Distributed Machine Learning
and the Parameter Server

CS4787 Lecture 20 — Fall 2025

So far, we’ve been talking about ways to scale our machine
learning pipeline that focus on a single machine. But if we
really want to scale up to huge datasets and models,
eventually one machine won’t be enough.

This lecture will cover methods for using multiple
machines to do learning.

Distributed computing basics

* Distributed parallel computing involves two ot more machines
collaborating on a single task by communicating over a network.

* Unlike parallel programming on a single machine, distributed computing requires
explicit (1.e. written in software) communication among the workers.

[H——H __H o o ¥]

C—H _H H H—H_—H 1

C_—_H_H H > «— T — —

—H H H H—H H]
Network —H—H

GPU] +—> G— —HH

g H H |

o —

— — «— H—H H]

GPU - «— L HH

* There are a few basic patterns of communication that are used by
distributed programs.

Basic patterns of point-to-point communication

Push

e Machine A sends some data to machine B.

Basic patterns of point-to-point communication

Pull

* Machine B requests some data from machine B.

* This differs from push only in terms of who initiates the communication

Basic patterns of collective communication
Broadcast

* Machine A sends data to many machines.

A

Basic patterns of collective communication
Scatter

* Machine A splits data among many machines.

A

Basic patterns of collective communication
Scatter

* Machine A splits data among many machines.

- rank 0 : rank1 i rank2 : rank 3 | - rank 0 | rank1 | rank 2 | rank 3 |

(00D 5 5 .
i | i I
- :::ut

out3

outY[i] = inX[Y*count+i]

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/ collectives.html#scatter

Basic patterns of collective communication

Gather

* Each machine has an equal-sized chunk of a desired result; manifest on
one machine

C1

C2 stack /cat

C3
C4

Basic patterns of collective communication

Gather

* Each machine has an equal-sized chunk of a desired result; manifest on
one machine

rank 0 | rank 1 rank 2 rank 3 rank 0 rank 1 | rank 2 | rank 3

5 | .~ (root)
oom

in3

out[Y*count+] = IinY{i]

Basic patterns of collective communication

All-Gather

* Each machine has an equal-sized chunk of a desired result; sends data to
many machines.

C1
C2

C3
C4

Basic patterns of collective communication

All-Gather

* Each machine has an equal-sized chunk of a desired result; sends data to
many machines.

. rank0 | rank1 { rank 2 | rank 3 | rank 0 ; rank1 | rank 2 | rank 3 |

in3

out[Y*count+i] = inY]i]

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/ collectives.html#allgather

Basic patterns of collective communication

All-To-All

* Basically a transpose

C1

C2 transpose

C; O

C4

Basic patterns of collective communication

All-To-All

* Basically a transpose

rank 0 | rank1 { rank 2 | rank 3 | rank 0 | rank1 { rank 2 | rank 3 |

outX[Y*count+i] = inY[X*count+i]

Basic patterns of collective communication

Reduce

* Compute some reduction (usually a sum) of data on multiple machines
C1, C2, ..., Cn and materialize the result on one machine B.

C1
C2

C3
C4

Basic patterns of collective communication

All-Reduce

* Compute some reduction (usually a sum) of data on multiple machines
and materialize the result on all those machines.

C1 C1
C2 C2

C3
C4

Basic patterns of collective communication
ReduceScatter

* Compute some reduction of data on M machines and materialize 1/M
of the result on each machine (sharding the result).

C1 C1
C2 C2

C3
C4

Basic patterns of collective communication
ReduceScatter

* Compute some reduction of data on M machines and materialize 1/M
of the result on each machine (sharding the result).

rankO { rank1l | rank 2 | rank 3 | rank0 { rank1 | rank 2 | rank 3 |

1 B .0 NNyl
: int § (i3 | - | i o
| i i 1 | out2 ||

uuthﬂ = sum{iln}f;[“f*mulnﬁi])

Basic patterns of communication: synchronization

Wait

* One machine pauses 1ts computation and waits on a signal from another
machine

Basic patterns of communication: synchronization
Barrier

* Many machines wait until all those machines reach a point in their
execution, then continue from there

C1 - = C1
C2

C2
C3 - =r= =

[
[
A 4
[

Patterns of Communication Summary

* Push/Pull. Machine A sends data to machine B, or B requests data from A.
* Broadcast. Machine A sends some data to many machines C1, C2, ..., Cn.

* Reduce. Compute some reduction (usually a sum) ot data on multiple
machines C1, C2, ..., Cn and materialize the result on one machine B.

* All-reduce. Compute some reduction (usually a sum) of data on multiple
machines C1, C2; ..., Cn and materialize the result on all those machines.

* Scatter-reduce. Compute some reduction (usually a sum) of data on multiple
machines C1, C2, ..., Cn and materialize the result in a sharded fashion.

* Wait. One machine pauses its computation and waits for data to be received
from another machine.

