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Review: Why we should care about inference

• Train once, infer many times
• Many production machine learning systems just do inference

• Often want to run inference on low-power edge 
devices
• Such as cell phones, security cameras
• Limited memory on these devices to store models

• Need to get responses to users quickly
• On the web, users won’t wait more than a second



Review: Metrics for Inference
• Important metric: accuracy

• Inference accuracy can be close to test accuracy — if data from same 
distribution

• Important metric: throughput
• How many examples can we classify in some amount of time

• Important metric: latency
• How long does it take to get a prediction for a single example

• Important metric: model size
• How much memory do we need to store/transmit the model for 

prediction
• Important metric: energy use

• How much energy do we use to produce each prediction
• Important metric: cost

• How much money will all this cost us 



Tradeoffs

• When designing an ML system for inference, there are 
trade-offs among all these metrics!
• Most “techniques” do not give free improvements, but have 

some trade-off where some metrics get better and others get 
worst

• There is no one-size-fits-all “best” way to do ML 
inference.

• We need to decide which metric we value the most
• Then keep that in mind as we design the system



Improving the performance of 
inference
What tools do we have in our toolbox?



Altering the batch size

• Just like with learning, we can make predictions in batches

• Increasing the batch size helps improve parallelism
• Provides more work to parallelize and an additional dimension for 

parallelization
• This improves throughput

• But increasing the batch size can make us do more work 
before we can return an answer for any individual example
• Can negatively affect latency



Neural Network Compression

• Find an easier-to-compute network with similar 
accuracy
• Or find a network with smaller model size, depending on the 

goal

• Most compression methods are lossy, meaning that the 
compressed network may sometimes predict differently

• Many techniques for doing this
• We’ll see some in the following slides



Simple Technique: “Old-School” Compression

• Just apply a standard lossless compression technique to 
the weights of your neural network.
• Huffman coding works here, for example.
• Even something very general like gzip can be beneficial.

• This lowers the stored model size without affecting 
accuracy

• But this does mean we need to decompress 
eventually, so it comes at the cost of some compute & 
can affect start-up latency.



Problem with Lossless Compression

• Something like gzip or bz2 doesn’t know the difference 
between useful and useless information
• It preserves everything losslessly

• Low-order bits of neural network weights are like a 
random signal that contains little useful information
• Not only are they unnecessary, they’re hard to compress!

• Compressor can’t distinguish important from 
unimportant weights—needs to preserve both!



Low-precision arithmetic for inference

• Very simple: just use low-precision arithmetic in inference
• This discards the low-usefulness low-order bits of original format

• Can make any signals in the model low-precision

• Simple heuristic for compression: keep lowering the 
precision of signals until the accuracy decreases
• Can often get down below 16 bit numbers with this method alone

• Binarization is low-precision arithmetic in the extreme
• Even some hardware support with binary TensorCores



Models in low-precision



Mixed-precision inference

• Activation quantization also important!
• What are the tradeoffs?

• We often see models described as W4A16 or W4A4
• This notation describes how many bits of precision are used for 

the weights and how many are used for the activations

• Where do we often use higher precision weights?
• In softmax
• In attention layers
• Initial embedding layer (why?)



Post-Training Quantization

• Pretrain a model in high-precision, fine-tune it to task, 
then quantize it afterwards to the format we need

• Many techniques for this!
• Typical to use a development set to gather activation statistics 

then compress based on those statistics
• For example, adaptive rounding estimates the second 

moment matrix of activations entering a linear layer, then uses 
that matrix to decide how to round

• Data-free methods eschew a development set



Post-Training Quantization: Open Source

• It’s now become popular 
to do this and release 
quantized models online 
in a variety of precisions
• Targets efficient local 

inference

• You don’t have to 
quantize the model 
yourself anymore



Quantization Aware Training (QAT)

• Train a model in with low-precision weights
• No need to quantize afterwards

• Almost always we keep the optimizer states (e.g. Adam 
weight buffer, momentum buffer, second moment 
buffer) in higher precision during training
• The weights used in the forward pass are a quantized version 

of the weights stored in the optimizer



Quantization Aware Training (QAT)

• How do we take 
derivatives?

• If we just math it out, the 
derivative of a rounding 
operation is mostly 0!



Quantization Aware Training (QAT)

• How do we take 
derivatives?

• Straight-through-
estimator
• Just imagine the rounding 

wasn’t there when we do 
the forward pass



Quantization Aware Training (QAT)

• Don’t mix this up with using low-precision arithmetic 
during training to train more efficiently!

