Low-Precision Arithmetic

CS4787 Lecture 21 — Spring 2020
The standard approach

Single-precision floating point (FP32)

- 32-bit floating point numbers

\[
\begin{array}{cccccccccccccccccccccccccc}
\end{array}
\]

<table>
<thead>
<tr>
<th>sign</th>
<th>8-bit exponent</th>
<th>23-bit mantissa</th>
</tr>
</thead>
</table>

- Usually, the represented value is

\[
\text{represented number} = (-1)^{\text{sign}} \cdot 2^{\text{exponent}-127} \cdot 1.b_{22}b_{21}b_{20} \ldots b_{0}
\]
Three special cases

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|

sign 8-bit exponent 23-bit mantissa

• When the exponent is all 0s, and the mantissa is all 0s
 • This represents the real number 0
 • Note the possibility of “negative 0”

• When the exponent is all 0s, and the mantissa is nonzero
 • Called a “denormal number” — degrades precision gracefully as 0 approached

represented number = (−1)^\text{sign} \cdot 2^{-126} \cdot 0.b_{22}b_{21}b_{20} \ldots b_0.
Three special cases (continued)

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|

- When the exponent is all 1s (255), and the mantissa is all 0s
 - This represents *infinity* or *negative infinity*, depending on the sign
 - Indicates overflow or division by 0 occurred at some point
 - Note that these events usually do not cause an exception, but sometimes do!

- When the exponent is all 1s (255), but the mantissa is nonzero
 - Represents something that is *not a number*, called a NaN value.
 - This usually indicates some sort of compounded error.
 - The bits of the mantissa can be a message that indicates how the error occurred.
DEMO
Measuring Error in Floating Point Arithmetic

If $x \in \mathbb{R}$ is a real number within the range of a floating point representation, and \tilde{x} is the closest representable floating-point number to it, then

$$|\tilde{x} - x| = |\text{round}(x) - x| \leq |x| \cdot \varepsilon_{\text{machine}}.$$

Here, $\varepsilon_{\text{machine}}$ is called the *machine epsilon* and bounds the relative error of the format.
Error of Floating-Point Computations

If x and y are real-numbers representable in a floating-point format, \circ denotes an (infinite-precision) binary operation (such as $+$, \cdot, etc.) and \bullet denotes the floating-point version of that operation, then

$$x \bullet y = \text{round}(x \circ y) \quad \text{and} \quad |(x \bullet y) - (x \circ y)| \leq |x \circ y| \cdot \varepsilon_{\text{machine}},$$

as long as the result is in range.
Exceptions to this error model

• If the exact result is larger than the largest representable value
 • The floating-point result is \texttt{infinity} (or minus infinity)
 • This is called \texttt{overflow}

• If the exact result falls in the range of denormal numbers, there may be more error than the model predicts

• If there is an invalid computation
 • e.g. the square root of a negative number, or infinity + (-infinity)
 • the result is \texttt{NaN}
How can we use this info to make our ML systems more scalable?
Low-precision compute

• Idea: replace the 32-bit or 64-bit floating point numbers traditionally used for ML with smaller numbers
 • For example, 16-bit floats or 8-bit integers

• New specialized chips for accelerating ML training.
 • Many of these chips leverage low-precision compute.

Google’s TPU NVIDIA’s GPUs Intel’s NNP
A low-precision alternative
FP16/Half-precision floating point

• 16-bit floating point numbers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sign 5-bit exp 10-bit mantissa

• Usually, the represented value is

\[x = (-1)^{\text{sign bit}} \cdot 2^{\text{exponent}-15} \cdot 1.\text{significand}_2 \]
Benefits of Low-Precision: Compute

• Use **SIMD/vector instructions** to run more computations at once

SIMD Precision

- **64-bit float vector**
 - F64 F64 F64 F64

- **32-bit float vector**
 - F32 F32 F32 F32

- **16-bit int vector**
 - [16 bars]

- **8-bit int vector**
 - [32 bars]

SIMD Parallelism

- **4 multiplies/cycle**
 - (vmulpd instruction)

- **8 multiplies/cycle**
 - (vmlps instruction)

- **16 multiplies/cycle**
 - (vpmaddwd instruction)

- **32 multiplies/cycle**
 - (vpmaddubsw instruction)
Benefits of Low Precision: Memory

