Lecture 16: Gaussian Processes and Bayesian Optimization

CS4787 — Principles of Large-Scale Machine Learning Systems

We want to optimize a function \(f : \mathcal{X} \to \mathbb{R} \) over some set \(\mathcal{X} \) (here the set \(\mathcal{X} \) is the set of hyperparameters we want to search over, not the set of examples). But \(f \) is expensive to compute, making optimization difficult. Main idea of Bayesian optimization:

- Model \(f \) as a probability distribution.
- If we’ve computed \(f \) at parameter values \(x_1, x_2, \ldots, x_D \), then we consider \(f(x_1), f(x_2), \ldots, f(x_D) \) to be observed variables in the model.
- Any \(x \) that we haven’t computed \(f(x) \) for corresponds to a hidden variable in the model.
- Key insight: even though we haven’t computed \(f(x) \), the probabilistic model that we defined lets us compute the conditional distribution

\[
P(f(x)|f(x_1), f(x_2), \ldots, f(x_D)).
\]

We want to choose the probabilistic model such that this is much cheaper to compute than \(f(x) \) itself.

- We can use this conditional distribution to estimate \(f(x) \) for values of \(x \) we haven’t observed yet.
- We can also use this conditional distribution to choose the next value of \(x \) we are going to compute \(f(x) \) at as we continue optimizing.
- Key benefit of Bayesian optimization: uses all the information from previous computations of \(f(x) \) to choose the next point to evaluate, rather than just using information from the last or last few computations, as is done with methods like GD and Momentum.

Two major design decisions for Bayesian optimization:

- The prior: the probability distribution over functions that we use. This encodes our assumptions about the function \(f \).
 - The standard way to do this is with a Gaussian process prior.
- The acquisition function: how we select the next point to sample, given a conditional distribution over the values of \(f(x) \).
 - Many ways to do this, as we’ll see.

Review: Gaussian processes. Recall: the multivariate Gaussian distribution in \(d \) dimensions with mean \(\mu \in \mathbb{R}^d \) and covariance matrix \(\Sigma \in \mathbb{R}^{d \times d} \) has probability density function

\[
P(X) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp \left(-\frac{1}{2} (X - \mu)^T \Sigma^{-1} (X - \mu) \right);
\]

from here it is easy to check that \(\mathbb{E}[X] = \mu \) and \(\mathbb{E}[XX^T] = \Sigma \). This is the natural multidimensional analog of the one-dimensional Gaussian distribution you are familiar with. In order for this definition to work, we need the covariance matrix \(\Sigma \) to be positive semidefinite (it is, after all a covariance matrix, and all
covariance matrices are positive semidefinite). Just to see why: for any fixed vector \(u \in \mathbb{R}^d \)
\[
u^T \Sigma u = u^T \mathbb{E}[XX^T] u = \mathbb{E}[(u^T X)^2] \geq 0.
\]
The average of independent vector-valued random variables tends to converge towards a multivariate Gaussian distribution in the same way that the average of independent scalar-valued random variables tends to converge towards a Gaussian distribution in one dimension. This is called the Multidimensional Central Limit Theorem and it’s a natural extension of the 1-D CLT you all know and love. When we are doing hyperparameter optimization to minimize some empirical risk, that empirical risk evaluated at many different points is the average of a bunch of component loss functions. That is,
\[
\begin{bmatrix}
 f(x_1) \\
 \vdots \\
 f(x_D)
\end{bmatrix} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix}
 f_i(x_1) \\
 \vdots \\
 f_i(x_D)
\end{bmatrix}
\]
so it’s natural to suspect that this vector of empirical risk values would be approximately Gaussian distributed. So, we’d like to use a multidimensional Gaussian distribution as the prior for Bayesian optimization. The problem: there are usually infinitely many possible settings for the hyperparameters (i.e. \(\mathcal{X} \) is an infinite set in most cases). And multivariate Gaussian distributions assume a finite number of dimensions. The solution to this is to use what’s called a Gaussian process: this is the natural infinite-dimensional analog of the multidimensional Gaussian. Typically, we use the all-zeros vector for the mean \(\mu \), and replace the covariance matrix \(\Sigma \) with a Kernel function \(K \).\(^1\) If \(f \) is the function we’re modeling, then this is equivalent to assuming that for any \(x_i \) and \(x_j \in \mathcal{X} \),
\[
\mathbb{E}[f(x_i)] = 0 \quad \text{and} \quad \mathbb{E}[f(x_i) \cdot f(x_j)] = K(x_i, x_j).
\]
Importantly, here this expected value represents an expectation over our belief about what the value of the function \(f \) is, not an expectation over the random sampling of the dataset or any randomness that may exist in our training algorithm.

