Machine Learning for Data Science (CS4786)

Lecture 2

Dimensionality Reduction
&
Principal Component Analysis

Course Webpage
http://www.cs.cornell.edu/Courses/cs4786/2015sp/



ANNOUNCEMENTS

@ Diagnostic assignment due on 29th (Thursday) beginning of class

@ Course webpage is the official source of all class related
information

@ Please make sure to add both Prof. Lee and Prof. Sridharan on all
emails



REPRESENTING DATA AS FEATURE VECTORS

@ How do we represent data?

@ Each data-point often represented as vector referred to as feature
vector

@ Eg. text document represented by vector in which each coordinate
represents a word and value represents number of times the word
occurred in the document

@ Eg. Image represented as a vector where each coordinate
represents a pixel and value represents the grayscale value of that
pixel






DIMENSIONALITY REDUCTION

e You are provided with n data points each in RY

e Goal: Compress data into n, points in R where K <<d

e Retain as much information about the original data set

e Retain desired properties of the original data set



WHY DIMENSIONALITY REDUCTION ?

@ For computational ease

e As input to supervised learning algorithm

e Before clustering to remove redundant information and noise
@ Data compression & Noise reduction

@ Data visualization



DIMENSIONALITY REDUCTION

Given feature vectors x4, ..., X, ! RY, compress the data points into
low dimensional representation vy,...,yn! R where K <<d



DIMENSIONALITY REDUCTION

Desired properties:

@ Original data can be (approximately) reconstructed
@ Preserve distances between data points
© ORelevantO information is preserved

O Noise is reduced



DIM REDUCTION : LINEAR TRANSFORMATION

@ Pick a low dimensional subspace
@ Project linearly to this subspace

@ Subspace retains as much information
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ORTHONORMAL PROJECTIONS

@ (Centered) Data-points as linear combination of some
orthonormal basis, i.e.

d
Xe =+ yil]]w;
j=1

1

where Wq,...,Wq € RY are the orthonormal basis and =" le Xt.

@ Represent data as linear combination of just K orthonormal basis,

K

B =+ ye[J]w
j=1
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PCA: VARIANCE MAXIMIZATION
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PCA: VARIANCE MAXIMIZATION
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PCA: VARIANCE MAXIMIZATION

@ Pick directions along which data varies the most



PCA: VARIANCE MAXIMIZATION

@ Pick directions along which data varies the most
@ First principal component:

1" .1, f
wi=arg max —! !w x! —1 w X"
witw!,=11N (4 n._4



PCA: VARIANCE MAXIMIZATION

@ Pick directions along which data varies the most
@ First principal component:

2
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PCA: VARIANCE MAXIMIZATION

@ Pick directions along which data varies the most
@ First principal component:

1no. 1,2
wi=arg max —! !w x! —1 w X"
witw!,=11N (4 n._4
1" 2
=—arg max —1! #w (X! W9
witw!,=11N 4
1" . .
=—arg max —! w (X! (X! n) w

witw!,=11N (4



PCA: VARIANCE MAXIMIZATION

@ Pick directions along which data varies the most
@ First principal component:

1" o.oo1n 2
wi=arg max —! !w x! —1 w X"
witw!,=11N (4 n._4
1" . 2
—arg max —1 #w (X! W9
witw!,=11N 4
1" . :
=—arg max —! w (X! (X! n) w

witw!,=11N (4

—arg max w !w
wlw!l, =1

| IS the covariance matrix



PCA: VARIANCE MAXIMIZATION

@ First principal component:

wi=arg max w !w (1)
wlw!l, =1

To solve the above maximization problem, we use Lagrange
multipliers. Specibcally there exists " such that solution w1 Is:

— " 11 2
W1 =argmaxw Pw 7 Twls

Taking derivate and equalityto Owe Pndthat ! w ="w (ie.
eigenvector). Plugging this back into Eq. 1,
1 N

1 wlw=w ("w) ="
N =1

Hence to maximize variance we pick direction with largest
eigenvalue



PCA: MINIMIZING RECONSTRUCTION ERROR

1.2 ] ] ] ] ] ]
-1.5 -1 -0.5 0 0.5 1 1.5




PCA: MINIMIZING RECONSTRUCTION ERROR
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PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: bnd the basis that minimizes reconstruction error,

n
t=1



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: bnd the basis that minimizes reconstruction error,

N N ﬁ k 552

Cta xd =t il
=1 tlii,-:l I



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: bnd the basis that minimizes reconstruction error,

i i 2
n 2 _ n ik I
DotRe D Xl =1 il yelllwy et X
t=1 (= 1==j:1 i
n ii K d 2

=1 00 yililwg et yilwg !
t=11 j=1 =1



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: bnd the basis that minimizes reconstruction error,