- Puts **less pressure** on memory and caches

Precision in DRAM

- **64-bit float vector**
 - F64 F64 F64

- **32-bit float vector**
 - F32 F32 F32 F32 F32

- **16-bit int vector**
 -

- **8-bit int vector**
 -

Memory Throughput

- 5 numbers/µs
- 10 numbers/µs
- 20 numbers/µs
- 40 numbers/µs

(assuming ~40 GB/sec memory bandwidth)
Benefits of Low Precision: Communication

- Uses **less network bandwidth** in distributed applications

![Diagram showing precision in DRAM and memory throughput]

- **32-bit float vector**
 - 10 numbers /ns (assuming ~40 GB/sec network bandwidth)

- **16-bit int vector**
 - 20 numbers /ns

- **8-bit int vector**
 - 40 numbers /ns

- **Specialized lossy compression**
 - >40 numbers /ns
Benefits of Low Precision: Power

• Low-precision computation can even have a super-linear effect on energy

• Memory energy can also have quadratic dependence on precision
Effects of Low-Precision Computation

• **Pros**
 - Fit more numbers (and therefore more training examples) in memory
 - Store more numbers (and therefore larger models) in the cache
 - Transmit more numbers per second
 - Compute faster by extracting more parallelism
 - Use less energy

• **Cons**
 - Limits the numbers we can represent
 - Introduces *quantization error* when we store a full-precision number in a low-precision representation
Numeric properties of 16-bit floats

- A larger machine epsilon (larger rounding errors) of \(\epsilon_{\text{machine}} \approx 9.8 \times 10^{-4} \)
 - Compare 32-bit floats which had \(\epsilon_{\text{machine}} \approx 1.2 \times 10^{-7} \).

- A smaller overflow threshold (easier to overflow) at about \(6.5 \times 10^{4} \)
 - Compare 32-bit floats where it’s \(3.4 \times 10^{38} \)

- A larger underflow threshold (easier to underflow) at about \(6.0 \times 10^{-8} \).
 - Compare 32-bit floats where it’s \(1.4 \times 10^{-45} \)

With all these drawbacks, does anyone use this?
Half-precision floating point support

• Supported on most **modern machine-learning-targeted GPUs**
 • Including efficient implementation on NVIDIA Pascal GPUs

<table>
<thead>
<tr>
<th>GPU</th>
<th>DFMA (FP64 TFLOP/s)</th>
<th>FFMA (FP32 TFLOP/s)</th>
<th>HFMA2 (FP16 TFLOP/s)</th>
<th>DP4A (INT8 TIOP/s)</th>
<th>DP2A (INT16/8 TIOP/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP100 (Tesla P100 NVLink)</td>
<td>5.3</td>
<td>10.6</td>
<td>21.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>GP102 (Tesla P40)</td>
<td>0.37</td>
<td>11.8</td>
<td>0.19</td>
<td>43.9</td>
<td>23.5</td>
</tr>
<tr>
<td>GP104 (Tesla P4)</td>
<td>0.17</td>
<td>8.9</td>
<td>0.09</td>
<td>21.8</td>
<td>10.9</td>
</tr>
</tbody>
</table>

Table 1: Pascal-based Tesla GPU peak arithmetic throughput for half-, single-, and double-precision fused multiply-add instructions, and for 8- and 16-bit vector dot product instructions. (Boost clock rates are used in calculating peak throughputs. TFLOP/s: Tera Floating-point Operations per Second. TIOP/s: Tera Integer Operations per Second. https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/)

• Good empirical results for **deep learning**

One way to address limited range: more exponent bits

Bfloat16 — “brain floating point”

- Another 16-bit floating point number

```
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
```

- sign
- 8-bit exp
- 7-bit mantissa

Q: What can we say about the range of bfloat16 numbers as compared with IEEE half-precision floats and single-precision floats? How does their machine epsilon compare?
Bfloat16 (continued)

- Main benefit: numeric range is now the same as single-precision float
 - Since it looks like a truncated 32-bit float
 - This is useful because ML applications are more tolerant to quantization error than they are to overflow

- Also supported on specialized hardware
An alternative to low-precision floating point

Fixed point numbers

- $p + q + 1$-bit fixed point number

The represented number is

$x = (-1)^{\text{sign bit}} \left(\text{integer part} + 2^{-q} \cdot \text{fractional part} \right)$

$= 2^{-q} \cdot \text{whole thing as signed integer}$
Arithmetic on fixed point numbers

• **Simple and efficient**
 • Can just use preexisting integer processing units
 • *Lower power* than floating point operations with the same number of bits

• **Mostly exact**
 • Underflow impossible
 • Overflow can happen, but is easy to understand
 • Can always convert to a higher-precision representation to avoid overflow

• Can represent a *much narrower range of numbers than float*
Support for fixed-point arithmetic

• **Anywhere integer arithmetic is supported**
 • CPUs, GPUs
 • Although not all GPUs support 8-bit integer arithmetic
 • And AVX2 does not have all the 8-bit arithmetic instructions we’d like

• Particularly effective on **FPGAs and ASICs**
 • Where floating point units are costly

• Sadly, very **little support for other precisions**
 • **4-bit operations** would be particularly useful
Breakout Questions

• **Q: What are the upsides/downsides of using fixed-point numbers for ML?**
 • Compared to floating-point?

