ML Accelerators

CS4787/5777 Lecture 22 — Fall 2025

Recap: ML on Hardware

* Over the past few lectures, we've been talking about ML
Systems techniques that affect the hardware
« Parallelism
* Distributed learning (basically super-parallelism)
« Low-precision arithmetic
« How machine learning frameworks interact with hardware

« However, all of this has been very agonistic to the
specific hardware we're running on.

* In this lecture, we'll look at different hardware targets:
why GPUs became dominant for machine learning
training, and what the competitors are to GPUs

Modern ML Hardware

« CPUs - FPGAS
« GPUs » Specialized accelerators

XEON
PLATINUM
inside”

Right now, GPUs are dominant for ML training...as we've seen

What does the modern ML pipeline look like?

* [t's not just training a neural network.

What does the modern ML pipeline look like?

* The pipeline has many different components

New examples to be
processed

Preprocessing
of the training
set

Where can hardware help?

Everywhere!

There's interest in hardware everywhere in the pipeline
* both adapting existing hardware architectures, and
« developing new ones

What improvements can we get?
* Lower latency inference
 To be able to make real-time predictions
* Higher throughput training
« To train on larger datasets to produce more accurate models

 Lower power cost
« Especially important as data and model sizes scale

How can hardware help?

Speed up the basic building blocks of machine learning

« Major building block: matrix-matrix multiply
« Other major building blocks: convolution, attention

Add data/memory paths specialized to machine learning
computations and workloads

 Example: having a local cache to store network weights
» Create application-specific functional units
* Not for general ML, but for a specific domain

Why are GPUs so popular for
machine learning?

Why are GPUs so popular for
deep neural networks?

To answer this..we need to recall what we learned about GPU
architectures.

Recall: GPU Parallelism

 The GPU supported parallel programs that were more
parallel than those of the CPU.

* Unlike multicore CPUs, which supported computing
different functions at the same time, the GPU computes the
same function on multiple elements of data.

« Example application: want to render a large number of triangles,
each of which is lit by the same light sources.

« Example application: want to transform all the objects in the scene
based on the motion of the player. That is, the GPU could run the
same function on a bunch of triangles in parallel, but couldn't easily
compute a different function for each triangle.

Recall: GPU Memory

 The GPU needed high bandwidth access to large
texture memory to draw textures on models in real time.

* This memory has high latency

« Unlike multicore CPUs, which have deep cache
hierarchies, the GPU used parallelism to hide latency

« Example application: when a shader reaches a lookup into
texture memory, the GPU “core” will request the data; while
the request is resolving, it runs other threads.

« But actually switching to an independent program would be
too expensive, so instead it does same program/different data

Recall: TensorCores

Technical Specifications

H100 SXM

* NVIDIA GPUs have special —— 34 teraFLOPS
hardware accelerator compute
. . . FP64 Tensor Core 67 teraFLOPS
units for matrix multiply
FP32 67 teraFLOPS
TF32 Tensor Core* 989 teraFLOPS
* Re p rese ntS Most Of th < F LO PS BFLOAT16 Tensor Core* 1,979 teraFLOPS
of the chip!
FP16 Tensor Core* 1,979 teraFLOPS
- Note that these numbers report
Structu red Spa rSIty_real dense FP8 Tensor Core* 3,958 teraFLOPS
FLOPs are about half this INT8 Tensor Core* 3,958 TOPS
» A relevant statistic here: about GPU Memory 80GB

500 fp8 FLOPs per byte |loaded :
from memory GPU Memory Bandwidth 3.35TB/s

*With sparsity

FLLOPS before TensorCores: GPU vs CPU

* FLOPS: floating point operations per second

FLOPs per Clock Cycle

10*

Theoretical Peak Floating Point Operations per Clock Cycle, Double Precision

GPU FLOPS
consistently

o INTEL Xeon CPUs =——dhe— |
. NVIDIA Tesla GPUs =il
A o oz AMD Radeon GPUs —.—
\g)b‘%% *51?9?’ @5‘3‘3 ' INTEL Xeon Phis =——3g—
2010

exceed CPU
FLOPS

From Karl Rupp’s blog
https://www.karlrupp.net/2016/0
8/flops-per-cycle-for-cpus-gpus-
and-xeon-phis/

This was the best diagram |

2012
End of Year

2014

2016 could find that shows trends
over time.

