Machine Learning for Data Science (CS4786) Lecture 18

Graphical Models

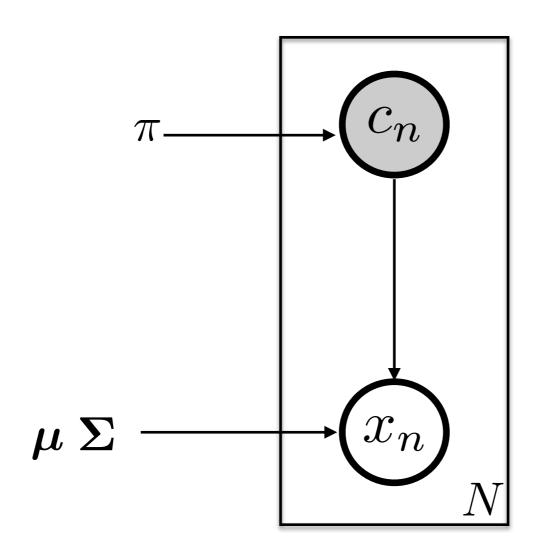
Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016sp/

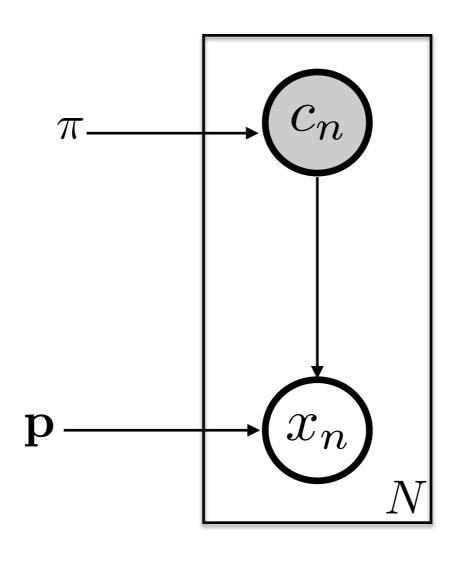
PROBABILISTIC MODELS

- We have a bunch of observed variables
- A bunch of Hidden or Latent variables
- Set Θ consists of parameters s.t. P_{Θ} is the distribution over the random variables by each $\Theta \in \Theta$
- Data is generated by one of the $\theta \in \Theta$
- Learning: Estimate value or distribution for $\theta^* \in \Theta$ given data
- Inference: Given parameters and observation infer distribution over variables

GAUSSIAN MIXTURE MODEL



MIXTURE OF MULTINOMIALS



GRAPHICAL MODELS

- Abstract away the parameterization specifics
- Focus on relationship between random variables

RELATIONSHIP BETWEEN VARIABLES

Let $X = (X_1, ..., X_N)$ be the random variables of our model (both latent and observed)

- Joint probability distribution over variable can be complex esp. if we have many complexly related variables
- Can we represent relation between variables in conceptually simpler fashion?
- We often have prior knowledge about the dependencies (or conditional (in)dependencies) between variables

GRAPHICAL MODELS

- A graph whose nodes are variables X_1, \ldots, X_N
- Graphs are an intuitive way of representing relationships between large number of variables
- Allows us to abstract out the parametric form that depends on θ and the basic relationship between the random variables.

CONDITIONAL AND MARGINAL INDEPENDENCE

- Conditional independence
 - X_i is conditionally independent of X_j given $A \subset \{X_1, \ldots, X_N\}$:

$$X_{i} \perp X_{j}|A \Leftrightarrow P_{\theta}(X_{i}, X_{j}|A) = P_{\theta}(X_{i}|A) \times P_{\theta}(X_{j}|A)$$
$$\Leftrightarrow P_{\theta}(X_{i}|X_{j}, A) = P_{\theta}(X_{i}|A)$$

Marginal independence:

$$X_i \perp X_j | \varnothing \Leftrightarrow P_{\Theta}(X_i, X_j) = P_{\Theta}(X_i) P_{\Theta}(X_j)$$

