Machine Learning for Data Science (CS4786)

Lecture 9

Isomap + TSNE



MANIFOLD BASED DIMENSIONALITY REDUCTION

e Key Assumption: Points live on a low dimensional manifold
@ Manifold: subspace that looks locally Euclidean

@ Given data, can we uncover this manifold?

Can we unfold this?
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@ For every point, find its (k-) Nearest Neighbors
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METHOD I: ISOMAP

@ For every point, find its (k-) Nearest Neighbors
@ Form the Nearest Neighbor graph

@ For every pair of points A and B, distance between point A to B is
shortest distance between A and B on graph

@ Find points in low dimensional space such that distances between
points in this space is equal to distance on graph.

M=
SV 00 000 00 0 000 0 000

Distance
Matrix




MULTIDIMENSIONAL SCALING

Question: Given n x n matrix M of pairwise distances, find
Vi, ---, y, € RX such that Vi,j e [n], |yi - yill2 ~ M;;
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MULTIDIMENSIONAL SCALING

Define for all ¢, 5, D; ; = M,,%j
D = llyi —y;ll5 = llyill3 + [ly;l5 — 2y5 v,

5 (lyillz + lly;12 = Dij)

Y, ¥

DO

w.l.o.g. assume ZYi =0

Show that:

1 1 [
Yi Y= - > Dij+ - > Di > > Y Dij—Di;




MULTIDIMENSIONAL SCALING

Method:



MULTIDIMENSIONAL SCALING

Method:
@ Compute matrix D so that D; ; = M% i



MULTIDIMENSIONAL SCALING

Method:
@ Compute matrix D so that D; ; = M% i

@ Compute matrix K = —%(I -~ %llT)D(I -~ %HT)



MULTIDIMENSIONAL SCALING

Method:
Q@ Compute matrix D so that D;;= M% i

@ Compute matrix K = —%(I -~ %11T)D(I -~ %HT)

3P 7Y = €1gS

K

, K




MULTIDIMENSIONAL SCALING

Method:
Q@ Compute matrix D so that D;;= M% i

@ Compute matrix K = —%(I -~ %HT)D(I -~ %HT)

3P 7Y = €1gS

K

, K
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ISOMAP: PITFALLS

Q If we don't take enough nearest neighbors, then graph may not be
connected

@ If we connect points too far away, points that should not be
connected can get connected

© There may not be a right number of nearest neighbors we should
consider!
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STOCHASTIC NEIGHBORHOOD EMBEDDING

@ Use a probabilistic notion of which points are neighbors.

Stochastic neighborhood distribution P
@ Close by points are neighbors with high probability, ...
Eg: For point x;, point x; is picked as neighbor with probability

12
- exp (- ||x52(;<2t|| )
f—>s — 2
>yt €XP(— ”Xuzg);t” )
Probability that points s and  are connected P = Py 5 = P= P

@ Goal: Find yy, ..., y, with stochastic neighborhood distribution Q
such that “P and Q are similar”

1.e. minimize:

KL(PHQ) ZPStlog(gst) Z;Pstlcg(Pst) Zpstlog(Qst)




CHOICE FOR (O

@ Just like we defined P, we can detine Q for a given yy, ..., yn by
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@ Just like we defined P, we can define Q for a givenyy,...,y, by
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from mean!



CHOICE FOR (O

@ Just like we defined P, we can define Q for a givenyy,...,y, by
exp (- ||Y;;};t||2 )
At—s =

lyu—y:?
Zuqttexp(_ 252t )

and then set Q,; = =51~

@ However we are faced with the crowding problem:

o In high dimension we have a lot of space, Eg. in d dimension we
have d + 1 equidistant point

o For d dimensional gaussians, most points are found at distance \/d
from mean!

o If we use gaussians in both high and low dimensional space, all the
points are squished in to a small space
o Too many points crowd the center!



METHOD II: T-SNE

@ Instead for Q we use, student t distribution which is heavy tailed:

-1
~ (O lys - yel?)
Yuet (14 [yu —ye2) ™

t—s

and then set Q,; = qt*s;’“t




METHOD II: T-SNE

@ Instead for Q we use, student t distribution which is heavy tailed:

—1 030}
(I lys - yel?)
t—s — —1 = 0.20}
et (1+ yu —y:el?) o
and then set Q,; = =1~ =N



METHOD II: T-SNE

@ Instead for Q we use, student t distribution which is heavy tailed:

0.40;

-1 o

(T lys - yel?)

B —1 = 0.20}
>ouet (L+ [yu —ye]?)

t—s

and then set Q,; = =1~

@ It can be verified that

Ty KLPIQ) =43 (Pss = Qur)(ye —s) (L+ Iys ~yil?)



METHOD II: T-SNE

@ Instead for Q we use, student t distribution which is heavy tailed:

0.40

-1 o

(T lys - yel?)

B —1 = 0.20}
>ouet (L+ [yu —ye]?)

t—s

and then set Q,; = qt*s;’“t

@ It can be verified that

Ty KLPIQ) =43 (Pss = Qur)(ye —s) (L+ Iys ~yil?)

@ Algorithm: Find yq, ..., y, by performing gradient descent



Demo



