
Machine Learning for Data Science (CS 4786)

Lecture 20: Hidden Markov Models

The text in black outlines main ideas to retain from the lecture. The text in blue
give a deeper understanding of how we “derive” or get to the algorithm or method.
The text in red are mathematical details for those who are interested. But is not
crucial for understanding the basic workings of the method.

1 Markov Models

A stationary markov model or stationary markov chain is a classic model in probability theory
where we have a a sequence of random variables, call them states, that are generated as follows.
Initial state S1 is decided by drawing from marginal distribution P (S1) to be one of K values.
Next, subsequent states are drawn based on previous state using the so called transition probability
P (St = st|St−1 = st−1) = T [st−1, st] where T is the K ×K transition probability table where the
i’th row indicates the probability of jumping from state i to each of the K different states. This
probabilistic model can be represented by the following graphical model: The parameters of model

Figure 1: Mixture model

are the conditional probability tables of each variable given parents which in this case are: 1. P (S1)
which is a table of size 1×K indicating initial probabilities of S1 being in one of K states, and 2.
Transition probability table T of size K ×K.

2 Hidden Markov Models

While Markov chains are fascinating topics to which whole books are dedicated to, lets quickly turn
our attention to an extension called the hidden markov model. These models consist of a markov
model, however the internal states St’s are unobservable, what we observe at each step is Xt an
observation generated by state St. Hidden markov models have great many applications. One can
think of internal state as being location of a bot and observation as being sensory information we
observe for bot location example, or we can think of state St as being phoneme we wanted to utter
at the t’th time snap and Xt as the actual waveform located for that time and here inferring states
is a key step in voice recognition tasks.

1

3 Inference in HMM

In this section, we will answer key question of inference in HMM’s. Specifically questions like
how do we calculate P (St = k|X1, . . . , XN), that is probability that state at time t is k given all
observations X1, . . . , XN . To this end note that

P (St = k|X1, . . . , XN)

=
P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (St = k,X1, . . . , Xt)

P (X1, . . . , XN)
by Bayes theorem

∝ P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (St = k,X1, . . . , Xt)

= P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (Xt|St = k,X1, . . . , Xt−1)P (St = k,X1, . . . , Xt−1)

= P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (Xt|St = k)P (St = k,X1, . . . , Xt−1) Local Markov

= P (Xt+1, . . . , XN |St = k)P (Xt|St = k)P (St = k,X1, . . . , Xt−1) Local Markov

Now notice that in the above, the term P (Xt|St = k) is a conditional probability of node given
parent and is given by looking up the so called emission probability table E[k,Xt]. We now only
need to figure out how to compute terms P (Xt+1, . . . , XN |St = k) and P (St = k,X1, . . . , Xt−1). We
will show how to compute these two tables recursively given their value for neighbors. Specifically,
we will think of the term P (St = k,X1, . . . , Xt−1) as being calculated from left to right recursively
(called forward pass) and the term P (Xt+1, . . . , XN |St = k) as being computed from right to left
called backward pass.

3.1 Forward Pass

We will denote the term MSt−1 7→St(k) = P (St = k,X1, . . . , Xt−1) and think of MSt−1 7→St as a K
dimensional vector froward message that state t− 1 passes to state t. Note that at t = 1, we have
no left neighbor and on this round,

M{}7→S1
(k) = P (St = k)

Or in other words we can think of a hallucinated message from left for first guy as simply the initial
state probability which is parameter to our model. Now that we ave the initial one, let us compute
the others recursively. Specifically, assume that for any j ∈ {1, . . . ,K},

2

MSt−2 7→St−1(j) = P (St−1 = j,X1, . . . , Xt−2). Now note that

MSt−1 7→St(k)

= P (St = k,X1, . . . , Xt−1)

=

K∑
j=1

P (St = k, St−1 = j,X1, . . . , Xt−1) :(marginalization)

=
K∑
j=1

P (St = k|St−1 = j,X1, . . . , Xt−1)P (St−1 = j,X1, . . . , Xt−1) :(P (A,B) = P (A|B)P (B))

=

K∑
j=1

P (St = k|St−1 = j)P (St−1 = j,X1, . . . , Xt−1) :(local markov)

=
K∑
j=1

P (St = k|St−1 = j)P (Xt−1|St−1 = j,X1, . . . , Xt−2)P (St−1 = j,X1, . . . , Xt−2) :(P (A,B) = P (A|B)P (B))

=
K∑
j=1

P (St = k|St−1 = j)P (Xt−1|St−1 = j)P (St−1 = j,X1, . . . , Xt−2) :(local markov)

=

K∑
j=1

P (St = k|St−1 = j)P (Xt−1|St−1 = j)P (St−1 = j,X1, . . . , Xt−2)

=
K∑
j=1

T [j, k]E[j,Xt−1]MSt−2 7→St−1(j)

Thus we see that if the t− 1’th node receives its message from t− 2’th node, then it can compute
its message to t’th node using just the message from left and the T and E tables.

