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Basic patterns of  collective communication

All-Gather

• Each machine has an equal-sized chunk of  a desired result; sends data to 
many machines.

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#allgather



Recall: Basic patterns of  collective communication

All-Reduce

• Compute some reduction (usually a sum) of  data on multiple machines 
and materialize the result on all those machines.
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Basic patterns of  collective communication

Reduce-Scatter

• Compute some reduction of  data on M machines and materialize 1/M 
of  the result on each machine (sharding the result).



Recall: Data Parallel Training

• If

• Parallelize over the minibatch, by splitting the training examples among 
the workers.

• We discussed two types:

• SGD with All-Reduce

• Parameter server architecture



Another Type of  Data Parallel Learning: 
Federated learning

• Sometimes, your data is inherently distributed

• For example, data gathered on people’s mobile phones

• For example, data measured by internet-of-things devices

• Rather than centralizing the data, may want to learn on the distributed 
devices themselves

• E.g. to preserve the privacy of  users

• This is called federated learning

• Lots of  interest from industry right now



Model Parallelism

• Broad concept of  partitioning the layers of  a neural network among 
different worker machines. (Can also partition within a layer.)

• Each worker is responsible for a subset of  the parameters.

• Forward and backward signals running through the neural network during 
backpropagation now also run across the computer network between the 
different parallel machines. 
• Particularly useful if  the parameters won’t fit in memory on a single machine.

• This is very important when we move to specialized machine learning accelerator 
hardware, where we’re running on chips that typically have limited memory and 
communication bandwidth.  



Two broad classes of  model parallelism

• Distributing across layers

• E.g. if  a model has 80 transformer blocks and we’re parallelizing across 8 
machines, each machine will get 10 of  the transformer blocks

• Distributing within layers

• Each linear layer of  the model is sharded across the machines

• Can do this on the input side or on the output side



Distributing-Across-Layers: Pipeline Parallelism

• A variant of  model parallelism that tries to improve throughput by 
overlapping minibatch computation.
• From “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”



Distributing within Layers:
Naïve Tensor Parallelism
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Naïve Tensor Parallelism on 
Output via All-Gather
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Suppose the input activations x are replicated on all workers (gray).

We can partition the weights as follows.
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Naïve Tensor Parallelism on 
Input via All-Reduce
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Naïve Tensor Parallelism on 
Input via Reduce-Scatter
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Suppose the input activations x are sharded among workers.

We can partition the weights as follows.
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Key insight: we aren’t forced to use the same 
strategy to parallelize all layers.

Can distribute some weight matrices along the 
input and others along the output!



Transformer MLP Block

Can you find a way to distribute 

this with only 1 all-reduce?
Suppose the inputs/outputs are replicated on all machines.



Transformer Attention Block

Can you find a way to distribute 

this with only 1 all-reduce?
Suppose the inputs/outputs are replicated on all machines.



Transformer Tensor Parallelism

•Conclusion: we only need 2 all-reduce operations 
to compute a single transformer block
•Even though that block has 7 linear layers!

•Also naturally results in the KV cache being 
distributed as well
•Helps support long sequences 



Transformer Tensor Parallelism: Scaling

•Forward pass communication scales with
• Number of  transformer blocks (depth)

• Hidden dimension (width)

• Sequence length

• Batch size



Distributing within 
Layers: Fully Sharded 
Data Parallel

• A hybrid of  data parallelism 
and sharded parameter server 
strategies.

• Splits the weights for each 
layer among all machines, then 
uses an all-gather to get them 
whenever they’re needed.



https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/



Transformer FSDP: Scaling

•Forward pass communication scales with
• Total model size, since each weight is all-gathered to all 

machines once during the forward pass

•Better than tensor parallelism when the batch size 
and/or sequence length is large!



Fault-Tolerance

• Central topic in distributed computing: what to do when a 
machine or network component fails?
• More likely to happen the more machines you’re running on!

• Classic strategy: just re-run the job

• To avoid having to re-run the whole job, we periodically 
checkpoint the weights/optimizer state of  the model.
• Lets us resume from that checkpoint later in the event of  failure.



Note on Activation Checkpointing

• Note that this weight checkpointing is not to be confused with 
activation checkpointing (a.k.a. gradient checkpointing).

• Activation checkpointing happens while computing the gradient
• Main idea is to save memory for the intermediates used in backprop

• Save only the activations going into a block
• Recompute the other activations on the fly

• Trades off  memory for compute
• Effectively need to run the forward pass twice



Distributed LLM inference
Why should we care about inference?

• Train once, infer many times

• Many production machine learning systems just do inference

• Often want to run inference on low-power edge devices

• Such as cell phones, security cameras

• Limited memory on these devices to store models

• Need to get responses to users quickly
• On the web, users won’t wait more than a second



Recall: Inference on neural networks

• Just need to run the forward pass of  the network.

• A bunch of  matrix multiplies and non-linear units.

• Unlike backpropagation for learning, here we do not need to keep the 
activations around for later processing.

• Lower memory requirements

• This makes inference a much simpler task than learning.
• Although it can still be costly — it’s a lot of  linear algebra to do.



What performance metrics do we 
care about when running inference?

E.g. for a deep neural network application



Metrics for Inference

• Important metric: throughput
• How many examples can we classify in some amount of  time

• Important metric: latency
• How long does it take to get a prediction for a single example

• Important metric: model size
• How much memory do we need to store/transmit the model for prediction

• Important metric: energy use
• How much energy do we use to produce each prediction

• What are examples where we might care about each metric?



Distributed LLM inference

•Mostly done via tensor parallelism

•Key thing to remember: for decode latency we are 
memory-bound, since we need to read all the model 
weights into memory to make each prediction

•For prefill we still want to be compute bound
• Looks like training computationally



Distributed LLM inference

•Because decode is memory bound, we leverage 
multiple devices to get higher memory bandwidth
• 8x the GPUs means 8x the memory bandwidth
• …means ideally an 8x lower latency to infer one token

• But we still want to use the compute, so to be efficient, batch 
multiple inference requests together
• This both lets us use otherwise underused FLOPs

• And lets us do more efficient matrix-matrix multiplies instead of  
matrix-vector



Distributed LLM inference: batching

•As a result, there’s this fundamental property of  LLM 
inference: you can be more efficient at scale!
• Inference systems have a lower cost per token once they reach a 

certain threshold of  queries

• …so they can always operate at an “ideal” batch size

•This gives major AI inference companies an advantage 
over running your own system locally!



Why set up your own distributed inference?

• Privacy
• You can keep your queries secure
• You can keep your model weights secure

• Cost (maybe)
• Just because cloud inference providers can do it more efficiently, doesn’t 

mean the market rate will necessarily be cheaper 

• Latency
• For some applications, the time to go over the internet to a cloud provider 

might be too large (e.g. a self-driving car, or a trading system)



Conclusion and Summary

• Distributed computing is a powerful tool for scaling machine 
learning: both training and inference

• If  you use methods specialized to your own ML model (and 
design the ML model with these methods in mind!) you can 
make efficient use of  distributed hardware.

• New Paper Reading out tonight: MegatronLM
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