Summary: GPU vs CPU

« CPU Is a general purpose processor
« Modern CPUs spend most of their area on deep caches

* This makes the CPU a great choice for applications with
random or non-uniform memory accesses

« GPU Is optimized for

« Mmore compute intensive workloads
* streaming memory models

Machine learning workloads are compute intensive

and often support streaming data flows.

GPUs in machine learning

« Because of their high data parallelism, GPUs provide an
ideal substrate for large-scale numerical computation.

* |In particular, GPUs can perform matrix multiplies very fast.

« Just like BLAS on the CPU, there's an optimized library from NVIDIA
"cuBLAS" that does matrix multiples efficiently on their GPUs.

* There's even a specialized library of primitives designed for deep
learning: cuDNN.

 Machine learning frameworks, such as TensorFlow and
PyTorch, are designed to support computation on GPUs.

« And training a deep net on a GPU can decrease training time by an
order of magnitude.

So should we always use GPUs?

Will we always use GPUs?

Maybe not!

Challengers to the GPU

- Hybrid GPU/CPU devices with Al acceleration
* Like Apple's M-series

« Low-power devices (often hybrid)
* Like mobile-device-targeted chips

« Configurable hardware like FPGAs

* Al Accelerators (NPUs)

« Mostly designed to accelerate matrix-matrix multiply

 Three broad categories:
 training-focused
 inference-focused
* general-purpose

« Accelerators special-cased to specific applications

Machine Learning Accelerators

Eftect of Hardware on Statistical Performance

« Sometimes, when we change device, we expect the same
results: same learned model, same accuracy. But this iIs not
always the case. Why?

 One reason: FP arithmetic Is not associative, so reordering to
et better performance on different hardware can change
the results slightly!

* This can even be the case for multiple runs on the same hardware.

* Another reason: randommness.
« Different hardware platforms could use different pseudo-random
generators or use random numbers in a different order.

 Another reason: hardware can do approximation to trade-oft
precision for hardware efficiency.

 E.g.ifone device runs on 16-bit floats, it can give different results
than another device that runs on bfloats

Eftect of Hardware on Statistical Performance

« Sometimes, when we change device, we expect the
same results: same learned model, same accuracy. But
this is not always the case. Why?

« Generally, we expect specialized ML hardware to
produce learned models that are similar in quality,
but not necessarily exactly the same, as baseline
chips (CPU/GPU).

« Same thing for inference outputs!

Programming ML Hardware

« One major issue when import torch
deve|0p|n new hardwa re import torch_xla
for ML, and the question we
should always be .
asking: how is the device

dev = torch_xla.device()

programmed? x = torch.randn(1024,1024,device=dev,dtype=torch.
e TO be US@fUl for DNN y = torch.randn(1024,1024,device=dev,dtype=torch.
ag lications, we should be
apble to map.a high-level x @ y.t()
program written in PyTorch
torun on the hardware. tensor([[-33.2500, -47.7812, -5.5039, -15
[-11.1875, -0.2277, 27.4844, 32.
o E;)r mOSLT{ aggeéeratt%r.g on X [9.1953, 18.9688, 24.0000, 21
e market today, this “jus
" - [-25.3750, 5.2500, 4.1016, 29.
works"” — all you gotta do is [-20.4375, -38.5312, -31.6719, ..., 5
move to the device. [1.1514, 23.1094, -41.6250, . 27.

- E.g. TPU (right) device='x1a:0"', dtype=torch.float1(.5;

floatl6)
float16)

.1016,

3750,

.1562,

7500,

.0742,

3594,

52.

-10.

19.
11.