* Barrier. Many machines wait until all other machines reach a point in their
code before proceeding,

Overlapping computation and communication

* Communicating over the network can have high latency
* we want to hide this latency

* An important principle of distributed computing is overlapping
computation and communication

* For the best performance, we want our workers to still be doing useful
work while communication is going on
* rather than having to stop and wait for the communication to finish
* sometimes called a stall

Running SGD with All-reduce

* All-reduce gives us a simple way of running learning algorithms such as
SGD in a distributed fashion with data parallelism.

* Simply put, the idea is to just parallelize the minibatch. We start with
an identical copy ot the parameter on each worker.

* Recall that SGD update step looks like:

B
1
Wt+1 — W — Oy - B E Vfib,t(wt)a
b=1

Running SGD with All-reduce (continued)

e If there are M worker machines such that B = M - B’, then

TR s
Wil = Wy — Qg - M Z B Z vfim,b,t(wt)-
m=1 b=1

* Now, we assign the computation ot the sum when m =1 to worker 1,
the computation of the sum when m = 2 to worker 2, et cetera.

* After all the gradients are computed, we can perform the outer sum with
an all-reduce operation.

Running SGD with All-reduce (continued)

* After this all-reduce, the whole sum (which is essentially the minibatch
gradient) will be present on all the machines

* so each machine can now update its copy of the parameters

* Since sum 1s same on all machines, the parameters will update in lockstep

* Statistically equivalent to sequential SGD!

Algorithm 1 Distributed SGD with All-Reduce

input: loss function examples fi, fo, ..., number of machines M, per-machine minibatch size B’
input: learning rate schedule o, initial parameters wg, number of iterations 7T’
for m =1 to M run in parallel on machine m

load wg from algorithm inputs

fort=1 to T do

select a minibatch iy, 1 ¢, %m.2.¢, - - -, im, B’ ¢ Of size B’
1 &
compute g, ; < 7l E V fimse(Wi—1)
b=1

M
all-reduce across all workers to compute G; = Z Gm t
m=1

update model w; < w;_1 — % -Gy

end for
end parallel for
return wy (from any machine)

Same approach can be used for momentum, Adam, etc.

What are the benefits of
distributing SGD with all-reduce?
What are the drawbacks?

Benefits of distributed SGD with All-reduce

* The algorithm is easy to reason about, since it’s statistically equivalent to
minibatch SGD.

* And we can use the same hyperparameters for the most part.

* The algorithm 1s easy to implement

* since all the worker machines have the same role and it runs on top of standard
distributed computing primitives.

Drawbacks of distributed SGD with all-reduce

* While the communication for the all-reduce is happening, the workers are (for
the most part) idle.

* We’re not overlapping computation and communication.
* At least by default

* We can overlap communication with preprocessing/data augmentation

* The effective minibatch size is growing with the number of machines,
and for cases where we don? want to run with a large minibatch size for
statistical reasons, this can prevent us from scaling to large numbers of
machines using this method.

Where do we get the training examples from?

* There are two general options for distributed learning.

o Training data servers

* Have one or more non-worker servers dedicated to storing the training examples
(e.g. a distributed in-memory filesystem)

* The worker machines load training examples from those servers.
* These servers can handle preprocessing and data augmentation (but usually don’t)

e Partitioned dataset

* Partition the training examples among the workers themselves and store them
locally in memory on the workers.

The Parameter Server Model

The Basic Idea

* Recall from the early lectures in this course that a lot of our theory talked
about the convergence of optimization algorithms.

* This convergence was measured by some function over the parameters at time t
(e.g. the objective function or the norm of its gradient) that is decreasing with t,
which shows that the algorithm is making progress.

* For this to even make sense, though, we need to be able to talk about the
value of the parameters at time t as the algorithm runs.

* E.g. in SGD, we had

W41 = Wy — Oétvfit (wt)

Parameter Server Basics Continued

* For a program running o
time t is just the value of ¢

DRAM) at that time.

For SGD with all-reduce, we can answer this

question easily, since the value of the parameters is
the same on all workers (it’s guaranteed to be the

same by the all-reduce operation). We just appoint

* Butina distributed §ettin this identical shared value to be the value of the
must be done explicitly.

* Fach machine will usually
time, some of which may

parameters at any given time.

* This raises the question: when reasoning about a distributed algorithm,
what we should consider to be the value of the parameters a given time?

The Parameter Server Model

* The parameter server model answers this question differently by appointing a
single machine, the parameter server, the explicit responsibility of
maintaining the current value of the parameters.

* The most up-to-date gold-standard parameters are the ones stored in memory on the
parameter server.

* The parameter server updates its parameters by using gradients that are
computed by the other machines, known as workers, and pushed to the
parameter server.

* Periodically, the parameter server broadcasts its updated parameters to all
the other worker machines, so that they can use the updated parameters to
compute gradients.

A4

worker
1

~

gradients to
parameter server

s

parameter server

J

workers send

A

N

s

~

worker

~—

AN

A4

AN

parameter server

sends new parameters

3

worker

7

to workers

A

worker
M

training data

Learning with the parameter server

* Many ways to learn with a parameter server

* Synchronous distributed training

* Similar to all-reduce, but with gradients summed on a central parameter server

* Asynchronous distributed training

* Compute and send gradients and add them to the model as soon as possible
* Broadcast updates whenever they are available

Multiple parameter servers

* It the parameters are too numerous for a single parameter server to
handle, we can use multiple parameter server machines.