4 Backward Pass

The backward pass can be done similarly. Note that MSt 7→St−1(k) = P (Xt+1, . . . , XN |St = k). Now
let us compute the message from node t = N −1 onwards, that is, note that, In this case, note that

MSN−1 7→SN−2
(k) = P (XN |SN−1 = k)

=

K∑
j=1

P (SN = j,XN |SN−1 = k)

=

K∑
j=1

P (XN |SN = j, SN−1 = k)P (SN = j|SN−1 = k)

=

K∑
j=1

P (XN |SN = j)P (SN = j|SN−1 = k) XN c.i. of SN−1 given SN

=
K∑
j=1

E[SN = j,XN]T [k, j]

3

Thus we see that we can compute MSN−1 7→SN−2
. Now subsequently, let us compute each message

to send to left by node based on the backward message it received. To this end note that,

MSt 7→St−1(k)

= P (Xt+1, . . . , XN |St = k)

=

K∑
j=1

P (Xt+1, . . . , XN , St+1 = j|St = k) (marginalization)

=
K∑
j=1

P (Xt+1, . . . , XN |St+1 = j, St = k)P (St+1 = j|St = k) :(P (A,B|C) = P (A|B,C)P (B|C)))

=
K∑
j=1

P (Xt+1, . . . , XN |St+1 = j)P (St+1 = j|St = k) (local markov)

=

K∑
j=1

P (Xt+1|St+1 = j)P (Xt+2, . . . , XN |St+1 = j)P (St+1 = j|St = k) (local markov)

=
K∑
j=1

E[j,Xt+1]MSt+1 7→St(j)T [k, j]

Thus we see that the backward message can be computed recursively as well.

5 Inference

Now say you wanted to answer the question of what is P (St = k|X1, . . . , XN) we cn do this simply
by setting:

P (St = k|X1, . . . , XN) = MSt−1 7→St(k)× E[k,Xt]×MSt+1 7→St(k)

that is product of emission table entry with messages from left and right as we saw earlier.
Similarly let us say we want to infer the probability P (St = st, St−1 = st−1|X1, . . . , XN). Note

4

that,

P (St = st, St−1 = st−1|X1, . . . , XN)

=
P (X1, . . . , XN |St = st, St−1 = st−1)P (St = st, St−1 = st−1)

P (X1, . . . , XN)

∝ P (X1, . . . , XN |St = st, St−1 = st−1)P (St = st, St−1 = st−1)

= P (X1, . . . , Xt−1|St = st, St−1 = st−1)P (Xt, . . . , XN |St = st, St−1 = st−1)P (St = st, St−1 = st−1)

= P (X1, . . . , Xt−1|St−1 = st−1)P (Xt, . . . , XN |St = st)P (St = st, St−1 = st−1) (local markov)

= P (X1, . . . , Xt−2|St−1 = st−1)P (Xt−1|St−1 = st−1)P (Xt+1, . . . , XN |St = st)P (Xt|St = st)

× P (St = st, St−1 = st−1) (local markov)

= P (X1, . . . , Xt−2|St−1 = st−1)P (Xt−1|St−1 = st−1)P (Xt+1, . . . , XN |St = st)P (Xt|St = st)

× P (St = st|St−1 = st−1)P (St−1 = st−1)

= P (X1, . . . , Xt−2, St−1 = st−1)P (Xt−1|St−1 = st−1)P (Xt+1, . . . , XN |St = st)P (Xt|St = st)

× P (St = st|St−1 = st−1)

= MSt−1 7→St−1(st−1)×MSt+1 7→St(st)× E[st, Xt]× E[st−1, Xt−1]× T [st−1, st]

Thus we see that we can compute P (St = st, St−1 = st−1|X1, . . . , XN) as well from forward and
backward messages.