• QAT is about producing a quantized model for 
downstream inference use
• It might also be more efficient to train, which would be good
• But that’s incidental to the method



Pruning

• Remove activations that are usually zero
• Or that don’t seem to be contributing much 

to the model
• Good heuristic: remove the smallest X% of weights

• Effectively creates a smaller model
• This makes it easy to retrain, since we’re just training a smaller 

network

• There’s always the question of whether training a smaller 
model in the first place would have been as good or better.
• But usually pruning is observed to produce benefits.



Types of Pruning

• Neuron pruning
• Remove whole rows and columns

from weight matrices

• Unstructured weight pruning
• Remove weights, making them 0
• Results in a sparse model

• Structured weight pruning
• E.g. 2:4 sparsity where 2 of every block of 4 weights must be 0

https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-
ampere-architecture-and-applications-in-search-engines/



Fine-Tuning after Compression

• Powerful idea: apply a lossy compression operation, then 
retrain the model to improve accuracy

• A general way of “getting back” accuracy lost due to 
lossy compression.
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Knowledge distillation

• Idea: take a large/complex model (the teacher)
   and train a smaller network (the student) to
   match its output

• Hinton et. al. “Distilling the Knowledge in a 
   Neural Network.”

• Often used for distilling ensemble models into a single 
network
• Ensemble models average predictions from multiple independently-

trained models into a single better prediction
• Ensembles often win Kaggle competitions

• Can also improve the accuracy in some cases.



Knowledge distillation

• Idea: take a large/complex model and train a
   smaller network to match its output

• E.g. Hinton et. al. “Distilling the Knowledge in a 
   Neural Network.”

• In generative AI, it’s often used to improve smaller 
student models in a pretrained model family by using 
larger models in the same family as the teacher
• E.g. Gemini-Nano was trained by distilling from larger Gemini 

models.



Efficient architectures

• Some neural network architectures are designed to be 
efficient at inference time
• Early examples: MobileNet, ShuffleNet, SqueezeNet
• Common for vision

• Networks are often based on sparsely connected neurons
• This limits the number of weights which makes models smaller and 

easier to run inference on

• To be efficient, we can just train one of these networks in 
the first place for our application.



Efficient architectures: Mixture of Experts

• Use only some 
weights in the 
MLP block for each 
token

• Choose which 
weights to use 
with a router layer

(Also note the cool KV cache compression on the bottom of 
this figure via a low-rank decomposition)

https://github.com/deepseek-ai/DeepSeek-V2/tree/main



Re-use of computation

• For video and time-series data, there is a lot of 
redundant information from one frame to the next.

• We can try to re-use some of the computation from 
previous frames.
• This is less popular than some of the other approaches here, 

because it is not really general.



Re-use of computation: KV Cache

• The KV cache is the ur-example of this
• Reuses computation to process later tokens in the sequence
• Attention operation is designed for this!

• Can also target KV cache with other compression 
methods we’ve already seen
• KV cache quantization
• Sparse KV caching



Speculative Decoding

• Large language model inference latency is bottlenecked by 
memory bandwidth
• Need to read the whole model to make each token prediction

• Can we get around this bottleneck and infer faster?

• Idea: generate multiple tokens at a time from a lightweight 
“draft” model and then check them with the big model
• Only requires one forward pass of the big model

• What are the tradeoffs of this method?



The last resort for speeding up DNN inference
• Train another, faster type of model that is not a deep 

neural network
• For some real-time applications, you can’t always use a DNN

• If you can get away with a linear model, it’s almost always 
much faster.

• Also, decision trees tend to be quite fast for inference.

• …but with how technology is developing, we’re seeing more 
and more support for fast DNN inference (especially on 
edge hardware) so this will become less necessary.



Where do we run inference?



Inference on the cloud

• Most inference today is run on cloud platforms

• The cloud supports large amounts of compute
• And makes it easy to access it and make it reliable

• This is a good place to put AI that needs to think 
about data

• For interactive models, latency is critical



Inference in the AI cloud

• AI cloud platforms sell generations, fine-tuning, 
predictions, etc. by the token

• This is the place you can get predictions from 
major proprietary models
• E.g. ChatGPT

• Lots of requests means high throughput!
• Often lower cost



Inference on edge devices

• Inference can run on your laptop or smartphone
• Here, the size of the model becomes more of an issue
• Limited smartphone memory

• This is good for user privacy and security
• But not as good for companies that want to keep 

their models private

• Also can be used to deploy personalized models



Inference on sensors

• Sometimes we want inference right at the 
source
• On the sensor where data is collected

• Example: a surveillance camera taking video
• Don’t want to stream the video to the cloud, 

especially if most of it is not interesting.

• Energy use is very important here.
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