GPU as ML accelerator

* The only real distinction between GPUs and ML accelerators
is that GPUs weren't originally designed for Al/ML.

 But there's nothing in the architecture that separates GPUs from all
purpose-built ML accelerators.

o ..although individual accelerators do usually have features
that GPUs lack.

* As ML tasks capture more of the market for GPUs, GPU
designers have been adjusting their architectures to fit ML
applications.

 For example, by supporting low-precision arithmetic.

* As GPU architectures become more specialized to Al tasks, it
becomes more accurate to think of them as ML accelerators.

FPGA as ML accelerator

* All computer processors are basically integrated circuit:
electronic circuits etched on a single piece of silicon.

« Usually this circuit is fixed when the chip is designed.

A field-programmable gate array or FPGA is a type of
chip that allows the end-user to reconfigure the circuit it
computes in the field (hence the name).

FPGA as ML accelerator (continued)

FPGAs consist of an array of programmable circuits that can each
individually do a small amount of computation, as well as a
rogrammable interconnect that connects these circuits together.
he arﬂe number of programmable gates in the FPGA makes it a
naturally highly parallel device.

* You can program it by specifying the circuit you want it to
compute in terms of Togic gates: basic AND, OR, NOT, etc.

« Although in practice higher-level languages like Verilog are used.

* This doesn't actually involve physical changes to the circuit that's
actually etched on the physical silicon of the FPGA: that's fixed.
Rather, the FPCA constructs a logical circuit that is
reconfigurable.

« FPGAs were used historically for circuit simulation.

Why would we want to use an FPGA
instead of a GPU/GPU?

« An important property of FPGAs that distinguishes
them from CPUs/GPUs: you can choose to have data
flow through the chip however you want!

« Unlike CPUs which are tied to their cache-heirarchy-based

data model, or GPUs which perform best under a streaming
model.

« FPGAs often use less power to accomplish the same
work compared with other architectures.

» But they are also typically slower.

Why would we want to use an FPGA
instead of an ASIC?

* Pro for FPGA: Much cheaper to program and FPGA than the
design an ASIC.

* Pro for FPGA: A single FPGA costs much less than the first
ASIC you synthesize.

* Pro for FPGA: FPGA designs can be adjusted on the fly.

« Pro for ASIC: The marginal cost of producing an additional

ASIC is lower if you really want to synthesize millions or
oillions of them.

* Pro for ASIC: ASICs can typically achieve higher speed and
ower power.

Users of FPGAs for Machine Learning

Early use: Microsoft's Project Capatult/Project Brainwave.

[

Hardware acceleration plane
-_— r_x _E __F & __§F X _X __J
ﬁ-—'—' Deep neural o= - QPl
SRR o o e e sEERal
P e g e :
- nkin ad - H

el
- }}}}:::::-'}:Li"i—;: ------------- Gend X8 N

HE BN
Web search NIC = {:{3 =
ranking u H
| FPGA [

HE BN

CPUs
[asep || asrp]

Traditional software (CPU) server plane
40Gb/s 40Gb/s ToR

Figure 1. The first generation of Catapult-enhanced servers in production (right) consists of dual
Xeon CPUs with a PCle-attached FPGA. Each FPGA sits in-line between the 40Gbps server NIC
and the TOR, enabling in-situ processing of network packets and point-to-point connectivity with up
to hundreds of thousands of other FPGAs at datacenter scale. Multiple FPGAs can be allocated as
a single shared hardware microservice with no software in the loop (left), enabling scalable
workloads and better load balancing between CPUs and FPGAs.

from the paper "Serving DNNs in RealTime at Datacenter Scale with Project Brainwave"

An example of a designed-for-ML accelerator

The Tensor Processing Unit (TPU)

Google's Tensor Processing Unit (TPU) in 2015 was one of the first
specialized architectures for machine learning and Al applications.

« The original version focused on fast inference via high-
throughput 8-bit arithmetic.