6 Learning in HMM

Our go to model for learning whenever we have latent variables is the EM algorithm. The general
strategy in EM algorithm is that we start randomly initialized parameter (in this case T 0 and
E0 for now assume P (S1) is given). Subsequently over multiple iterations, t, we first compute
Q(t)(latent) = P (latent|Observation). in the E-step (which is clearly and inference) followed by a
M-step (maximization step) where we compute

(T (t), E(t)) = arg max
T,E

∑
all−values−of−latent

Q(t)(latent) log(P (latent, observed))

Hence for HMM this is simply,

(T (t), E(t)) = arg max
T,E

K∑
s1=1

· · ·
K∑

sN=1

Q(t)(S1 = s1, . . . , SN = sN) log(PT,E(X1, . . . , XN , S1 = s1, . . . , SN = sn))

Now we use the fact that the the joint probability factors over the graph and so:

P (X1, . . . , XN , S1 = s1, . . . , SN = sn) =

N∏
i=1

PT,E(Xi|Si = si)PT,E(Si = si|Si−1 = si−1) =

N∏
i=1

E[si, Xi]T [si−1, si]

5

Hence we see that

(T (t), E(t)) = arg max
T,E

K∑
s1=1

· · ·
K∑

sN=1

Q(t)(S1 = s1, . . . , SN = sN) log(

N∏
i=1

E[si, Xi]T [si−1, si])

= arg max
T,E

K∑
s1=1

· · ·
K∑

sN=1

Q(t)(S1 = s1, . . . , SN = sN)

(
N∑
i=1

log(E[si, Xi]) +
N∑
i=1

log(T [si−1, si])

)

= arg max
T,E

N∑
i=1

(
K∑

s1=1

· · ·
K∑

sN=1

Q(t)(S1 = s1, . . . , SN = sN) log(E[si, Xi])

+
K∑

s1=1

· · ·
K∑

sN=1

Q(t)(S1 = s1, . . . , SN = sN) log(T [si−1, si])

)

Now note that for any i,

K∑
s1=1

· · ·
K∑

sN=1

Q(t)(S1 = s1, . . . , SN = sN) log(T [si−1, si])

=
K∑

s1=1

· · ·
K∑

sN=1

PT (t−1),E(t−1)(S1 = s1, . . . , SN = sN |X1, . . . , XN) log(T [si−1, si])

=
K∑

si−1=1

K∑
si=1

 K∑
s1=1

· · ·
K∑

si−2=1

K∑
si+1=1

· · ·
K∑

sN=1

PT (t−1),E(t−1)(S1 = s1, . . . , SN = sN |X1, . . . , XN)

 log(T [si−1, si])

=
K∑

si−1=1

K∑
si=1

PT (t−1),E(t−1)(Si−1 = si−1, Si = si|X1, . . . , XN) log(T [si−1, si])

Similarly we have that

K∑
s1=1

· · ·
K∑

sN=1

Q(t)(S1 = s1, . . . , SN = sN) log(E[si, Xi])

=
K∑

si=1

PT (t−1),E(t−1)(Si = si|X1, . . . , XN) log(E[si, Xi])

Hence we conclude that the M-step in EM algorithm is given by

T (t) = arg max
T

N∑
i=1

K∑
si−1=1

K∑
si=1

PT (t−1),E(t−1)(Si−1 = si−1Si = si|X1, . . . , XN) log(T [si−1, si])

and

E(t) = arg max
E

N∑
i=1

K∑
si=1

PT (t−1),E(t−1)(Si = si|X1, . . . , XN) log(E[si, Xi])

6

Note that from the above we can conclude that all we need from M-step is only PT (t−1),E(t−1)(Si =
si|X1, . . . , XN) and PT (t−1),E(t−1)(Si = si, Si−1 = si−1|X1, . . . , XN) both of which we have shown
how to compute in the inference section. Similar to the derivation of the M-step in the mixture of
multinomial setting (see lecture notes), if we add the constraint that rows of T and E are probability
tables, we can conclude that:

∀u, v T (t)[u, v] =

∑N
i=2 PT (t−1),E(T−1)(Si = v, Si−1 = u|X1, . . . , XN)∑N

i=2 PT (t−1),E(T−1)(Si−1 = u|X1, . . . , XN)

and similarly

∀v, x E(t)[v, x] =

∑
i:Xi=x PT (t−1),E(T−1)(Si = v|X1, . . . , XN)∑N
i=2 PT (t−1),E(T−1)(Si = v|X1, . . . , XN)

This gives the Baum Welch algorithm where we start with random initialization of T and E and on
every iteration first run forward backward algorithm, compute PT (t−1),E(T−1)(St = v|X1, . . . , XN)
and PT (t−1),E(T−1)(Si = v, Si−1 = u|X1, . . . , XN) using the forward and backward messages for
every i in the E-step and then in M-step set the new E and T tables using above calculations.

7

