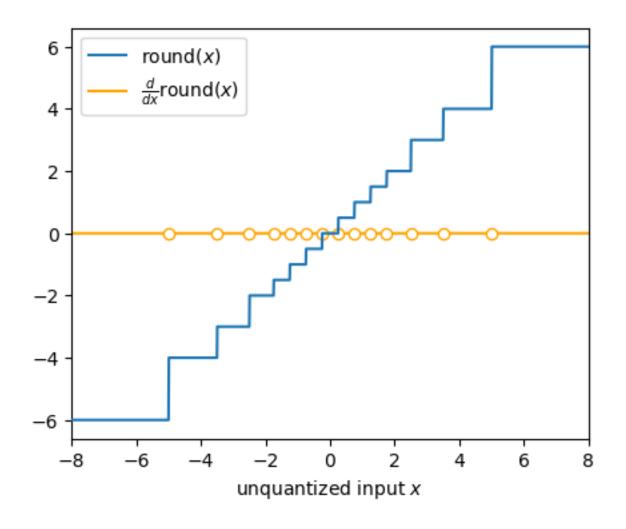
- Train a model in with low-precision weights
 - No need to quantize afterwards

- Almost always we keep the optimizer states (e.g. Adam weight buffer, momentum buffer, second moment buffer) in higher precision during training
 - The weights used in the forward pass are a quantized version of the weights stored in the optimizer

 How do we take derivatives?

minimize: $\ell(\text{round}(w))$

• If we just math it out, the derivative of a rounding operation is mostly 0!



 How do we take derivatives?

minimize: $\ell(\text{round}(w))$

- Straight-throughestimator
 - Just imagine the rounding wasn't there when we do the forward pass



 Don't mix this up with using low-precision arithmetic during training to train more efficiently!

- QAT is about producing a quantized model for downstream inference use
 - It might also be more efficient to train, which would be good
 - But that's incidental to the method

Pruning

- Remove activations that are usually zero
 - Or that don't seem to be contributing much to the model
 - Good heuristic: remove the smallest X% of weights
- Effectively creates a smaller model
 - This makes it easy to retrain, since we're just training a smaller network
- There's always the question of whether training a smaller model in the first place would have been as good or better.
 - But usually pruning is observed to produce benefits.

Types of Pruning

Neuron pruning

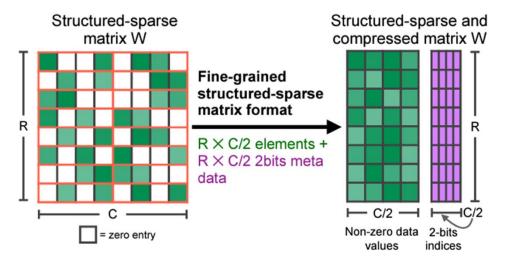
 Remove whole rows and columns from weight matrices

Unstructured weight pruning

- Remove weights, making them 0
- Results in a sparse model

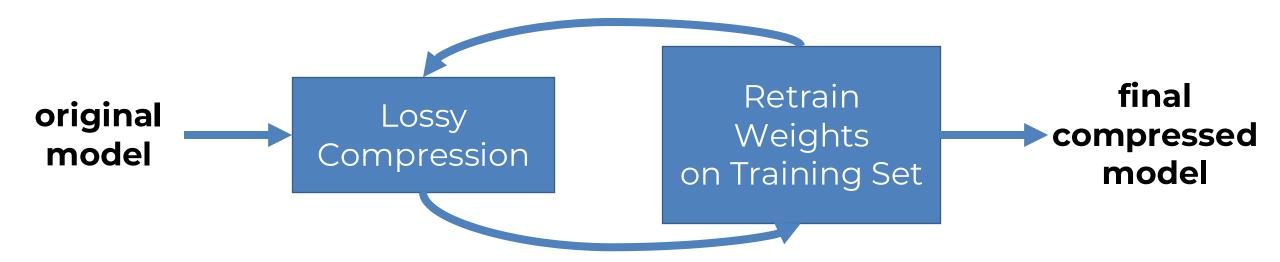
• E.g. 2:4 sparsity where 2 of every block of 4 weights must be 0

https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/



Fine-Tuning after Compression

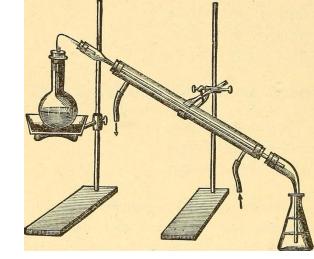
 Powerful idea: apply a lossy compression operation, then retrain the model to improve accuracy



• A general way of "getting back" accuracy lost due to lossy compression.

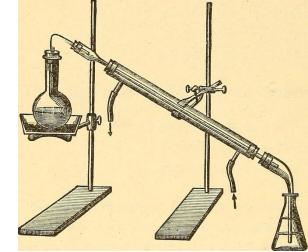
Knowledge distillation

- Idea: take a large/complex model (the teacher) and train a smaller network (the student) to match its output
 - Hinton et. al. "Distilling the Knowledge in a Neural Network."
- Often used for distilling ensemble models into a single network
 - Ensemble models average predictions from multiple independentlytrained models into a single better prediction
 - Ensembles often win Kaggle competitions
- Can also improve the accuracy in some cases.