« Most of the chip is dedicated to accelerating 8-bit integer
dense-matrix-dense-matrix multiplies

« Note that even though the numbers it multiples are in 8-bit, it uses 32-bit
accumulators to sum up the results.

* This larger accumulator is common in ML architectures that use low
precision.

 ..with a little bit of logic on the side to apply activation functions.
The second- and third-generation TPUs were designed to also
support training and can calculate in float/bfloat16.

Now ML

accelerators are
found in the
cloud!

E.g. TPUs:

Cloud TPU version

Ironwood

Trillium

Cloud TPU v5p

Cloud TPU v5e

Description

Our most powerful and efficient
TPU yet, for the largest scale
training and inference

Sixth-generation TPU. Improved
energy efficiency and peak
compute performance per chip for
training and inference

Powerful TPU for building large,
complex foundational models

Cost-effective and accessible TPU
for medium-to-large-scale training
and inference workloads

Availability

Ironwood TPU will be general
available in Q4, 2025

Trillium is generally available in

North America (US East region),
Europe (West region), and Asia

(Northeast region)

Cloud TPU v5p is generally
available in North America (US East
region)

Cloud TPU v5e is generally
available in North America (US
Central/East/South/ West regions),
Europe (West region), and Asia
(Southeast region)

How do we program a TPU

* Essentially the same as for a GPU

* Google supports running ML kernels on TPUSs.

« ATPU is just another accelerator the ML framework can
compute on and store data on

* This makes it (relatively) easy to train and infer deep neural
networks using tools you're already familiar with.

Hybrid Systems

» Recent systems-on-a-chip
developed for personal
devices (laptops, phones)
now tend to include Al
accelerators.

* You can think of this as like
a CPU+GPU combo

« Examples include the M-
Series chips from Apple

40-core GPU

Dynamic caching
Hardware-accelerated mesh shading

2x faster ray tracing acceleration
Improved scheduler

How to ChOOSG your 3.CC€1€I'&tOI'.>

» Different accelerators provide different trade-offs

* Need to ask yourself some questions
« Am | running training or inference?
 What is my budget?
* Where am | running? Am | limited to one cloud provider? Am |
running on an edge device?
 What did other people with similar tasks use?
* Do | care more about throughput or latency? Or energy?

Questions?

	Slide 1: ML Accelerators
	Slide 2: Recap: ML on Hardware
	Slide 3: Modern ML Hardware
	Slide 4: What does the modern ML pipeline look like?
	Slide 5: What does the modern ML pipeline look like?
	Slide 6: Where can hardware help?
	Slide 7: Everywhere!
	Slide 8: How can hardware help?
	Slide 9: Why are GPUs so popular for machine learning?
	Slide 10: Why are GPUs so popular for deep neural networks?
	Slide 11: Recall: GPU Parallelism
	Slide 12: Recall: GPU Memory
	Slide 13: Recall: TensorCores
	Slide 14: FLOPS before TensorCores: GPU vs CPU
	Slide 15: Summary: GPU vs CPU
	Slide 16: GPUs in machine learning
	Slide 17: So should we always use GPUs? Will we always use GPUs?
	Slide 18: Challengers to the GPU
	Slide 19: Machine Learning Accelerators
	Slide 20: Effect of Hardware on Statistical Performance
	Slide 21: Effect of Hardware on Statistical Performance
	Slide 22: Programming ML Hardware
	Slide 23: GPU as ML accelerator
	Slide 24: FPGA as ML accelerator
	Slide 25: FPGA as ML accelerator (continued)
	Slide 26: Why would we want to use an FPGA instead of a GPU/GPU?
	Slide 27: Why would we want to use an FPGA instead of an ASIC?
	Slide 28: Users of FPGAs for Machine Learning
	Slide 29: An example of a designed-for-ML accelerator The Tensor Processing Unit (TPU)
	Slide 30: Now ML accelerators are found in the cloud! E.g. TPUs:
	Slide 31: How do we program a TPU
	Slide 32: Hybrid Systems
	Slide 33: How to choose your accelerator?
	Slide 34: Questions?

