

Basic patterns of collective communication

All-Gather

* Each machine has an equal-sized chunk of a desired result; sends data to
many machines.

. rank0 | rank1 { rank 2 | rank 3 | rank 0 ; rank1 | rank 2 | rank 3 |

in3

out[Y*count+i] = inY]i]

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/ collectives.html#allgather

Recall: Basic patterns of collective communication

All-Reduce

* Compute some reduction (usually a sum) of data on multiple machines
and materialize the result on all those machines.

C1 C1
C2 C2

C3
C4

Basic patterns of collective communication
Reduce-Scatter

* Compute some reduction of data on M machines and materialize 1/M
of the result on each machine (sharding the result).

rankO { rank1l | rank 2 | rank 3 | rank0 { rank1 | rank 2 | rank 3 |

1 B .0 NNyl
: int § (i3 | - | i o
| i i 1 | out2 ||

uuthﬂ = sum{iln}f;[“f*mulnﬁi])

Recall: Data Parallel Training

e If there are M worker machines such that B = M - B’, then

TR s
Wil = Wy — Qg - M E B E vfim,b,t(wt)-
m=1 b=1

* Parallelize over the minibatch, by splitting the training examples among
the workers.

* We discussed two types:
* SGD with All-Reduce

e Parameter server architecture

Another Type ot Data Parallel Learning:
Federated learning

* Sometimes, your data is inherently distributed

* For example, data gathered on people’s mobile phones
* For example, data measured by internet-of-things devices

* Rather than centralizing the data, may want to learn on the distributed
devices themselves

* E.g. to preserve the privacy of users

* This 1s called federated learning

* Lots of interest from industry right now

Model Parallelism

* Broad concept of partitioning the layers of a neural network among
different worker machines. (Can also partition within a layer.)

* FEach worker is responsible for a subset of the parameters.

* Forward and backward signals running through the neural network during
backpropagation now also run across the computer network between the
different parallel machines.

* Particularly useful if the parameters won't fit in memory on a single machine.

* This is very important when we move to specialized machine learning accelerator
hardware, where we’re running on chips that typically have limited memory and
communication bandwidth.

Two broad classes of model parallelism

* Distributing across layers

* E.g it a model has 80 transformer blocks and we’re parallelizing across 8
machines, each machine will get 10 of the transformer blocks

* Distributing within layers
* Each linear layer of the model 1s sharded across the machines
* Can do this on the input side or on the output side

Distributing- Across-Layers: Pipeline Parallelism

* A variant of model parallelism that tries to improve throughput by
overlapping minibatch computation.

* From “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism™

Fao | Far | Faz | Fss| Bss | Bsz | Bas | Bao Updete
Fz0 | For | Faz | Fas Bos | Boz | Bat | Bao Update

Fio| Fi1| Fi2 | F13 Bis | Biz2 | Bi1 | Bipo Update
Foo | For | Foz | Fo { Bubble } Bos | Boz | Box | Boo | Update

Distributing within Layers:
Naive Tensor Parallelism

(d,d)

(n,d) (n,d)

W

B

Consider a simple linear layer.

Naive Tensor Parallelism on

Output via All-Gather

(d/4,d)

W2 9
—Ea

-

Suppose the input activations x are replicated on all workers (gray).
We can partition the weights as follows.

Naive Tensor Parallelism on
Input via All-Reduce

(n,d/4) (d,d/4)

x1 W1
x2 W2 9

X3 W3 _>

Suppose the input activations x are replicated on all workers (gray).
We can partition the weights as follows.

Naive Tensor Parallelism on

Input via Reduce-Scatter
(n,d/4) (d,d/4) (n,d) (n.d)

xigw W1 gyl NEES
X2 gy W2 g v2
1 IKZE

E-IE7EE B

Suppose the input activations x are sharded among workers.
We can partition the weights as follows.

:ELT

Key insight: we aren’t forced to use the same
strategy to parallelize all layers.

Can distribute some weight matrices along the
input and others along the output!