Why does this function have to be a kernel? Recall that kernels had two properties: symmetry and positive semidefiniteness. The symmetry here is needed because the expression \(f(x_i) \cdot f(x_j) \) is symmetric. And the positive semidefiniteness is needed because any covariance matrix must be positive semidefinite (even, it turns out, if it is infinite-dimensional).

Important property of Gaussian processes. The marginal distribution of a finite number of variables of a Gaussian process is a multivariate Gaussian distribution. That is, if \(f \) is a Gaussian process, then for any \(x_1, x_2, \ldots, x_D \in \mathcal{X} \)
\[
\begin{bmatrix}
 f(x_1) \\
 \vdots \\
 f(x_D)
\end{bmatrix}
\]
is multivariate-Gaussian-distributed with mean \(\mu = 0 \)

and covariance \(\Sigma = \begin{bmatrix}
 K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_D) \\
 \vdots & \vdots & \ddots & \vdots \\
 K(x_D, x_1) & K(x_D, x_2) & \cdots & K(x_D, x_D)
\end{bmatrix}. \tag{1}
\]
In particular, this lets us find the marginal distribution of \(f(x_*) \) at a new test value \(x_* \) conditioned on the values of the function \(f \) we’ve already observed. Explicitly, if we define \(\Sigma \) as above in (1), define the vector \(k_* \) as
\[
k_* = \begin{bmatrix}
 K(x_1, x_*) & K(x_2, x_*) & \cdots & K(x_D, x_*)
\end{bmatrix}^T,
\]
\(^1\)Now you see why I brought kernels back up in the last lecture.
and if \(y = [y_1, y_2, \cdots, y_D]^T \) is the vector of observations we’ve made so far then we can write the marginal distribution of \(f(x_*) \) as

\[
f(x_*) \mid (f(x_1) = y_1, f(x_2) = y_2, \cdots, f(x_D) = y_D) \sim N(k_*^T \Sigma^{-1} y, K(x_*, x_*) - k_*^T \Sigma^{-1} k_*)
\]

where \(N(\mu, \sigma^2) \) denotes the normal distribution with mean \(\mu \) and variance \(\sigma^2 \).

What is the computational cost of computing the mean and variance of these marginal distributions for \(N \) different test points \(x_* \)? How much memory is needed? Suppose that the kernel function \(K \) takes \(\Theta(d) \) time to compute (for some constant \(d \)).

Gaussian processes as a prior for Bayesian optimization. To use a Gaussian process for Bayesian optimization, just let the domain of the Gaussian process \(X \) be the space of hyperparameters, and define some kernel that you believe matches the similarity of two hyperparameter assignments. Typically, you want to set the kernel based on your intuition about the problem. You can also set it based on prior work in the literature...as usual the kernel can become another hyperparameter (or hyper-hyperparameter) you need to set. Then the Gaussian process can be used as a prior for the observed and unknown values of the loss function \(f \) (as a function of the hyperparameters).

Bayesian optimization.

