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&
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Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2015sp/



ANNOUNCEMENTS

Diagnostic assignment due on 29th (Thursday) beginning of class

Course webpage is the official source of all class related
information

Please make sure to add both Prof. Lee and Prof. Sridharan on all
emails



REPRESENTING DATA AS FEATURE VECTORS

How do we represent data?

Each data-point often represented as vector referred to as feature
vector

Eg. text document represented by vector in which each coordinate
represents a word and value represents number of times the word
occurred in the document

Eg. Image represented as a vector where each coordinate
represents a pixel and value represents the grayscale value of that
pixel



EXAMPLE : IMAGES



DIMENSIONALITY REDUCTION

You are provided with n data points each in Rd

Goal: Compress data into n, points in RK where K << d

Retain as much information about the original data set

Retain desired properties of the original data set



WHY DIMENSIONALITY REDUCTION ?

For computational ease

As input to supervised learning algorithm

Before clustering to remove redundant information and noise

Data compression & Noise reduction

Data visualization



DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . , xn ! Rd, compress the data points into
low dimensional representation y1, . . . , yn ! RK where K << d



DIMENSIONALITY REDUCTION

Desired properties:

1 Original data can be (approximately) reconstructed

2 Preserve distances between data points

3 ÒRelevantÓ information is preserved

4 Noise is reduced



DIM REDUCTION : LINEAR TRANSFORMATION

Pick a low dimensional subspace

Project linearly to this subspace

Subspace retains as much information



DIM REDUCTION : LINEAR TRANSFORMATION
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ORTHONORMAL PROJECTIONS

(Centered) Data-points as linear combination of some
orthonormal basis, i.e.

xt = µ +
d

!
j=1

yt[ j]w j

where w 1, . . . , wd ∈ Rd are the orthonormal basis and µ = 1
n " n

t=1 xt .
Represent data as linear combination of just K orthonormal basis,

öxt = µ +
K

!
j=1

yt[ j]w j



PCA: VARIANCE M AXIMIZATION

Pick directions along which data varies the most
First principal component:

w1 = arg max
w!! w! 2=1
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PCA: VARIANCE MAXIMIZATION
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PCA: VARIANCE M AXIMIZATION

First principal component:

w1 = arg max
w!! w! 2=1

w" ! w (1)

To solve the above maximization problem, we use Lagrange
multipliers. SpeciÞcally there exists " such that solution w1 is:

w1 = arg max
w

w" ! w ! " ! w! 2
2

Taking derivate and equality to 0 we Þnd that ! w = " w (ie.
eigenvector). Plugging this back into Eq. 1,
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Hence to maximize variance we pick direction with largest
eigenvalue



PCA: M INIMIZING RECONSTRUCTION ERROR

Goal: Þnd the basis that minimizes reconstruction error,
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PCA: MINIMIZING RECONSTRUCTION ERROR
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PCA: MINIMIZING RECONSTRUCTION ERROR

Solution : wj ’s are eigenvectors and �j ’s are corresponding
eigenvalues
Further, reconstruction error can be written as:

argmin
w∶�wj�2=1

d�
j=k+1

w

�
j ⌃wj = d�

j=k+1
�jw

�
j wj = d�

j=k+1
�j

Clearly to minimize reconstruction error, we need to minimize∑d
j=k+1 �j . In other words we discard the d− k directions that have

the smallest eigenvalue
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PRINCIPAL COMPONENT A NALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data ! Top Keigenvectors

Reconstruction = Projection ! Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.



PRINCIPAL COMPONENT A NALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data ! Top Keigenvectors

Reconstruction = Projection ! Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.



PRINCIPAL COMPONENT A NALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data ! Top Keigenvectors

Reconstruction = Projection ! Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.



PRINCIPAL COMPONENT A NALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data ! Top Keigenvectors

Reconstruction = Projection ! Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.



PRINCIPAL COMPONENT A NALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data ! Top Keigenvectors

Reconstruction = Projection ! Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.



PRINCIPAL COMPONENT A NALYSIS: DEMO