Transformer MLP Block

y = ((zWyp) © SILU(2Wgate)) Waown

class LlanalLP(nn.Module): Can you find a way to distribute
def __init_ (self, config):
super().__init__ () thlS Wlth only 1 all-reduce?
self.config = config

def

self.
self.
self.
self.
self.
self.

hidden_size = config.hidden_size Suppose the inputs/outputs are replicated on all machines.

intermediate_size = config.intermediate_size

gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
act_fn = ACT2FN[config.hidden_act]

forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

retu

rn down_proj

Transformer Attention Block

def forward(self,hidden_states,positions,attention_mask):
input_shape = hidden_states.shapel:-1]
hidden_shape = (xinput_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
query_states, key_states = self.apply_rotary_pos_emb(query_states,key_states,positions)
attn_output = self.multi_head_attention(query_states, key_states,value_states,attention_mask)
attn_output = attn_output.reshape(xinput_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output

Can you find a way to distribute
this with only 1 all-reduce?

Suppose the inputs/outputs are replicated on all machines.

Transformer Tensor Parallelism

* Conclusion: we only need 2 all-reduce operations
to compute a single transformer block
* Even though that block has 7 linear layers!

* Also naturally results in the KV cache being
distributed as well

* Helps support long sequences

Transformer Tensor Parallelism: Scaling

* Forward pass communication scales with

* Number of transformer blocks (depth)
* Hidden dimension (width)
* Sequence length

e Batch size

2:-B-n-d-L

Standard data parallel training

Distributing within
Layers: Fully Sharded
Data Parallel

* A hybrid of data parallelism
and sharded parameter server
strategies.

uuuuuu

:::::::

* Splits the weights for each
layer among all machines, then e &
uses an all-gather to get them . |
whenever they’re needed.

UUUUUU
sssssss
lllllll

Load shard Offload grads to

1
I .
. From CPU if CPU. if CPU
- CPU Offloaded offload is enabled
1
v
ALL- FORWARD FREE FULL ALL- BACKWARD
GATHER (LOCAL) WEIGHTS GATHER (LOCAL) UPDATE
(LOCAL)
FSDP instance 1: N layers FSDP instance 1: N layers FSDP instance N: M layers
A A A
1 | .
! : :
GATHER GATHER :
WEIGHTS WEIGHTS SYNC GRADS
(ALL_GATHER) (ALL_GATHER) (REDUCE_SCATTER)

!
i
i
!
.

I
:
:
:
;
v

ALL- FORWARD FREE FULL ALL- BACKWARD REDUCE- FREEFULL [EEEEEE [.
GATHER (LOCAL) WEIGHTS GATHER (LOCAL) SCATTER WEIGHTS =N UPDATE
I
A ; (LOCAL)
1 .
: FSDP instance 1: N layers FSDP instance 1: N layers I FSDP instance N: M layers
I y! !
i v
1 Load shard Offload grads to
; From CPU if ch. if CPU
CPU Offloaded offload is enabled

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

Transtformer FSDP: Scaling

* Forward pass communication scales with

* Total model size, since each weight 1s all-gathered to all
machines once during the forward pass

L-d-(4d + 3dyrp)

* Better than tensor parallelism when the batch size
and/or sequence length is large!

Fault-Tolerance

* Central topic in distributed computing: what to do when a
machine or network component fails?

* More likely to happen the more machines you’re running on!

* Classic strategy: just re-run the job

* To avoid having to re-run the whole job, we periodically
checkpoint the weights/optimizer state of the model.

* Lets us resume from that checkpoint later in the event of failure.

Note on Activation Checkpointing

* Note that this weight checkpointing is not to be confused with
activation checkpointing (a.k.a. gradient checkpointing).

* Activation checkpointing happens while computing the gradient
* Main idea 1s to save memory for the intermediates used in backprop
* Save only the activations going into a block
* Recompute the other activations on the fly

* Trades off memory for compute
* Effectively need to run the forward pass twice

Distributed LLILM inference
Why should we care about inferencer

* Train once, infer many times

* Many production machine learning systems just do inference

* Often want to run inference on low-power edge devices
* Such as cell phones, security cameras

* Limited memory on these devices to store models

* Need to get responses to users quickly

* On the web, users won’t wait more than a second

Recall: Inference on neural networks

* Just need to run the forward pass of the network.

* A bunch of matrix multiplies and non-linear units.