Algorithm 1 Bayesian optimization with Gaussian process prior

\[\text{input: loss function } f, \text{ kernel } K, \text{ acquisition function } a, \text{ loop counts } N_{\text{warmup}} \text{ and } N \]

▷ warmup phase
\[y_{\text{best}} \leftarrow \infty\]

for \(i = 1 \) to \(N_{\text{warmup}} \) do

select \(x_i \) via some method (usually random sampling)
compute exact loss function \(y_i \leftarrow f(x_i) \)
if \(y_i \leq y_{\text{best}} \) then
\[x_{\text{best}} \leftarrow x_i, \quad y_{\text{best}} \leftarrow y_i\]
endif
end for

for \(i = N_{\text{warmup}} + 1 \) to \(N \) do

update kernel matrix \(\Sigma \in \mathbb{R}^{i \times i} \) according to (1)
let \(\mu(x_*) \) and \(\sigma(x_*) \) denote the expected value and standard deviation, respectively, of \(f(x_*) \) under the Gaussian process model, conditioned on all the previous observations of \(f(x_i) = y_i \)
\[x_i \leftarrow \arg \min_{x_*} a(\mu(x_*), \sigma(x_*), y_{\text{best}})\]
compute exact loss function \(y_i \leftarrow f(x_i) \)
if \(y_i \leq y_{\text{best}} \) then
\[x_{\text{best}} \leftarrow x_i, \quad y_{\text{best}} \leftarrow y_i\]
endif
end for

return \(x_{\text{best}} \)
The acquisition function. Determines how we search for new points. There are a few common acquisition functions that are used for machine learning. For a Gaussian process prior, they are generally a function of three things: the mean of the hidden variable $f(x_*)$, the standard deviation of $f(x_*)$, and the best value seen so far during optimization, y_{best}.

Probability of improvement. The probability of improvement (PI) acquisition function asks us to maximize the probability that we will observe an improvement from the next point searched. That is, it tries to maximize the probability that the x_i that we test will be our new “best” x_i. This probability is

$$P(f(x_*) < y_{best}) = \Phi \left(\frac{y_{best} - \mu(x_*)}{\sigma(x_*)} \right),$$

where Φ is the cumulative distribution function of the standard Gaussian distribution. Since we’re trying to maximize this, we can use the negation of this in the Bayesian optimization algorithm as an activation function (alternatively, we could not negate and just maximize instead of minimize in the Bayesian optimization algorithm description—it’s equivalent).

Expected improvement. The expected improvement (EI) acquisition function asks us to minimize the expected improvement in the value of the new y_{best} after the next point is searched. This expected value is

$$E \left[\min(f(x_*) - y_{best}, 0) \right] = E \left[\min \left(\frac{f(x_*) - \mu(x_*)}{\sigma(x_*)} - \frac{y_{best} - \mu(x_*)}{\sigma(x_*)}, 0 \right) \right] \cdot \sigma(x_*).$$

To simplify this further, we need an expression for $E_u \left[\min(u - c, 0) \right]$ when u is standard-Gaussian-distributed i.e. $u \sim \mathcal{N}(0, 1)$. We can get this by solving the integral, where ϕ is the probability distribution function of the Gaussian distribution.

$$E_u \left[\min(u - c, 0) \right] = \int_{-\infty}^{c} (u - c) \cdot \phi(u) \, du = [-\phi(u) - c \cdot \Phi(u)]_{-\infty}^{c} = -\phi(c) - c \cdot \Phi(c).$$

It follows that we can let our acquisition function be

$$a_{EI}(y_{best}, \mu, \sigma) = -\left(\phi \left(\frac{y_{best} - \mu}{\sigma} \right) + \frac{y_{best} - \mu}{\sigma} \cdot \Phi \left(\frac{y_{best} - \mu}{\sigma} \right) \right) \cdot \sigma.$$

Once again this is an exact expression we can compute easily from μ, σ, and y_{best}.

Lower confidence bound. Another common type of activation function is the lower confidence bound activation function, which is designed to minimize regret over the course of optimization. For some parameter κ (not the condition number!) this activation function is defined as

$$a_{LCB}(y_{best}, \mu, \sigma) = \mu - \kappa \cdot \sigma.$$

Here, the parameter κ trades off between exploration and exploitation. A small κ leads to more exploitation, whereas a large κ explores more high-variance points at which less is known about the value of the function.

To think about as we leave off: what are the main computational costs of hyperparameter optimization? Which aspects of the system still need to be determined before we can actually run this algorithm in practice?