
Lecture 3: Exponential Concentration Inequalities and ERM
CS4787 — Principles of Large-Scale Machine Learning Systems

Review: Chebyshev’s inequality. Recall: the 0-1 empirical risk (i.e. the error rate) is

R(h) =
1

n

n∑
i=1

L(h(xi), yi) =
1

n

n∑
i=1

δ(h(xi), yi)

where δ here is the Kronecker delta function δ(ŷ, y) = 1 if ŷ = y and 0 otherwise. Let Z be a random variable
that takes on the value L(h(xi), yi) with probability 1/n for each i ∈ {1, . . . , n}. If we sample a bunch of inde-
pendent identically distributed random variables Z1, Z2, . . . , ZK identical to Z, then their average will be a good
approximation of the empirical risk. That is,

SK =
1

K

K∑
k=1

Zk ≈ R(h) and E [SK ] = E [Z] = R(h).

For this sum, Chebyshev’s inequality says that

P (|SK −E [SK ]| ≥ a) ≤ Var (SK)

a2
=

Var (Z)

a2K
≤ 1

4a2K

where the last inequality holds specifically for the 0-1 empirical risk, since in this case Z is a Bernoulli random
variable (that is, it is supported on Z ∈ {0, 1}) and the largest variance a Bernoulli random variable can have is 1/4.

Activity: if we want to estimate the empirical risk with 0-1 loss to within 10% error (i.e. |SK −R(h)| ≤ 10%) with
probability 99%, how many samples K do we need to average up if we use this Chebyshev’s inequality bound?

K ≥

Problem: this is just the number of samples we need to evaluate the empirical risk of a single model. But we
may want to approximate the empirical risk many times during training, either to validate a model or to monitor
convergence of training loss. For example, suppose we have M hypotheses we want to validate (h(1), . . . , h(M)), and
we use independent subsamples (S(1)

K , . . . , S
(M)
K , each of size K) to approximate the empirical risk for each of them.

What bound can we get using Chebyshev’s inequality on the probability that all T of our approximations are within
a distance a of their true empirical risk?

P
(∣∣∣S(m)

K −R(h(m))
∣∣∣ ≤ a for all m ∈ {1, . . . ,M}

)
≥

Now if we want to estimate the empirical risk with 0-1 loss to within the same 1% error rate with the same probability
of 99%, but for all of M = 100 different hypotheses, how many samples do we need according to this Chebyshev
bound?

K ≥

• We needed a lot more than we did for the one-hypothesis case.

• This seems to be a problem for training where we want to validate potentially thousands of models across
potentially hundreds of epochs.

• The problem with Chebyshev’s inequality: the probabilities we are getting are not that small. Since we know
that the sums are approaching something like a Gaussian distribution, we’d expect the probability of diverging
some amount from the expected value to decrease exponentially as a increases, since this is what happens for
a Gaussian. But Chebyshev’s inequality only gives us a polynomial decrease.
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A better bound. In this case, we can use Hoeffding’s inequality, which gives us a much tighter bound on the tail
probabilities of a sum. Hoeffding’s inequality states that if Z1, . . . , ZK are independent random variables, and

SK =
1

K

K∑
k=1

Zk,

then if those variables are bound absolutely by zmin ≤ Zk ≤ zmax, then

P (|SK −E [SK ]| ≥ a) ≤ 2 exp

(
− 2Ka2

(zmax − zmin)2

)
.

Activity: if we want to estimate the empirical risk with 0-1 loss to within 10% error (i.e. |SK −R(h)| ≤ 10%) with
probability 99%, how many samples K do we need to average up if we use this Hoeffding’s inequality bound?

K ≥

What if we want to estimate the empirical risk with 0-1 loss to within the same 10% error rate with the same
probability of 99%, but for all of M = 100 different hypotheses. How many samples do we need according to this
Hoeffding’s inequality bound?

K ≥

Takeaway: the Hoeffding’s inequality bound is much tighter, and scales better with the number of times we want
to estimate using subsampling. We can use this sort of bound to estimate the number of samples we need to use to
estimate a sum like the empirical risk to within some level of accuracy with high probability.

Many other concentration inequalities exist.

• Azuma’s inequality for when the components of your sum Zk are not independent.

• Bennett’s inequality for when you want to take the variance into account in addition to the absolute bounds.

Empirical Risk Minimization. We don’t just want to estimate the empirical risk: we also want to minimize
it. To do so, we parameterize the hypotheses using some parameters w ∈ Rd. That is, we assign each hypothesis a
d-dimensional vector of parameters and vice versa and solve the optimization problem

minimize: R(hw) =
1

n

n∑
i=1

L(hw(xi), yi) over w ∈ Rd

where hw denotes the hypothesis associated with the parameter vector w. Often, we denote this more explicitly as a
function of w, the weights, as

f(w) = R(hw) =
1
n

∑n
i=1 L(hw(xi), yi) =

1
n

∑n
i=1 fi(w).

This is an instance of a principle of scalable ML: Write your learning task as an optimization problem, then solve
it with an optimization algorithm.

Gradient descent (GD). Decrease the value of the empirical risk iteratively by running

wt+1 = wt − αt · ∇f(wt) = wt − αt ·
1

n

n∑
i=1

∇fi(w)

where wt is the value of the parameter vector at time t, αt is a parameter called the learning rate or step size, and ∇f
denotes the gradient (vector of partial derivatives) of f . What does this cost to compute?

Stochastic gradient descent (SGD). Apply the subsampling principle to gradient descent:

pick i uniformly at random from {1, . . . , n}, then update wt+1 = wt − αt · ∇fi(wt).

At each step, we pick a new random example from the dataset and update the parameters based only on that example.
How does this affect the computational cost of the update?
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