• **Q: Can you think of a place where you’ve already used something like fixed-point numbers in a programming assignment?**
A powerful hybrid approach
Block Floating Point

• Motivation: when storing a vector of numbers, often these numbers all lie in the same range.
 • So they will have the same or similar exponent, if stored as floating point.

• **Block floating point** shares a single exponent among multiple numbers.
A more specialized approach

Custom Quantization Points

• Even more generally, we can just have a list of 2^b numbers and say that these are the numbers a particular low-precision string represents
 • We can think of the bit string as indexing a number in a dictionary

• Gives us total freedom as to range and scaling
 • But computation can be tricky

• Some recent research into using this with hardware support
 • “The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning” (Zhang et al 2017)
How is precision used for DNN training

• Signals flow through network in backpropagation
 • Generally, we assign a precision to each of the types of signals, and different types of signals can have different precisions

Types of signals in backpropagation:
• Training dataset
• Vectors that store weights/parameters
• Gradients
• Communication among parallel workers
• Activations
• Backward pass signals
• Weight accumulators
• Momentum/ADAM vectors
Low-precision formats in general

• These are some of the **most common formats used in ML**
 • …but we’re not limited to using only these formats!

• There are **many other things we could try**
 • For example, floating point numbers with different exponent/mantissa sizes
 • Block floating point numbers with different block sizes/layouts
 • Fixed point numbers with nonstandard widths

• Problem: there’s **no hardware support** for these other things yet, so it’s hard to get a sense of how they would perform.
Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the form of round-off error.

• Two approaches to rounding:
 • biased rounding – round to nearest number
 • unbiased rounding – round randomly: $E[Q(x)] = x$

Using this, we can prove guarantees that SGD works with a low precision model...since a low-precision gradient is an unbiased estimator.
Why unbiased rounding?

• Imagine running SGD with a low-precision model with update rule

\[w_{t+1} = \tilde{Q} (w_t - \alpha_t \nabla f(w_t; x_t, y_t)) \]

• Here, \(Q \) is an unbiased quantization function

• In expectation, this is \textbf{just gradient descent}

\[
E[w_{t+1} | w_t] = E \left[\tilde{Q} (w_t - \alpha_t \nabla f(w_t; x_t, y_t)) | w_t \right]
= E [w_t - \alpha_t \nabla f(w_t; x_t, y_t) | w_t]
= w_t - \alpha_t \nabla f(w_t)
\]
Implementing unbiased rounding

• To implement an unbiased to-integer quantizer:

\[\text{sample } u \sim \text{Unif}[0, 1], \text{ then set } Q(x) = \lfloor x + u \rfloor \]

• Why is this unbiased?

\[
\mathbb{E}[Q(x)] = \lfloor x \rfloor \cdot P(Q(x) = \lfloor x \rfloor) + (\lfloor x \rfloor + 1) \cdot P(Q(x) = \lfloor x \rfloor + 1) \\
= \lfloor x \rfloor + P(Q(x) = \lfloor x \rfloor + 1) = \lfloor x \rfloor + P([x + u] = \lfloor x \rfloor + 1) \\
= \lfloor x \rfloor + P(x + u \geq \lfloor x \rfloor + 1) = \lfloor x \rfloor + P(u \geq \lfloor x \rfloor + 1 - x) \\
= \lfloor x \rfloor + 1 + ([x] + 1 - x) = x.
\]
DEMO
Doing unbiased rounding efficiently

• We still need an efficient way to do unbiased rounding

• **Pseudorandom number generation can be expensive**
 • E.G. doing C++ rand or using Mersenne twister takes many clock cycles

• Empirically, we can use **very cheap** pseudorandom number generators
 • And still get good statistical results
 • For example, we can use XORSHIFT which is just a cyclic permutation
Benefits of Low-Precision Computation

Conclusion and Drawbacks of low-precision

• The draw back of low-precision arithmetic is the **low precision**!

• Low-precision computation means we accumulate **more rounding error** in our computations

• These rounding errors can add up throughout the learning process, resulting in **less accurate learned systems**

• The trade-off of low-precision: **throughput/memory vs. accuracy**