* We partition the parameters among the multiple parameter servers
* Each server is only responsible for maintaining the parameters in its partition.

* When a worker wants to send a gradient, it will partition that gradient vector and
send each chunk to the corresponding parameter server; later, it will receive the
corresponding chunk of the updated model from that parameter server machine.

* This lets us scale up to very large models!

Other Ways To Distribute

The methods we discussed so far distributed across the minibatch (for all-reduce SGD)
and across iterations of SGD (for asynchronous parameter-server SGD).

But there are other ways to distribute that are used in practice too.

Distribution for hyperparameter optimization

* This 1s something we’ve already talked about.

* Many commonly used hyperparameter optimization algorithms, such as
orid search and random search, are very simple to distribute.

* They can easily be run on many parallel workers to get results faster.

Model Parallelism

* Main idea: partition the layers of a neural network among different worker
machines.

* This makes each worker responsible for a subset of the parameters.

* Forward and backward signals running through the neural network during
backpropagation now also run across the computer network between the
different parallel machines.

* Particularly useful if the parameters won’t fit in memory on a single machine.

* This is very important when we move to specialized machine learning accelerator
hardware, where we’re running on chips that typically have limited memory and
communication bandwidth.

A Diagram of Model Parallelism

* From “PspeDream: Fast and Efficient Pipeline Parallel DNN Training.”

. N\ § §2\
£ s N\ INY
« DN ‘ DN

Time

B Forward Work [| Backward Work iy Idle

Figure 3: Model parallel training with 4 machines. Numbers
indicate minibatch ID. For simplicity, here we assume that for-
ward and backward work in every stage takes one time unit, and
communicating activations across machines has no overhead.

Pipeline Parallelism

* A variant of model parallelism that tries to improve throughput by
overlapping minibatch computation.

* From “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism™

Fao | Far | Faz | Fss| Bss | Bsz | Bas | Bao Updete
Fz0 | For | Faz | Fas Bos | Boz | Bat | Bao Update

Fio| Fi1| Fi2 | F13 Bis | Biz2 | Bi1 | Bipo Update
Foo | For | Foz | Fo Bubble Bos | Boz | Box | Boo | Update

Fully Sharded Data
Parallel

* A hybrid of data parallelism
and sharded parameter server
strategies.

* Splits the weights for each
layer among all machines, then
uses a broadcast to get them
whenever they’re needed.

Standard data parallel training

tttttt

LLLLLLL

uuuuuu
wwwwwww
IIIII

Conclusion and Summary

* Distributed computing is a powertul tool for scaling machine
learning

* We talked about a few methods for distributed training:

e Minibatch SGD with All-reduce

* The parameter server approach
* Model parallelism

* And distribution can be beneficial for many other tasks too!

	Slide 1: Distributed Machine Learning and the Parameter Server
	Slide 2
	Slide 3: Distributed computing basics
	Slide 4: Basic patterns of point-to-point communication Push
	Slide 5: Basic patterns of point-to-point communication Pull
	Slide 6: Basic patterns of collective communication Broadcast
	Slide 7: Basic patterns of collective communication Scatter
	Slide 8: Basic patterns of collective communication Scatter
	Slide 9: Basic patterns of collective communication Gather
	Slide 10: Basic patterns of collective communication Gather
	Slide 11: Basic patterns of collective communication All-Gather
	Slide 12: Basic patterns of collective communication All-Gather
	Slide 13: Basic patterns of collective communication All-To-All
	Slide 14: Basic patterns of collective communication All-To-All
	Slide 15: Basic patterns of collective communication Reduce
	Slide 16: Basic patterns of collective communication All-Reduce
	Slide 17: Basic patterns of collective communication ReduceScatter
	Slide 18: Basic patterns of collective communication ReduceScatter
	Slide 19: Basic patterns of communication: synchronization Wait
	Slide 20: Basic patterns of communication: synchronization Barrier
	Slide 21: Patterns of Communication Summary
	Slide 22: Overlapping computation and communication
	Slide 23: Running SGD with All-reduce
	Slide 24: Running SGD with All-reduce (continued)
	Slide 25: Running SGD with All-reduce (continued)
	Slide 26
	Slide 27: What are the benefits of distributing SGD with all-reduce? What are the drawbacks?
	Slide 28: Benefits of distributed SGD with All-reduce
	Slide 29: Drawbacks of distributed SGD with all-reduce
	Slide 30: Where do we get the training examples from?
	Slide 31: The Parameter Server Model
	Slide 32: The Basic Idea
	Slide 33: Parameter Server Basics Continued
	Slide 34: The Parameter Server Model
	Slide 35
	Slide 36: Learning with the parameter server
	Slide 37: Multiple parameter servers
	Slide 38: Other Ways To Distribute
	Slide 39: Distribution for hyperparameter optimization
	Slide 40: Model Parallelism
	Slide 41: A Diagram of Model Parallelism
	Slide 42: Pipeline Parallelism
	Slide 43: Fully Sharded Data Parallel
	Slide 44: Conclusion and Summary