EXAMPLE: CI AND MI

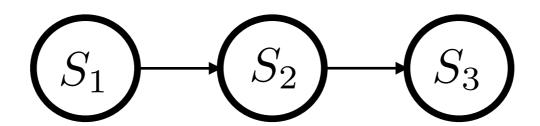
BAYESIAN NETWORKS

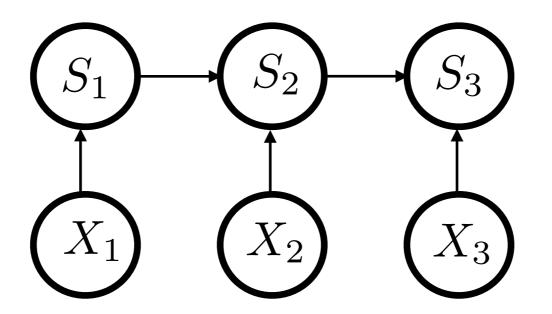
- Directed acyclic graph (DAG): G = (V, E)
- Joint distribution P_{θ} over X_1, \ldots, X_n that factorizes over G:

$$P_{\theta}(X_1,\ldots,X_n) = \prod_{i=1}^N P_{\theta}(X_i|\text{Parent}(X_i))$$

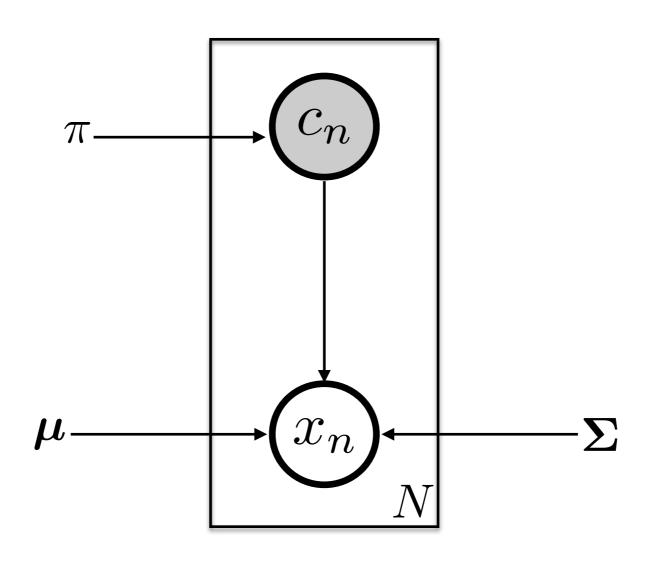
 Hence Bayesian Networks are specified by G along with CPD's over the variables (given their parents)