* Unlike backpropagation for learning, here we do not need to keep the
activations around for later processing.

* Lower memory requirements

* This makes inference a much simpler task than learning;
* Although it can still be costly — it’s a lot of linear algebra to do.

What performance metrics do we
care about when running inference?

E.g. for a deep neural network application

Metrics for Inference

* Important metric: throughput
* How many examples can we classify in some amount of time

* Important metric: latency
* How long does it take to get a prediction for a single example

* Important metric: model size
* How much memory do we need to store/transmit the model for prediction

* Important metric: energy use
* How much energy do we use to produce each prediction

* What are examples where we might care about each metric?

Distributed LLILM inference

* Mostly done via tensor parallelism

* Key thing to remember: for decode latency we are
memory-bound, since we need to read all the model
weights into memory to make each prediction

* For prefill we still want to be compute bound
* Looks like training computationally

Distributed LLILM inference

* Because decode is memory bound, we leverage
multiple devices to get higher memory bandwidth

* 8x the GPUs means 8x the memory bandwidth
* ...means ideally an 8x lower latency to infer one token

* But we still want to use the compute, so to be efficient, batch
multiple inference requests together

e This both lets us use otherwise underused FLLOPs

* And lets us do more efficient matrix-matrix multiplies instead of
matrix-vector

Distributed LLILM inference: batching

* As a result, there’s this fundamental property of LLLM
inference: you can be more efficient at scale!

* Interence systems have a lower cost per token once they reach a
certain threshold of queries

* ...so they can always operate at an “ideal” batch size

* This gives major Al inference companies an advantage
over running your own system locally!

Why set up your own distributed inference?

* Privacy
* You can keep your queries secure
* You can keep your model weights secure

* Cost (maybe)
* Just because cloud inference providers can do it more etficiently, doesn’t
mean the market rate will necessarily be cheaper

* Latency

* For some applications, the time to go over the internet to a cloud provider
might be too large (e.g. a self-driving car, or a trading system)

Conclusion and Summary

* Distributed computing 1s a powertul tool for scaling machine
learning: both training and inference

* If you use methods specialized to your own ML model (and
design the M. model with these methods in mind!) you can
make efficient use of distributed hardware.

* New Paper Reading out tonight: Megatronl.M

	Slide 1: Distributed Machine Learning 2: FSDP and Inference
	Slide 2: Basic patterns of collective communication All-Gather
	Slide 3: Recall: Basic patterns of collective communication All-Reduce
	Slide 4: Basic patterns of collective communication Reduce-Scatter
	Slide 5: Recall: Data Parallel Training
	Slide 6: Another Type of Data Parallel Learning: Federated learning
	Slide 7: Model Parallelism
	Slide 8: Two broad classes of model parallelism
	Slide 9: Distributing-Across-Layers: Pipeline Parallelism
	Slide 10: Distributing within Layers: Naïve Tensor Parallelism
	Slide 11: Naïve Tensor Parallelism on Output via All-Gather
	Slide 12: Naïve Tensor Parallelism on Input via All-Reduce
	Slide 13: Naïve Tensor Parallelism on Input via Reduce-Scatter
	Slide 14: Key insight: we aren’t forced to use the same strategy to parallelize all layers. Can distribute some weight matrices along the input and others along the output!
	Slide 15: Transformer MLP Block
	Slide 16: Transformer Attention Block
	Slide 17: Transformer Tensor Parallelism
	Slide 18: Transformer Tensor Parallelism: Scaling
	Slide 19: Distributing within Layers: Fully Sharded Data Parallel
	Slide 20
	Slide 21: Transformer FSDP: Scaling
	Slide 22: Fault-Tolerance
	Slide 23: Note on Activation Checkpointing
	Slide 24: Distributed LLM inference Why should we care about inference?
	Slide 25: Recall: Inference on neural networks
	Slide 26: What performance metrics do we care about when running inference?
	Slide 27: Metrics for Inference
	Slide 28: Distributed LLM inference
	Slide 29: Distributed LLM inference
	Slide 30: Distributed LLM inference: batching
	Slide 31: Why set up your own distributed inference?
	Slide 32: Conclusion and Summary