" 0l |2
T x5 = yflwy
t=1 t=1 1 J:]_ 1 5
=1 gl ydllwy+pl boydjlwy b
t=1 1 j:]_ j:]_ i 5
n d _ 2
=1 b ye[)]wgi
t=1vnj=k+1 5



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: bnd the basis that minimizes reconstruction error,

n n i 1
T x5 = yflwy
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t=1 1 j:]_ j:]_ i 5
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PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: bnd the basis that minimizes reconstruction error,

. 0 |2
R x5 = B yelilwy et xed
t=1 t=1 j=1 )
=1t yiljlwi bt yejwg b op
t=1 1 j=1 =1 L 2
n d _ : :
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PCA: MINIMIZING RECONSTRUCTION ERROR
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PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: bnd the basis that minimizes reconstruction error,

. 0l |2
T x5 = yflwy
t=1 t=1 1 J:]_ 1 5
=1 @l yelllwp et boyejwy b
t=1 1 j:]_ j:]_ i 5
n d . 2 .
=1 1 yjlwill (note that y[j] =w; (x¢! W)
t=1w =k+1 2
n i d u2
=1 (wi (X! W) w,
t=1wj=k+1
n d d

2 n
=0 Al S =t wi(xe ! )(Oxe ! W) Wi
t=1j=k+1 t=1j=k+1



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: find the basis that minimizes reconstruction error,

— 2 |%:! xt”z 7 7 ]!'(Xt (X! ) W;

ntzl t 17=k+1



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: find the basis that minimizes reconstruction error,

_Zth| xtHZ 7 7 ]!'(xt H)(xt FL) W] Z W ZW]

n t=1 t 17=k+1 j=k+1



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: find the basis that minimizes reconstruction error,

_Zth| xt”z 7 7 ]!'(xt ) ( x; ! li) W; = Z \f ZW]

n t=1 t 17=k+1 j=k+1

Minimize w.r.t. w’s that are orthonormal,
d |
argmin Z w; Iw;
"Ji will =17=k+1



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: find the basis that minimizes reconstruction error,

_Zth| xt”z 7 7 ]!'(xt ) ( x; ! li) W; = Z \f ZW]

n t=1 t 17=k+1 j=k+1

Minimize w.r.t. w’s that are orthonormal,

d
- |
argmin Z w; Iw;
"J will=1 7=k

Using Lagrangian multipliers, there exists Agq, . . ., A4 such that
solution to above is given by:

minimize 7 7 W P IWj + Z Aj HW]H2
t=1j=k+1 j=k+1




PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: find the basis that minimizes reconstruction error,

1 & . » 1& & | SO
> %! xe|5==D>0 wi (x:! )(xe ! ) wi = > w; Iw;
12 i j=k+1 j=k+1

Minimize w.r.t. w’s that are orthonormal,

d
- |
argmin Z W, LW
"J will=1 7=k

Using Lagrangian multipliers, there exists Ag,1, ..., Ay such that
solution to above is given by:

n d d
minimize » Y W]!- IWi+ ). A ijHi
t=1 j=k+1 j=k+1

Setting derivate to 0, Xw; =A;w;. Thatis w;’s are eigenvectors
and A;’s are eigenvalues.



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Solution : w;’s are eigenvectors and A;’s are corresponding
eigenvalues



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Solution : w;’s are eigenvectors and A;’s are corresponding
eigenvalues

@ Further, reconstruction error can be written as:

d d d
: T T
argmin ) wiIwj= ) AW/ wj= ) N
w:|wi | ,=1]=k+1 j=k+1 j=k+1



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Solution : w;’s are eigenvectors and A;’s are corresponding
eigenvalues

@ Further, reconstruction error can be written as:

d d d
: T T
argmin ) wiIwj= ) AW/ wj= ) N
w:|wi | ,=1]=k+1 j=k+1 j=k+1

@ Clearly to minimize reconstruction error, we need to minimize
Zjd:k .1 Aj- In other words we discard the d - k directions that have
the smallest eigenvalue



PRINCIPAL COMPONENT ANALYSIS

@ Eigenvectors of the covariance matrix are the principal
components
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@ Top K principal components are the eigenvectors with K largest
eigenvalues
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PRINCIPAL COMPONENT ANALYSIS

@ Eigenvectors of the covariance matrix are the principal
components

@ Top K principal components are the eigenvectors with K largest
eigenvalues

@ Projection =Data! Top Keigenvectors

@ Reconstruction = Projection ! Transpose of top K eigenvectors



PRINCIPAL COMPONENT ANALYSIS

@ Eigenvectors of the covariance matrix are the principal
components

@ Top K principal components are the eigenvectors with K largest
eigenvalues

@ Projection =Data! Top Keigenvectors
@ Reconstruction = Projection ! Transpose of top K eigenvectors

@ Independently discovered by Pearson in 1901 and Hotelling in
1933.



PRINCIPAL COMPONENT ANALYSIS: DEMO