EXAMPLE: SUM OF COIN FLIPS

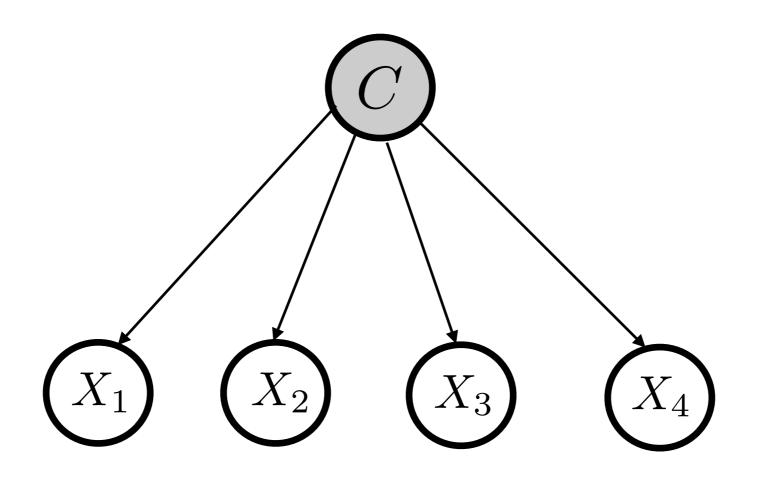




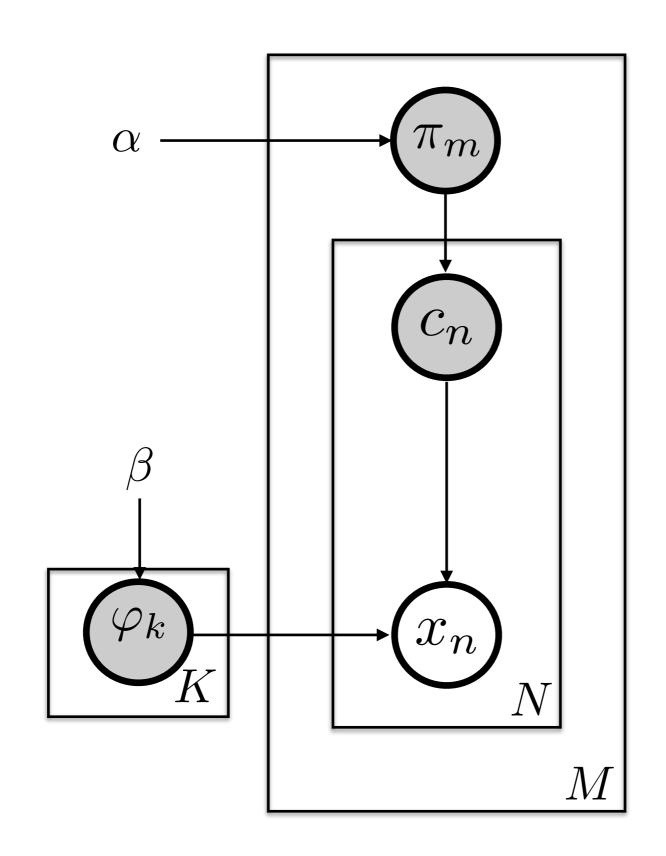
EXAMPLE: MIXTURE MODELS



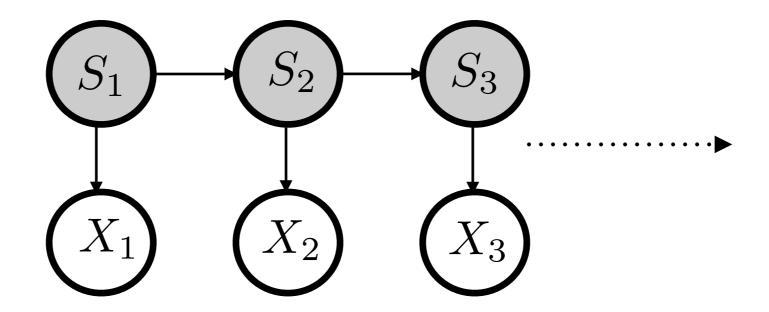
EXAMPLE: NAIVE BAYES CLASSIFIER



EXAMPLE: LATENT DIRICHLET ALLOCATION



EXAMPLE: HIDDEN MARKOV MODEL



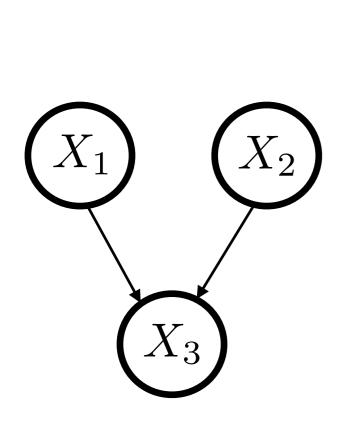
LOCAL MARKOV PROPERTY

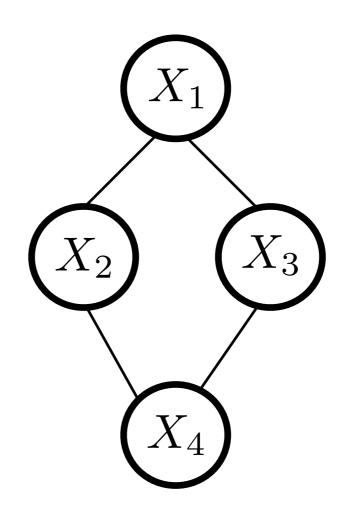
- Each variable is conditionally independent of its non-descendants given its parents
- Any joint distribution satisfying the local markov property w.r.t. graph factorizes over the graph

MARKOV NETWORKS

- Not all distributions can be represented by Bayesian networks
- We also have undirected graphical models.
- Undirected graph G = (V, E) and a set of RV's X_1, \ldots, X_N form a markov network if
 - Any two non adjacent variables are conditionally independent given all other variables
 - Given its neighbors a variable is conditionally independent of all other variables
 - Any two sets of variables are conditionally independent given a separating set

Representational Power: BN Vs MN





No undirected graph can capture the above dependence

No directed graph can capture the above dependence