Knowledge distillation

- Idea: take a large/complex model and train a smaller network to match its output
 - E.g. Hinton et. al. "Distilling the Knowledge in a Neural Network."
- In **generative AI**, it's often used to improve smaller student models in a pretrained model family by using larger models in the same family as the teacher
 - E.g. Gemini-Nano was trained by distilling from larger Gemini models.



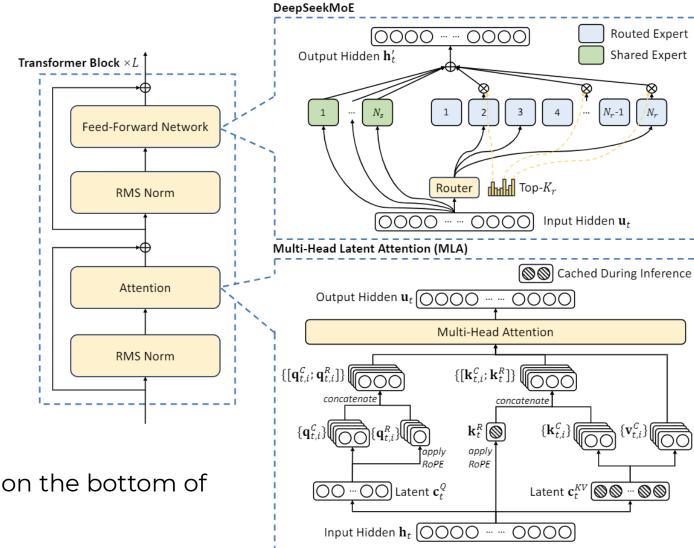
Efficient architectures

- Some neural network architectures are designed to be efficient at inference time
 - Early examples: MobileNet, ShuffleNet, SqueezeNet
 - Common for vision
- Networks are often based on sparsely connected neurons
 - This limits the number of weights which makes models smaller and easier to run inference on
- To be efficient, we can just train one of these networks in the first place for our application.

Efficient architectures: Mixture of Experts

 Use only some weights in the MLP block for each token

 Choose which weights to use with a router layer

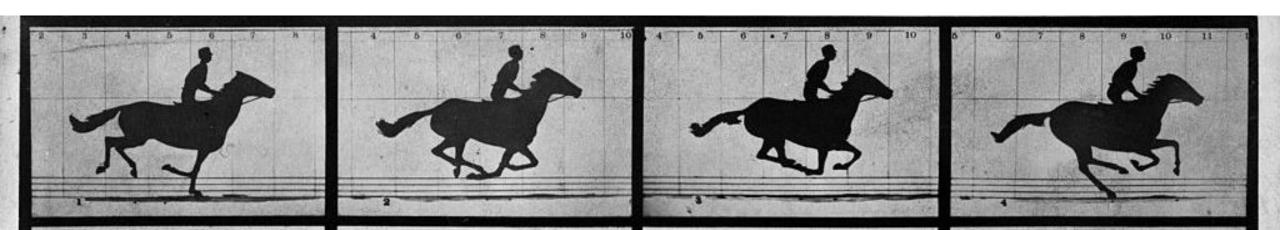


https://github.com/deepseek-ai/DeepSeek-V2/tree/main

(Also note the cool KV cache compression on the bottom of this figure via a low-rank decomposition)

Re-use of computation

- For video and time-series data, there is a lot of redundant information from one frame to the next.
- We can try to re-use some of the computation from previous frames.
 - This is less popular than some of the other approaches here, because it is not really general.



Re-use of computation: KV Cache

- The KV cache is the <u>ur</u>-example of this
 - Reuses computation to process later tokens in the sequence
 - Attention operation is designed for this!
- Can also target KV cache with other compression methods we've already seen
 - KV cache quantization
 - Sparse KV caching

Speculative Decoding

- Large language model inference latency is bottlenecked by memory bandwidth
 - Need to read the whole model to make each token prediction
- Can we get around this bottleneck and infer faster?
- Idea: **generate multiple tokens at a time** from a lightweight "draft" model and then check them with the big model
 - Only requires one forward pass of the big model
- What are the tradeoffs of this method?

The last resort for speeding up DNN inference

- Train another, faster type of model that is not a deep neural network
 - For some real-time applications, you can't always use a DNN
- If you can get away with a linear model, it's almost always much faster.
- Also, decision trees tend to be quite fast for inference.
- ...but with how technology is developing, we're seeing more and more support for fast DNN inference (especially on edge hardware) so this will become less necessary.

Where do we run inference?

Inference on the cloud

Most inference today is run on cloud platforms

- The cloud supports large amounts of compute
 - And makes it easy to access it and make it reliable
- This is a good place to put AI that needs to think about data

For interactive models, latency is critical

Inference in the AI cloud

 Al cloud platforms sell generations, fine-tuning, predictions, etc. by the token

- This is the place you can get predictions from major proprietary models
 - E.g. ChatGPT

- Lots of requests means high throughput!
 - Often lower cost

Inference on edge devices

- Inference can run on your laptop or smartphone
 - Here, the size of the model becomes more of an issue
 - Limited smartphone memory
- This is good for user privacy and security
 - But not as good for companies that want to keep their models private
- Also can be used to deploy personalized models

Inference on sensors

- Sometimes we want inference right at the source
 - On the sensor where data is collected
- Example: a surveillance camera taking video
 - Don't want to stream the video to the cloud, especially if most of it is not interesting.
- Energy use is very important here.